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Abstract

We consider the dynamics of a dilute, magnetically-trapped one-dimensional Bose-Einstein condensate
whose scattering length is periodically modulated with a frequency that linearly increases in time. We
show that the response frequency of the condensate locks to its eigenfrequency for appropriate ranges
of the parameters. The locking sets in at resonance, i.e., when the effective frequency of driving field
is equal to the eigenfrequency, and is accompanied by a sudden increase of the oscillations amplitude
due to resonant energy transfer. We show that the dynamics of the condensate is given, to leading
order, by a driven harmonic oscillator on the time-dependent part of the width of the condensate. This
equation captures accurately both the locking and the resonant energy transfer as it is evidenced by
comparison with direct numerical simulations of original Gross-Pitaevskii equation.
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PACS: 05.45.Xt, 03.75.Nt

1 Introduction

Bose-Einstein condensates (BECs) [1] are one of the most appealing systems for nonlinear science
due to their unprecedented experimental maneuverability and the supporting theoretical modeling. A
BEC is comprised of a dilute gas of magnetically (or optically) trapped bosons that, when cooled to
extremely low temperatures, occupy their lowest-energy quantum state. BECs can be manipulated in
time and space. On the spatial side, one has good experimental control over the shape and the strength
of trapping potential, while on the temporal side one can modify in time the strength of two-body
scattering length [2,3] to the extent of probing the region between attractive and repulsive condensates.
Theoretically, the dynamics of Bose-condensed gases is given by the so-called Gross-Pitaevskii (GP)
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equation [4,5], a cubic Schrödinger equation describing the T = 0 dynamics of the condensate. In one
spatial dimension (with ~ = m = 1, a convention followed throughout the rest of the paper, m being
the mass of each boson) the adimensional GP equation is given by

i~
∂ψ

∂t
= −1

2

∂2ψ

∂x2
+ V (x)ψ + U |ψ|2 ψ, (1)

where V (x) is the trapping potential, here taken as V (x) = Ω2x2/2. The coefficient of the cubic term
is U = 4πa, where a is the two-body scattering length. Notice that N =

∫

|ψ (x)|2, the number of
particles, is a dynamical invariant of Eq. (1) for general, time dependent, V (x) and/or U . The GP
Lagrangian is given by

L(t) =

∫

∞

−∞

L(t)dt

=

∫

∞

−∞

[

i

2
(ψψ∗

t − ψ∗ψt) +
1

2
|ψx|2 + V (x) |ψ|2 +

U

2
|ψ|4

]

dt. (2)

Due to the advent of the Feshbach resonance [2,3] it is now possible to modulate in time the scattering
length. While there are numerous results concerning the parametric resonances that take place when
the scattering length is modulated as a (1 + ǫ sin (ωt)), where ω = ω0 is a fixed frequency (see Refs. [6–
8] and references therein), very little is known about the case when the driving frequency is time
dependent. Here we focus on the case when the driving frequency ω(t) increases linearly in time, i.e.,
ω (t) = γt with γ > 0.

In this paper we show that, apart from a set of intrinsically nonlinear resonances exhibited by the Gross-
Pitaevskii equation, the dynamics of the condensate is given to leading order by ẍ + x = ǫ sin(γ̃τ2),
where x is a rescaled value of the time-dependent part of the width of the condensate, τ is the rescaled
time and γ̃ is proportional to γ. Comparing this simplified equation with full GP numerics we see
that for small ǫ and γ it captures accurately both the mode-locking and the resonant energy transfer
that take place when the effective frequency of the driving field matches the eigenfrequency of the
condensate, from now on called Ω̃. More explicitly, for t < Ω̃/2γ, the width of the condensate shows
oscillations close to the effective frequency of the drive (i.e., ωosc = 2γt). At resonance (i.e., t ≃ Ω̃/2γ)
there is a sudden increase of the amplitude of oscillations due to resonant energy transfer, while at
later time the oscillations are on the condensate eigenfrequency and not that of the driving field (i.e.,
ωosc = Ω̃). Drawing from previous studies on dissipative systems we refer to this phenomenon as mode

locking.

