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Abstract. The aim of the present review is to introduce the reader to some of the physical

notions and of the mathematical methods that are relevant to the study of nonlinear waves

in Bose-Einstein Condensates (BECs). Upon introducing the general framework, we discuss

the prototypical models that are relevant to this setting for different dimensions and different

potentials confining the atoms. We analyze some of the model properties and explore their typical

wave solutions (plane wave solutions, bright, dark, gap solitons, as well as vortices). We then offer

a collection of mathematical methods that can be used to understand the existence, stability and

dynamics of nonlinear waves in such BECs, either directly or starting from different types of limits

(e.g., the linear or the nonlinear limit, or the discrete limit of the corresponding equation). Finally,

we consider some special topics involving more recent developments, and experimental setups in

which there is still considerable need for developing mathematical as well as computational tools.
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• KdV: Korteweg-de Vries (Equation)

• LS: Lyapunov-Schmidt (Technique)

• MT: Magnetic Trap

• NLS: Nonlinear Schrödinger (Equation)

• NPSE: Non-polynomial Schrödinger Equation

• ODE: Ordinary Differential Equation

• OL: Optical Lattice

• PDE: Partial Differential Equation

• RPM: Reductive Perturbation Method

• TF: Thomas-Fermi

1. Introduction

The phenomenon of Bose-Einstein condensation is a quantum phase transition originally predicted

by Bose [1] and Einstein [2,3] in 1924. In particular, it was shown that below a critical transition

temperature Tc, a finite fraction of particles of a boson gas (i.e., whose particles obey the Bose statistics)

condenses into the same quantum state, known as the Bose-Einstein condensate (BEC). Although Bose-

Einstein condensation is known to be a fundamental phenomenon, connected, e.g., to superfluidity in

liquid helium and superconductivity in metals (see, e.g., Ref. [4]), BECs were experimentally realized

70 years after their theoretical prediction: this major achievement took place in 1995, when different

species of dilute alkali vapors confined in a magnetic trap (MT) were cooled down to extremely low

temperatures [5–7], and has already been recognized through the 2001 Nobel prize in Physics [8,9].

This first unambiguous manifestation of a macroscopic quantum state in a many-body system sparked

an explosion of activity, as reflected by the publication of several thousand papers related to BECs

since then. Nowadays there exist more than fifty experimental BEC groups around the world, while

an enormous amount of theoretical work has followed and driven the experimental efforts, with an

impressive impact on many branches of Physics.

From a theoretical standpoint, and for experimentally relevant conditions, the static and dynamical

properties of a BEC can be described by means of an effective mean-field equation known as the Gross-

Pitaevskii (GP) equation [10,11]. This is a variant of the famous nonlinear Schrödinger (NLS) equation

[12] (incorporating an external potential used to confine the condensate), which is known to be a

universal model describing the evolution of complex field envelopes in nonlinear dispersive media [13].

As such, the NLS equation is a key model appearing in a variety of physical contexts, ranging from

optics [14–17], to fluid dynamics and plasma physics [18], while it has also attracted much interest from

a mathematical viewpoint [12,19,20]. The relevance and importance of the NLS model is not limited

to the case of conservative systems and the theory of solitons [13,18,21–23]; in fact, the NLS equation

is directly connected to dissipative universal models, such as the complex Ginzburg-Landau equation

[24,25], which have been studied extensively in the context of pattern formation [26] (see also Ref. [27]

for further discussion and applications).

In the case of BECs, the nonlinearity in the GP (NLS) model is introduced by the interatomic

interactions, accounted for through an effective mean-field. Importantly, the mean-field approach, and

the study of the GP equation, allows the prediction and description of important, and experimentally

relevant, nonlinear effects and nonlinear waves, such as solitons and vortices. These, so-called, matter-

wave solitons and vortices can be viewed as fundamental nonlinear excitations of BECs, and as such

have attracted considerable attention. Importantly, they have also been observed in many elegant

experiments using various relevant techniques. These include, among others, phase engineering of the

condensates in order to create vortices [28,29] or dark matter-wave solitons in them [30–34], the stirring

(or rotation) of the condensates providing angular momentum creating vortices [35,36] and vortex-

lattices [37–39], the change of scattering length (from repulsive to attractive via Feshbach resonances)

to produce bright matter-wave solitons and soliton trains [40–43] in attractive condensates, or set into

motion a repulsive BEC trapped in a periodic optical potential referred to as optical lattice to create
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gap matter-wave solitons [44]. As far as vortices and vortex lattices are concerned, it should be noted

that their description and connection to phenomena as rich and profound as superconductivity and

superfluidity, were one of the themes of the Nobel prize in Physics in 2003.

The aim of this paper is to give an overview of some physical and mathematical aspects of the

theory of BECs. The fact that there exist already a relatively large number of reviews [45–51] and

textbooks [4,52–55] devoted in the Physics of BECs, and given the space limitations of this article, will

not allow us to be all-inclusive. Thus, this review naturally entails a personalized perspective on BECs,

with a special emphasis on the nonlinear waves that arise in them. In particular, our aim here is to

present an overview of both the physical setting and, perhaps more importantly, of the mathematical

techniques from dynamical systems and nonlinear dynamics that can be used to address the dynamics

of nonlinear waves in such a setting. This manuscript is organized as follows.

Section 2 is devoted to the mean-field description of BECs, the GP model and its properties. In

particular, we present the GP equation and discuss its variants in the cases of repulsive and attractive

interatomic interactions and how to control them via Feshbach resonances. We also describe the

ground state properties of BECs and their small-amplitude excitations via the Bogoliubov-de Gennes

equations. Additionally, we present the types of the external confining potential and how their form

leads to specific types of simplified mean-field descriptions.

Section 3 describes the reduction of the spatial dimensionality of the BEC by means of effectively

suppressing one or two transverse directions. This can be achieved by “tightening” the external

confining potential (usually a harmonic magnetic trap) along these directions. We introduce the basic

nonlinear structures (dark and bright solitons) that are ubiquitous to one-dimensional settings. The

different types of nonlinearities that arise from different approximations due to the dimensionality

reduction are discussed. We also present the dimensionality reduction in the presence of external

periodic potentials generated by the optical lattices (which are created as interference patterns of

multiple laser beams) and the discrete limit, the discrete nonlinear Schrödinger equation, that they

entail for strong potentials.

Section 4 deals with the mathematical methods used to describe nonlinear waves in BECs. The

presentation concerns four categories of methods, depending on the particular features of the model at

hand. The first one concern “direct” methods, which analyze the nonlinear mean-field models directly,

without employing techniques based on some appropriate, physically relevant and mathematically

tractable limit. Such approaches include, for example the method of moments, self-similarity and

rescaling methods, or the variational techniques among others. The second one will concern methods

that make detailed use of the understanding of the linear limit of the problem (e.g., the linear

Schrödinger equation in the presence of a parabolic, periodic, or a double-well potential). The third

category of the mathematical methods entails perturbation techniques from the fully nonlinear limit

of the system (e.g., the integrable NLS equation), while the fourth one concerns discrete systems

(relevant to BECs trapped in strong optical lattices), where perturbation methods from the so-called

anti-continuum limit are extremely helpful.

Finally, in Sec. 5 we present some special topics that have recently attracted much physical interest,

both theoretical and experimental. These include multicomponent and spinor condensates described

by systems of coupled GP equations, shock waves, as well as nonlinear structures arising in higher-

dimensions, such as vortices and vortex lattices in BECs, and multidimensional solitons (including

dark and bright ones). We also briefly discuss the manipulation of matter-waves by means of various

techniques based on the appropriate control of the external potentials. In that same context, the effect

of disorder on the matter-waves is studied. Finally, we touch upon the description of BECs beyond

mean-field theory, presenting relevant theoretical models that have recently attracted attention.

2. The Gross-Pitaevskii (GP) mean-field model

2.1. Origin and fundamental properties of the GP equation

We consider a sufficiently dilute ultracold atomic gas, composed by N interacting bosons of mass m

confined by an external potential Vext(r). Then, the many-body Hamiltonian of the system is expressed,
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in second quantization form, through the boson annihilation and creation field operators, Ψ̂(r, t) and

Ψ̂†(r, t), as [46,53],

Ĥ =

∫

drΨ̂†(r, t)Ĥ0Ψ̂(r, t) +
1

2

∫

drdr′Ψ̂†(r, t)Ψ̂†(r′, t)V (r − r′)Ψ̂(r′, t)Ψ̂(r, t), (1)

where Ĥ0 = −(~2/2m)∇2 + Vext(r) is the “single-particle” operator and V (r − r′) is the two-body

interatomic potential. The mean-field approach is based on the so-called Bogoliubov approximation,

first formulated by Bogoliubov in 1947 [56], according to which the condensate contribution is separated

from the boson field operator as Ψ̂(r, t) = Ψ(r, t) + Ψ̂′(r, t). In this expression, the complex function

Ψ(r, t) ≡ 〈Ψ̂(r, t)〉 (i.e., the expectation value of the field operator), is commonly known as the

macroscopic wavefunction of the condensate, while Ψ̂′(r′, t) describes the non-condensate part, which, at

temperatures well below Tc, is actually negligible (for generalizations accounting for finite temperature

effects see Sec. 5.7). Then, the above prescription leads to a nontrivial zeroth-order theory for the BEC

wavefunction as follows: First, from the Heisenberg evolution equation i~(∂Ψ̂/∂t) = [Ψ̂, Ĥ] for the field

operator Ψ̂(r, t), the following equation is obtained:

i~
∂

∂t
Ψ̂(r, t) =

[

Ĥ0 +

∫

dr′Ψ̂†(r′, t)V (r′ − r)Ψ̂(r′, t)