We consider a dilute, magnetically-trapped condensate and a Gaussian wave-function ansatz (see
Refs. [9–12] for the main results regarding the use of Gaussian ansatz for cubic nonlinear Schrödinger
equation). After the usual variational recipe we linearize the ensuing ordinary differential equations
around the equilibrium/ground-state value of the width of the condensate. The final equation (in the
time-dependent part of the width of the condensate) is that of a driven harmonic oscillator. The rest
of the paper is structured as follows. Section 2 is dedicated to the variational method that simplifies
the condensate dynamics to an ODE. In Section 3 we analyze the equation of the driven harmonic
oscillator, while in Sec. 4 we make a one-to-one comparison between the reduced ODE dynamics and
full PDE numerics of the GP equation. Section 5 gathers our conclusions.

2



2 Variational recipe

We consider a dilute, magnetically-trapped BEC and a one-dimensional Gaussian-like profile as ansatz

ψ (x, t) =
N1/2

π1/4w (t)1/2
exp

[

− x2

2w (t)2
+ ix2β (t) + iφ (t)

]

, (3)

where N is the number of atoms in the cloud, φ is an overall phase (the canonical conjugate of N),
w is the width of the condensate while β, the so-called chirp, is the canonical conjugate of w [9–12].
The above trial wave-function yields the Lagrangian

L(t) =
N

2
w2β̇ +Nφ̇+

N2U

2
√

2πw
+
NΩ2w2

4
+

N

4w2
+Nw2β2.

The Euler-Lagrange equations
d

dt

(

∂L

∂q̇

)

=
∂L

∂q
, (4)

give, for q ∈ {φ,w, β},
dN

dt
= 0, (5)

i.e., the conservation of particles, for q = φ,

wβ̇ +
Ω2w

2
− 1

2w3
− NU

2
√

2πw2
+ 2wβ2 = 0, (6)

for q = w and
ẇ = 2wβ, (7)

for q = β. Following some straightforward algebraic manipulations, the previous can be combined into

d2w

dt2
+ Ω2w =

1

w3
+

UN√
2πw2

. (8)

This equation also holds in the case of time-dependent magnetic traps and that of a time-dependent
scattering length, i.e., the equation is left unchanged by U → U(t) and Ω2 → Ω2(t). Introducing now
the rescaled variables P = UN/

√
2πΩ, τ = Ωt and w = v/

√
Ω, Eq. (8) reads

d2v

dτ2
+ v =

1

v3
+
P

v2
. (9)

The equilibrium width is given by

ṽ =
1

ṽ3
+
P

ṽ2
, (10)

which has only one positive solution for P > 0. Around the equilibrium point ṽ, v = ṽ + δ, the
dynamics for the perturbation δ is given by

d2δ

dτ2
+ δ

(

1 +
3

ṽ4
+

2P

ṽ3

)

= 0, (11)

indicating a period of T = 2π/ωP for the perturbation, where the natural eigenfrequency of the system
is given by

ωP =

√

1 +
3

ṽ4
+

2P

ṽ3
. (12)
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Modulating the scattering length as a (1 + ǫ sin (ω (t) t)), with ω (t) = γt, i.e., U(t) = U(1+ǫ sin(ω(t)t))
and subsequently P (τ) = P (1 + ǫ sin(ω(τ)τ)), and following the above steps one has

ẍ+ x = ǫ sin
(

γ̃τ̃2
)

, (13)

where x = δω2
P ṽ

2/P , ẋ = dx/dτ̃ , with τ̃ = ωP τ , and γ̃ = γ/Ω2ω2
P , and we have discarded a term

proportional to ǫx as being second order, as both ǫ and x are small. The boundary conditions are
taken as x(0) = 0 and ẋ(0) = 0, indicating that the condensate was initially at rest. For simplicity, we
will omit in what follows the tilde on τ̃ and γ̃ when referring to x.

Finally, let us notice that

w(t) = weq +
UNx(t)√

2πΩṽ2

(

1 +
2

ṽ4
+

2P

ṽ3

)−1

, (14)

where, weq is the equilibrium value of the width, i.e., ṽ/
√

Ω. In order for the linear approximation to
hold the second term on the right hand side of Eq. (14), i.e., the deviation from the equilibrium value
of the width of the condensate, has to be numerically small.