]

Ψ̂(r, t). (2)

Next, considering the case of a dilute ultracold gas with binary collisions at low energy, characterized

by the s-wave scattering length a, the interatomic potential can be replaced by an effective delta-

function interaction potential, V (r′ − r) = gδ(r′ − r) [46,47,52,53], with the coupling constant (i.e., the

nonlinear coefficient) g given by g = 4π~
2a/m. Finally, employing this effective interaction potential,

and replacing the field operator Ψ̂ with the classical field Ψ, Eq. (2) yields the GP equation,

i~
∂

∂t
Ψ(r, t) =

[

− ~
2

2m
∇2 + Vext(r) + g|Ψ(r, t)|2

]

Ψ(r, t). (3)

The complex function Ψ in the GP Eq. (3) can be expressed in terms of the density ρ(r, t) ≡ |Ψ(r, t)|2,
and phase S(r, t) of the condensate as Ψ(r, t) =

√

ρ(r, t) exp [iS(r, t)]. Note that the current density

j = ~

2mi
(Ψ∗∇Ψ − Ψ∇Ψ∗) (asterisk denotes complex conjugate), assumes a hydrodynamic form j = ρv,

with an atomic velocity v(r, t) = ~

m
∇S(r, t). The latter is irrotational (i.e., ∇×v = 0), which is

a typical feature of superfluids, and satisfies the famous Onsager-Feynman quantization condition
∮

C
dl · v = (~/m)N , where N is the number of vortices enclosed by the contour C (the circulation is

obviously zero for a simply connected geometry).

For time-independent external potentials, the GP model possesses two integrals of motion, namely,

the total number of atoms,

N =

∫

|Ψ(r, t)|2dr, (4)

and the energy of the system,

E =

∫

dr

[

~
2

2m
|∇Ψ|2 + Vext|Ψ|2 +

1

2
g|Ψ|4

]

, (5)

with the three terms in the right-hand side representing, respectively, the kinetic energy, the potential

energy and the interaction energy.

A time-independent version of the GP Eq. (3) can readily be obtained upon expressing the

condensate wave function as Ψ(r, t) = Ψ0(r) exp(−iµt/~), where Ψ0 is a function normalized to the

number of atoms (N =
∫

dr |Ψ0|2) and µ = ∂E/∂N is the chemical potential. Substitution of the above

expression into the GP Eq. (3) yields the following steady state equation for Ψ0:
[

− ~
2

2m
∇2 + Vext(r) + g|Ψ0|2(r)

]

Ψ0(r) = µΨ0(r). (6)

Equation (6) is useful for the derivation of stationary solutions of the GP equation, including the ground

state of the system (see Sec. 2.5).
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2.2. The GP equation vs. the full many-body quantum mechanical problem

It is clear that the above mean-field approach and the analysis of the pertinent GP Eq. (3) is much

simpler than a treatment of the full many-body Schrödinger equation. However, a quite important

question is if the GP equation can be derived rigorously from a self-consistent treatment of the respective

many-body quantum mechanical problem. Although the GP equation is known from the early 1960s,

this problem was successfully addressed only recently for the stationary GP Eq. (6) in Ref. [57]. In

particular, in that work it was proved that the GP energy functional describes correctly the energy and

the particle density of a trapped Bose gas to the leading-order in the small parameter ρ̄|a|3, where ρ̄ is

the average density of the gas.¶ The above results were proved in the limit where the number of particles

N → ∞ and the scattering length a→ 0, such that Na is fixed. Importantly, although Ref. [57] referred

to the full three-dimensional (3D) Bose gas, extensions of this work for lower-dimensional settings were

also reported (see the review [51] and references therein).

The starting point of the analysis of Ref. [57] is the effective Hamiltonian of N identical bosons.

Choosing the units so that ~ = 2m = 1, this Hamiltonian is expressed as (see also Ref. [52]),

H =
N
∑

j=1

[

−∇2
j + Vext(rj)

]

+
∑

i<j

v(|ri − rj|), (7)

where v(|r|) is a general interaction potential assumed to be spherically symmetric and decaying faster

than |r|−3 at infinity. Then, denoting the quantum-mechanical ground-state energy of the Hamiltonian

(7) (which depends on the number of particles N and the dimensionless+ scattering length ã) by

EQM(N, ã), the main theorem proved in Ref. [57] is as follows:

• The GP energy is the dilute limit of the quantum-mechanical energy:

∀ã1 > 0 : lim
n→∞

1

N
EQM

(

N,
ã1

n

)

= EGP(1, ã1), (8)

where EGP(N, ã) is the energy of a solution of the dimensionless stationary GP Eq. (6) (in

units such that ~ = 2m = 1), and the convergence is uniform on bounded intervals of ã1.