3 Driven harmonic oscillator

3.1 Analytical solution

In this section we analyze the equation of the driven harmonic oscillator. The solution of Eq. (13) is
given by

x=
ǫ
√

2π

4
√
γ

{

−2 cos τ cos

(

1

4γ

)

C

(

1√
2πγ

)

− 2 cos τ sin

(

1

4γ

)

S

(

1√
2πγ

)

+ cos τ cos

(

1

4γ

)

C(z+) − cos τ cos

(

1

4γ

)

C(z−)

+ sin τ cos

(

1

4γ

)

S(z+) + sin τ cos

(

1

4γ

)

S(z−)

+ cos τ sin

(

1

4γ

)

S(z+) − cos τ sin

(

1

4γ

)

S(z−)

− sin τ sin

(

1

4γ

)

C(z+) − sin τ sin

(

1

4γ

)

C(z−)

}

, (15)

where z± ≡ (±1 + 2τγ)/
√

2πγ and S and C are the well-known Fresnel functions defined as

S(z) =

∫ z

0
sin

(

π

2
t2
)

dt,

and

C(z) =

∫ z

0
cos

(

π

2
t2
)

dt.

Before stepping into the analysis of Eq. (15) let us first notice that in order for the linear analysis to
hold we need

f =
UNǫ

4
√
γΩṽ2

(

1 +
2

ṽ4
+

2P

ṽ3

)−1

(16)
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to be numerically small. This follows trivially by replacing x(t) in Eq. (14).

In the subsequent analysis, we will investigate the form of x(t) for small values of γ. In all cases
detailed below this limit should be implicitly understood as follows: small values of γ and a sufficiently
small value of ǫ such that f is numerically small, therefore the linear analysis holds.

Analyzing Eq. (15) we see that for small γ and τ < 1/2γ the solution is dominated by the Fresnel
functions, therefore the small-amplitude oscillations of x follow the frequency of the driving field.
Following a set of elementary (though somewhat tedious) manipulations (detailed in the Appendix)
one has that, for small γ and τ < 1/2γ,

x =
ǫ

2
sin
(

γτ2
)

. (17)

For τ > 1/2γ (with small γ) x reduces to

x = − ǫ
√
π

2
√

2γ

[

cos

(

τ − 1

4γ

)

− sin

(

τ − 1

4γ

)]

, (18)

which is the so-called mode-locked response of the condensate [13]. We emphasize that this mode-locked
response takes place for small values of γ (such that the above limits hold) and small values of f (such
that the harmonic oscillator picture, i.e., approximating Eq. (9) with Eq. (11), holds).

In the vicinity of τ = 1/2γ the Fresnel functions having z− = (−1+ τ2γ)/
√

2πγ as argument resemble
a step function and are responsible for the sudden increase in the oscillations amplitude. Physically,
this is a resonant energy transfer that takes place at

tc =
ΩωP

2γ
=

Ω̃

2γ
, (19)

where Ω̃ = ΩωP is the eigenfrequency of the condensate.

Apart from the cumbersome full solution of the driven oscillator this later property can be understood
through the so-called auto-resonance that is discussed in the next section.

3.2 Mode-locking

To explain why in the small γ limit the oscillator responds on its eigenfrequency for τ > 1/2γ we follow
the recipe of auto-resonance phenomena put forward by Friedland and collaborators (see Ref. [14],
and references therein). We will show (see also [15]) that close to resonance the second-order equation
describing the oscillator is equivalent to those of a virtual particle trapped in a finite-depth energy-
minimum of an effective potential.

Before stepping into the actual mode-locking analysis, let us stress that the skeleton of this approach
is not new [15]. The novelty of this section comes, however, from our use of the Eq. (15), which sub-
stantiates an assumption that was previously based merely on numerical computations [cf., discarding
the last term in Eq. (23)].

Taking x = a (τ) sinϕ (τ) and discarding the second derivative of a with respect to τ , the so-called
adiabatic assumption (i.e., small γ), one has

i2ȧϕ̇+ iaϕ̈− aϕ̇2 + a = ǫ exp
(

iγτ2 − iϕ
)

,

where ȧ = da/dτ . Equating real and imaginary parts we obtain










a− aϕ̇2 = ǫ cos(γτ2 − ϕ),

2ȧϕ̇+ aϕ̈ = ǫ sin(γτ2 − ϕ).

(20)
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Refraining now to the case close to the resonance, i.e., we limit the analysis to a vicinity of τc such
that

ϕ̇ (τc) = 1,

the previous equations yield














1 − ϕ̇ =
ǫ

2a
cos(γτ2 − ϕ),

d a2

dτ
= aǫ sin(γτ2 − ϕ).

(21)

Defining the action I = a2 and the phase mismatch Φ = γτ2 − ϕ variables we can recast the previous
equations as











Φ̇ = 2γτ − 1 +
ǫ

2
√
I

cos Φ,

İ = ǫ
√
I sin Φ.

(22)

In order for the condensate to stay mode-locked Φ must be close to 0 or π and the right hand side of
the first equation of (22) should be equal to zero, i.e.,

Φ̇ = 0 = 2γτ − 1 − ǫ

2
√
I0

cos Φ̃ (23)

where I0 is the usual equilibrium action while Φ̃ is the equilibrium phase-mismatch. Notice that Φ̇ = 0
amounts to τc roughly equal to ωP /2γ, as the last term in Eq. (23) can be neglected for small γ. This
latter claim can be supported either by numerical arguments (as in Ref. [15]) or by analytical ones;
in particular, using the analytical solution of x one has that

√
I0 goes as ǫ/

√
γ (see the prefactor in

Eq. (15)), therefore the last term in Eq. (23) goes as
√
γ and can be safely ignored for small γ.

The solution of interest is Φ̃ = π, for Φ̃ = 0 corresponds to an energy maximum, as will be shown
below.

Let us set I = I0 + ∆ and Φ = Φ̃ + φ, where ∆ and φ are small. It then yields from Eq. (23)

dI0
dτ

=
8γI

3/2
0

ǫ cos Φ̃
. (24)

Setting Φ to Φ̃ on the right hand side of the first equation of (22) we have

φ̇ = − ǫ∆

4I
3/2
0

cos Φ̃. (25)

Finally, the dynamics around the equilibrium is given by the following Hamiltonian system










φ̇ = − cos Φ̃∆B,

∆̇ = A cos Φ̃ sinφ− 2γ/B cos Φ̃,

where A =
√
I0ǫ and B = ǫ/4I

3/2
0 . The associated Hamilton function is

H (∆, φ) = − cos Φ̃
B∆2

2
+ V (φ) ,

where the potential is given by

V (φ) = A cos Φ̃ cosφ+
2γφ

B cos Φ̃
.

The mode-locking is now transparent: for Φ̃ = π there is an energy minimum around φ = 0 corre-
sponding to the system oscillating on its eigenfrequency, while for Φ̃ = 0 there is an energy maximum
of no physical interest around φ = 0.
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Fig. 1. Dynamics of the width of the condensate for N = 0.2, U = 1, Ω = 0.1, ǫ = 0.02, and γ = 0.00002. Using Eqs. (10), (12) and
(16) one finds f = 0.183, therefore the harmonic oscillator picture is valid. In the upper panel we have depicted wPDE , the width
of the condensate obtained by fitting with a Gaussian function the density profile obtained from Eq. (1), while the middle panel
shows wvar, the width of the condensate obtained from full numerical simulation of Eq. (15). The lower panel shows the relative
error, i.e., εrel = wPDE/wvar.

4 Numerical results

In this section we compare the width of the condensate obtained from the full partial-differential GP
equation with the approximate formula derived from the harmonic-oscillator picture. Our main result
is that for small amplitudes of the driving field the harmonic oscillator picture captures quantitatively
both the mode-locking and the resonant energy transfer. In Fig. 1 we depict the dynamics of the width
of a typical low-density condensate obtained from the full GP simulation (upper panel) and compare
it with our analytical result, Eq. (15) —see the middle panel. The relative error (shown in the lower
panel) is seen to be numerically small. As one can easily see by inspecting Eq. (15) the resonant
energy transfer takes places at tc = ΩωP /2γ where the solution of the driven harmonic oscillator has
a step-like behavior stemming from the Fresnel functions of argument z− = (−1 + 2τγ)/

√
2πγ (see

Eq. (15)).

In Fig. 2 we show the quantitative agreement between the short- and long-time asymptotic of Eq. (15),
i.e., Eqs. (18) and (17), and the full GP simulation. The upper plot shows the region where the
condensate responds on the effective frequency of the driving field, i.e., w ∝ sin

(

γt2
)

, while the lower
panel shows the region where the condensate responds on its natural frequency, i.e., w ∝ sin(Ω̃t).
Notice in both cases the good agreement between the full numerics and the simplified model. Naturally,
higher values of ǫ show our model to be oversimplified as the wave-functions develops a visible non-
Gaussian structure [16].