The above results (as well as the ones in Ref. [51]) were proved for stationary solutions of the

GP equation, and, in particular, for the ground state solution. More recently, the time-dependent GP

Eq. (3) was also analyzed within a similar asymptotic limit (N → ∞) in Ref. [58]. In this work, it was

proved that the limit points of the k-particle density matrices of ΨN,t (which is the solution of the N -

particle Schrödinger equation) satisfy asymptotically the GP equation (and the associated hierarchy of

equations) with a coupling constant given by
∫

v(x)dx, where v(x) describes the interaction potential.

Thus, these recent rigorous results justify (under certain conditions) the use of the mean-field

approach and the GP equation as a quite relevant model for the description of the static and dynamic

properties of BECs.

2.3. Repulsive and attractive interatomic interactions. Feshbach resonance

Depending on the BEC species, the scattering length a [and, thus, the nonlinearity coefficient g in

the GP Eq. (3)] may take either positive or negative values, accounting for repulsive or attractive

interactions between the atoms, respectively. Examples of repulsive (attractive) BECs are formed by

atomic vapors of 87Rb and 23Na (85Rb and 7Li) ones, which are therefore described by a GP model

with a defocusing (focusing) nonlinearity in the language of nonlinear optics [12,17].

On the other hand, it is important to note that during atomic collisions, the atoms can stick

together and form bound states in the form of molecules. If the magnetic moment of the molecular

state is different from the one of atoms, one may use an external (magnetic, optical or dc-electric) field

¶ When N |a|3 ≪ 1, the Bose-gas is called “dilute” or “weakly-interacting”. In fact, the smallness of this

dimensionless parameter is required for the derivation of the GP Eq. (3); in typical BEC experiments this parameter

takes values N |a|3 < 10−3 [46].
+ The dimensionless two-body scattering length is obtained from the solution u(r) of the zero-energy scattering

equation −u′′(r) + 1

2
v(r)u(r) = 0 with u(0) = 0 and is given, by definition, as ã = lim

r→∞

(r − u(r)/u′(r)) (see also

Refs. [52,53]).
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to controllably vary the energy difference between the atomic and molecular states. Then, at a so-called

Feshbach resonance (see, e.g., Ref. [59] for a review), the energy of the molecular state becomes equal

to the one of the colliding atoms and, as a result, long-lived molecular states are formed. This way,

as the aforementioned external field is varied through the Feshbach resonance, the scattering length

is significantly increased, changes sign, and finally is decreased. Thus, Feshbach resonances is a quite

effective mechanism that can be used to manipulate the interatomic interaction (i.e., the magnitude

and sign of the scattering length).

Specifically, the behavior of the scattering length near a Feshbach resonant magnetic field B0 is

typically of the form [60,61],

a(B) = â

(

1 − ∆

B −B0

)

, (9)

where â is the value of the scattering length far from resonance and ∆ represents the width of the

resonance. Feshbach resonances were studied in a series of elegant experiments performed with sodium

[62,63] and rubidium [64,65] condensates. Additionally, they have been used in many important

experimental investigations, including, among others, the formation of bright matter-wave solitons

[40–43].

2.4. The external potential in the GP model

The external potential Vext(r) in the GP Eq. (3) is used to trap and/or manipulate the condensate. In

the first experiments, the BECs were confined by means of magnetic fields [8,9], while later experiments

demonstrated that an optical confinement of BECs is also possible [66,67], utilizing the so-called optical

dipole traps [68,69]. While magnetic traps are typically harmonic (see below), the shape of optical dipole

traps is extremely flexible and controllable, as the dipole potential is directly proportional to the light

intensity field [69]. An important example is the special case of periodic optical potentials called optical

lattices (OLs), which have been used to reveal novel physical phenomena in BECs [70–72].

In the case of the “traditional” magnetic trap, the external potential has the harmonic form:

VMT(r) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (10)

where, in general, the trap frequencies ωx, ωy, ωz along the three directions are different. On the

other hand, the optical lattice is generated by a pair of laser beams forming a standing wave

which induces a periodic potential. For example, a single periodic 1D standing wave of the form

E(z, t) = 2E0 cos(kz) exp(−iωt) can be created by the superposition of the two identical beams,

E±(z, t) = E0 exp[i(±kz − ωt)], having the same polarization, amplitude E0, wavelength λ = 2π/k,

and frequency ω. Since the dipole potential Vdip is proportional to the intensity I ∼ |E(z, t)|2 of the

light field [69], this leads to an optical lattice of the form Vdip ≡ VOL = V0 cos2(kz). In such a case, the

lattice periodicity is λ/2 and the lattice height is given by V0 ∼ Imax/∆ω, where Imax is the maximum

intensity of the light field and ∆ω ≡ ω − ωo is the detuning of the lasers from the atomic transition

frequency ωo. Note that atoms are trapped at the nodes (anti-nodes) of the optical lattice for blue-

(red-) detuned laser beams, or ∆ω > 0 (∆ω < 0). In a more general 3D setting, the optical lattice

potential can take the following form:

VOL(r) = V0

[

cos2 (kxx+ φx) + cos2 (kyy + φy) + cos2 (kzz + φz)
]

, (11)

where ki = 2π/λi (i ∈ {x, y, z}), λi = λ/[2 sin(θi/2)], θi are the (potentially variable) angles between

the laser beams [70,72] and φi are arbitrary phases.

It is also possible to realize experimentally an “optical superlattice”, characterized by two different

periods. In particular, as demonstrated in Ref. [73], such a superlattice can be formed by the sequential

creation of two lattice structures using four laser beams. A stationary 1D superlattice can be described

as V (z) = V1 cos(k1z) + V2 cos(k2z), where ki and Vi denote, respectively, the wavenumbers and

amplitudes of the sublattices. The experimental tunability of these parameters provides precise and

flexible control over the shape and time-variation of the external potential.

The magnetic or/and the optical dipole traps can be experimentally combined either together,

or with other potentials; an example concerns far off-resonant laser beams, that can create effective
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repulsive or attractive localized potentials, for blue-detuned or red-detuned lasers, respectively. Such

a combination of a harmonic trap with a repulsive localized potential located at the center of the

harmonic trap is the double-well potential, as, e.g., the one used in the seminal interference experiment

of Ref. [74]. Double-well potentials have also been created by a combination of a harmonic and a periodic

optical potential [75]. Finally, other combinations, including, e.g., linear ramps of (gravitational)

potential Vext = mgz have also been experimentally applied (see, e.g., Refs. [75,76]). Additional recent

possibilities include the design and implementation of external potentials, offered, e.g., by the so-called

atom chips [77–79] (see also the review [80]). Importantly, the major flexibility for the creation of

a wide variety of shapes and types of external potentials (e.g., stationary, time-dependent, etc), has

inspired many interesting applications (see, for example, Sec. 5.4).

2.5. Ground state

The ground state of the GP model of Eq. (3) can readily be found upon expressing the condensate wave

function as Ψ(r, t) = Ψ0(r) exp(−iµt/~). If g = 0, Eq. (6) reduces to the usual Schrödinger equation

with potential Vext. Then, for a harmonic external trapping potential [see Eq. (10)], the ground state of

the system is obtained when letting all non-interacting bosons occupy the lowest single-particle state;

there, Ψ0 has the Gaussian profile

Ψ0(r) =
√
N
(mωho

π~

)3/4

exp
[

−m

2~
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)
]

, (12)

where ωho = (ωxωyωz)
1/3 is the geometric mean of the confining frequencies.

For repulsive interatomic forces (g > 0, or scattering length a > 0), if the number of atoms of

the condensate is sufficiently large so that Na/aho ≫ 1, the atoms are pushed towards the rims of the

condensate, resulting in slow spatial variations of the density. Then the kinetic energy (gradient) term

is small compared to the interaction and potential energies and becomes significant only close to the

boundaries. Thus, the Laplacian kinetic energy term in Eq. (6) can safely be neglected. This results

in the, so-called, Thomas-Fermi (TF) approximation [46,53,52] for the system’s ground state density

profile:

ρ(r) = |Ψ0(r)|2 = g−1 [µ− Vext(r)] , (13)

in the region where µ > Vext(r), and ρ = 0 outside. For a spherically symmetric harmonic magnetic

trap (Vext = VMT with ωho = ωx = ωy = ωz), the radius RTF = (2µ/m)1/2/ωho for which ρ(RTF) = 0,

is the so-called Thomas-Fermi radius determining the size of the condensed cloud. Furthermore, the

normalization condition connects µ and N through the equation µ = (~ωho/2)(15Na/aho)
2/5, where

aho = (~/mωho)
1/2 is the harmonic oscillator length.

For attractive interatomic forces (g < 0, or a < 0), the density tends to increase at the trap

center, while the kinetic energy tends to balance this increase. However, if the number of atoms N in

the condensate exceeds a critical value, i.e., N > Ncr, the system is subject to collapse in 2D or 3D

settings [12,52,53]. Collapse was observed experimentally in both cases of the attractive 7Li [81] and
85Rb condensate [82]. In these experiments, it was demonstrated that during collapse the density grows

and, as a result, the rate of collisions (both elastic and inelastic) is increased; these collisions cause

atoms to be ejected from the condensate in an energetic explosion, which leads to a loss of mass that

results in a smaller condensate. It should be noted that the behavior of BECs close to collapse can be

significantly affected by effects such as inelastic two- and three-body collisions that are not included in

the original GP equation; such effects are briefly discussed below (see Sec. 3.5).