Investigating the dynamics of the condensate long after the first resonance one sees a set of intrinsically
nonlinear resonances (not shown here —see Refs. [15,17]) which fall outside this simple model. The
crucial dynamics, however, takes place around the first resonance when the condensates shifts from
following the effective frequency of the driving field to responding on its natural frequency, a process
that is referred to as mode-locking [15].
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Fig. 2. Short- and long-time dynamics of the width of the condensate for N = 0.2, U = 1, Ω = 0.1, ǫ = 0.02, and γ = 0.00002. The
upper panel depicts (in dashed line) the short-time dynamics of the width of the condensate obtained from Eq. (1) (upon fitting
the density profile with a Gaussian) and the asymptotic value of the width as predicted by Eq. (17) (in full line). The lower panel
depicts (in dashed line) the long-time dynamics of the width of the condensate obtained from Eq. (1) (upon fitting the density
profile with a Gaussian) and the the asymptotic value of the width as predicted by Eq. (18) (in full line).

5 Conclusions

We have investigated the dynamics of a dilute, magnetically-trapped one-dimensional Bose-Einstein
condensate whose scattering length is driven as a (1 + ǫ sin (ω (t) t)), where ω (t) increases linearly in
time, i.e., ω (t) = γt. Solving numerically the GP equation we have shown that the response frequency
of the condensate locks to its eigenfrequency at resonance (for small values of ǫ and γ). The locking is
accompanied by a sudden increase in the oscillations amplitude due to resonance energy transfer. We
show, using a variational ansatz approach, that apart from a set of intrinsically nonlinear resonances
(not shown here —see Refs. [15,17,18]), the dynamics of the condensate is given to leading order by
ẍ + x = ǫ sin(γ̃τ2), where x is the rescaled value of the time-dependent part of the width of the
condensate, τ is the rescaled time and γ̃ is proportional to γ. This equation captures accurately both
the locking and the resonant energy transfer.
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A Short-time dynamics

Let us define

S1 =−2 cos τ cos

(

1

4γ

)

C

(

1√
2πγ

)

− cos τ cos

(

1

4γ

)

cos

(−1 + 2τγ√
2πγ

)

+ cos τ cos

(

1

4γ

)

cos

(

1 + 2τγ√
2πγ

)

,
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S2 = sin τ cos

(

1

4γ

)

S

(−1 + 2τγ√
2πγ

)

+ sin τ cos

(

1

4γ

)

S

(

1 + 2τγ√
2πγ

)

,

S3 =−2 cos τ sin

(

1

4γ

)

S

(

1√
2πγ

)

− cos τ sin

(

1

4γ

)

S

(−1 + 2τγ√
2πγ

)

+ cos τ sin

(

1

4γ

)

S

(

1 + 2τγ√
2πγ

)

,

S4 =− sin τ sin

(

1

4γ

)

C

(−1 + 2τγ√
2πγ

)

− sin τ sin

(

1

4γ

)

C

(

1 + 2τγ√
2πγ

)

.

Expressing the Fresnel functions in their integral form one has after a few straightforward algebraic
manipulations that

S =S1 + S2 + S3 + S4

=

∫

−
1

√

2πγ

−1+2τγ
√

2πγ

cos

(

π

2
y2 − 1

4γ
+ τ

)

dy +

∫
1+2τγ
√

2πγ

1
√

2πγ

cos

(

π

2
y2 − 1

4γ
− τ

)

dy.

Following a change of variables one has that

S =
1√
2πγ

(

∫

−1

−1+2γτ
cos

(

y2 − 1 + 4γτ

4γ

)

dy +

∫ 1+2γτ

1
cos

(

y2 − 1 − 4γτ

4γ

)

dy

)

.

For small values of γ and short times one has that 2γτ is small, therefore a good approximation of S is
obtained by linearizing y2 around −1+2γτ and 1+2γτ (for the first and second integral respectively).
After a trivial integration one has that

S ≈
√

2

π

√
γ sin

(

γτ2
)

, (A.1)

which is the short time asymptotic of Eq. (15).
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