The critical number of atoms necessary for collapse in a spherical BEC is determined by the

equation Ncr|a|/aho = 0.575 [83], where |a| is the absolute value of the scattering length. Importantly,

collapse may not occur in a quasi-1D setting (see Sec. 3.1), provided that the number of atoms does

not exceed the critical value given by the equation Ncr|a|/ar = 0.676, with ar being the transverse

harmonic oscillator length [84–86].
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2.6. Small-amplitude linear excitations

We now consider small-amplitude excitations of the condensate, which can be found upon linearizing

the time-dependent GP equation around the ground state. Specifically, solutions of Eq. (3) can be

sought in the form

Ψ(r, t) = e−iµt/~

[

Ψ0(r) +
∑

j

(

uj(r)e
−iωjt + υ∗j (r)e

iωjt
)

]

, (14)

where uj, υj are small (generally complex) perturbations, describing the components of the condensate’s

(linear) response to the external perturbations that oscillate at frequencies ±ωj [the latter are (generally

complex) eigenfrequencies]. Substituting Eq. (14) into Eq. (3), and keeping only the linear terms in uj

and υj, the following set of equations is derived
[

Ĥ0 − µ+ 2g |Ψ0|2(r)
]

uj(r) + gΨ2
0(r)υj(r) = ~ωj uj(r),

[

Ĥ0 − µ+ 2g |Ψ0|2(r)
]

υj(r) + gΨ∗2
0 (r)uj(r) = −~ωj υj(r), (15)

where Ĥ0 ≡ −(~2/2m)∇2 + Vext(r). Equations (15) are known as the Bogoliubov-de Gennes

(BdG) equations. These equations can also be derived using a purely quantum-mechanical approach

[46,47,52,53] and can be used, apart from the ground state, for any state (including solitons and vortices)

with the function Ψ0 being modified accordingly.

The BdG equations are intimately connected to the stability of the state Ψ0. Specifically, suitable

combinations of Eqs. (15) yield

(ωj − ω∗
j )

∫

(|uj|2 − |υj|2)dr = 0. (16)

This equation can be satisfied in two different ways: First, if ωj − ω∗
j = 0, i.e., if the eigenfrequencies

ωj are real; if this is true for all j, the fact that Im{ωj} = 0 shows that the state Ψ0 is stable. Note

that, in this case, one can use the normalization condition for the eigenmodes uj, υj of the form
∫

(|uj|2−|υj|2)dr = 1. On the other hand, occurrence of imaginary or complex eigenfrequencies ωj (i.e.,

if ωj − ω∗
j 6= 0 or Im{ωj} 6= 0), indicates dynamical instability of the state Ψ0; in such a case, Eq. (16)

is satisfied only if
∫

|uj|2dr =
∫

|υj|2dr.
In the case of a uniform gas (i.e, for Vext(r) = 0 and Ψ2

0 = ρ =const.), the amplitudes u and υ are

plane waves ∼ eik·r (of wavevector k) and the BdG Eqs. (15) lead to a dispersion relation, known as

the Bogoliubov spectrum:

(~ω)2 =

(

~
2k2

2m

)(

~
2k2

2m
+ 2gρ

)

. (17)

For small momenta ~k, Eq. (17) yields the phonon dispersion relation ω = cq, where

c =
√

gρ/m (18)

is the speed of sound, while, for large momenta, the spectrum provides the free particle energy

~
2k2/(2m); the “crossover” between the two regimes occurs when the excitation wavelength is of the

order of the healing length [see Eq. (19)].

In the case of attractive interatomic interactions (g < 0), the speed of sound becomes imaginary,

which indicates that long wavelength perturbations grow or decay exponentially in time. This effect is

directly connected to the modulational instability, which leads to delocalization in momentum space and,

in turn, to localization in position space and the formation of solitary-wave structures. Modulational

instability is responsible for the formation of bright matter-wave solitons [40–42], as was analyzed by

various theoretical works (see, e.g., Refs. [87–89] and the reviews [90,91]).

3. Lower-dimensional BECs, solitons, and reduced mean-field models

3.1. The shape of the condensate and length scales

In the case of the harmonic trapping potential (10), the flexibility over the choice of the three confining

frequencies ωj (j ∈ {x, y, z}) may be used to control the shape of the condensate: if ωx = ωy ≡ ωr ≈ ωz
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the trap is isotropic and the BEC is almost spherical, while the cases ωz < ωr or ωr < ωz describe

anisotropic traps in which the BEC is, respectively, “cigar shaped”, or “disk-shaped”. The strongly

anisotropic cases with ωz ≪ ωr or ωr ≪ ωz are particularly interesting as they are related to effectively

quasi one-dimensional (1D) and quasi two-dimensional (2D) BECs, respectively. Such lower dimensional

BECs have been studied theoretically [92–98] (see also Ref. [51] for a rigorous mathematical analysis)

and have been realized experimentally in optical and magnetic traps [99], in optical lattice potentials

[100–103] and surface microtraps [78,79].

The confining frequencies of the harmonic trapping potential set characteristic length scales for the

spatial size of the condensate through the characteristic harmonic oscillator lengths aj ≡ (~/mωj)
1/2.

Another important length scale, introduced by the effective mean-field nonlinearity, is the healing

length, which is the distance over which the kinetic energy and the interaction energy balance: if the

BEC density grows from 0 to ρ over the distance ξ, the kinetic energy, ∼ ~
2/(2mξ2), and interaction

energy, ∼ 4π~
2aρ/m, become equal at the value of ξ given by [46,52,53]

ξ = (8πρa)−1/2. (19)

Note that the name of ξ is coined by the fact that it is actually the distance over which the BEC

wavefunction Ψ “heals” over defects. Thus, the spatial widths of nonlinear excitations, such as dark

solitons and vortices in BECs, are of O(ξ).

3.2. Lower-dimensional GP equations

Let us assume that ωz ≪ ωx = ωy ≡ ωr. Then, if the transverse harmonic oscillator length

ar ≡
√

~/mωr < ξ, the transverse confinement of the condensate is so tight that the dynamics of

such a cigar-shaped BEC can be considered to be effectively 1D. This allows for a reduction of the

fully 3D GP equation to an effectively 1D GP model, which can be done for sufficiently small trapping

frequency ratios ωz/ωr. It should be stressed, however, that such a reduction should be only considered

as the 1D limit of a 3D mean-field theory and not as a genuine 1D theory (see, e.g., Ref. [51] for a

rigorous mathematical discussion). Similarly, a disk-shaped BEC with az < ξ and sufficiently small

frequency ratios ωr/ωz, can be described by an effective 2D GP model. Below, we will focus on cigar-

shaped BECs and briefly discuss the case of disk-shaped ones.

Following Refs. [84,104,105] (see also Ref. [91]), we assume a quasi-1D setting with ωz ≪ ωr

and decompose the wavefunction Ψ in a longitudinal (along z) and a transverse [on the (x, y) plane]

component; then, we seek for solutions of Eq. (3) in the form

Ψ(r, t) = ψ(z, t) Φ(r; t), (20)

where Φ(r; t) = Φ̃0(r) exp(−iγt), r2 ≡ x2 + y2, while the chemical potential γ and the transverse

wavefunction Φ̃(r) are involved in the auxiliary problem for the transverse quantum harmonic oscillator,

~
2

2m
∇2

rΦ̃0 −
1

2
mω2

rr
2Φ̃0 + γΦ̃0 = 0, (21)

where ∇2
r ≡ ∂2/∂x2 + ∂2/∂y2. Since the considered system is effectively 1D, it is natural to assume

that the transverse condensate wavefunction Φ(r) remains in the ground state; in such a case Φ̃0(r)

takes the form Φ̃0(r) = π−1/2a−1
r exp(−r2/2a2

r) [note that when considering the reduction from 3D to

2D the transverse wave function takes the form Φ̃0(r) = π−1/4a
−1/2
r exp(−r2/2a2

r)]. Then, substituting

Eq. (20) into Eq. (3) and averaging the resulting equation in the r-direction (i.e., multiplying by Φ∗

and integrating with respect to r), we finally obtain the following 1D GP equation,

i~
∂

∂t
ψ(z, t) =

[

− ~
2

2m

∂2

∂z2
+ V (z) + g1D|ψ(z, t)|2

]

ψ(z, t), (22)

where the effective 1D coupling constant is given by g1D = g/2πa2
r = 2a~ωr and V (z) = (1/2)mω2

zz
2.

On the other hand, in the 2D case of disk-shaped BECs, the respective (2 + 1)-dimensional NLS

equation has the form of Eq. (22), with ∂2
z being replaced by the Laplacian ∇2

r, the effectively 2D

coupling constant is g2D = g/
√

2πaz = 2
√

2πaaz~ωz, while the potential is V (x, y) = (1/2)mω2
r(x

2+y2).

Note that such dimensionality reductions based on the averaging method are commonly used in other

disciplines, as, e.g., in nonlinear fiber optics [17].
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A similar reduction can be performed if, additionally, an optical lattice potential is present. In

this case, it is possible (as, e.g., in the experiment in Ref. [44]) to tune ωz so that it provides only a

very weak trapping along the z-direction; this way, the shift in the potential trapping energies over

the wells where the BEC is confined can be made practically negligible. In such a case, the potential

in Eq. (22) is simply the 1D optical lattice V (z) = V0 cos2(kz). Similarly, in the quasi-2D case, an

“egg-carton potential” V (x, y) = V0 [cos2(kxx) + cos2(kyy)] is relevant for disk-shaped condensates.

We note in passing that the dimensionality reduction of the GP equation can also be done self-

consistently, using multiscale expansion techniques [106,107]. It is also worth mentioning that more

recently a rigorous derivation of the 1D GP equation was presented in Ref. [108], using energy and

Strichartz estimates, as well as two anisotropic Sobolev inequalities.

3.3. Bright and dark matter-wave solitons

The 1D GP Eq. (22) can be reduced to the following dimensionless form,

i
∂

∂t
ψ(z, t) =

[

− ∂2

∂z2
+ V (z) + g|ψ(z, t)|2

]

ψ(z, t), (23)

where the density |ψ|2, length, time and energy are respectively measured in units of 4π|a|a2
r, ar, ω

−1
r

and ~ωr, while the coupling constant g is rescaled to unity (i.e., g = ±1 for repulsive and attractive

interatomic interactions respectively). In the case of a homogeneous BEC (V (z) = 0), Eq. (23) becomes

the “traditional” completely integrable NLS equation. The latter, is well-known (see, e.g., Ref. [21])

to possess an infinite number of conserved quantities (integrals of motion), with the lowest-order ones

being the number of particles:

N =

∫ −∞

−∞

|ψ|2dz,

the momentum:

P = (i/2)

∫ −∞

−∞

(ψψ∗
z − ψ∗ψz) , dz

and the energy:

E = (1/2)

∫ −∞

−∞

(

|ψz|2 + g|ψ|4
)

dz,

where the subscripts denote partial derivatives.

The type of soliton solutions of the NLS equation depends on the parameter g. In particular, for

attractive BECs (g = −1), the NLS equation possesses a bright soliton solution of the following form

[109],

ψbs(z, t) = η sech[η(z − vt)] exp[i(kz − ωt)], (24)

where η is the amplitude and inverse spatial width of the soliton, while k, ω and v ≡ ∂ω/∂k = k

are the soliton wavenumber, frequency, and velocity, respectively. The frequency and wavenumber

of the soliton are connected through the “soliton dispersion relation” ω = 1
2
(k2 − η2), which implies

that the allowable region in the (k, ω) plane for bright solitons is located below the parabola ω = 1
2
k2,

corresponding to the “elementary excitations” (i.e., the linear wave solutions) of the NLS equation.

Introducing the solution (24) into the integrals of motion N , P and E it is readily found that

N = 2η, P = 2ηk, E = ηk2 − 1

3
η3. (25)

These equations imply that the bright soliton behaves as a classical particle with effective mass Mbs,

momentum Pbs and energy Ebs, respectively given by Mbs = 2η, Pbs = Mv, and Ebs = 1
2
Mv2 − 1

24
M3,

where it is reminded that v = k. Notice that in the equation for the energy, the first and second terms

in the right hand side are, respectively, the kinetic energy and the binding energy of the quasi-particles

associated with the soliton [110]. Differentiating the soliton energy and momentum over the soliton

velocity, the following relation is found,

∂Ebs

∂Pbs

= v, (26)

which underscores the particle-like nature of the bright soliton.
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On the other hand, for repulsive BECs (g = +1), the NLS equation admits a dark soliton solution,

which in this case lives on the nonzero background ψ = ψ0 exp[i(kz − ωt)]. The dark soliton may be

expressed as [111],

ψ(z, t) = ψ0 (cosϕ tanh ζ + i sinϕ) exp[i(kz − ωt)], (27)

where ζ ≡ ψ0 cosϕ (z − vt), ω = (1/2)k2+ψ2
0, while the remaining parameters v, ϕ and k, are connected

through the relation v = ψ0 sinϕ + k. Here, ϕ is the so-called “soliton phase angle”, or, simply, the

phase shift of the dark soliton (|ϕ| < π/2), which describes the darkness of the soliton through the

relation, |ψ|2 = 1−cos2 ϕsech2ζ; this way, the limiting cases ϕ = 0 and cosϕ≪ 1 correspond to the so-

called black and gray solitons, respectively. The amplitude and velocity of the dark soliton are given by

cosϕ and sinϕ respectively; thus, the black soliton, ψ = ψ0 tanh(ψ0x) exp(−iµt), is a stationary dark

soliton (v = 0), while the gray soliton moves with a velocity close to the speed of sound (v ∼ c ≡ ψ0

in our units). The dark soliton solution (27) has two independent parameters, for the background (ψ0

and k) and one for the soliton (ϕ). In fact, it should be mentioned that in both the bright and the

dark soliton, there is also a freedom in selecting the initial location of the solitary wave z0 (in the above

formulas, z0 has been set equal to zero) ∗. Also, it should be noted that as in this case the dispersion

relation implies that ω > k2, the allowable region in the (k, ω) plane for dark solitons is located above

the parabola ω = 1
2
k2.

As the integrals of motion of the NLS equation refer to both the background and the dark soliton,

the integrals of motion for the dark soliton are renormalized so as to extract the contribution of the

background [112–114]. In particular, the renormalized momentum and energy of the dark soliton (27)

read (for k = 0):

Pds = − 2v(c2 − v2)1/2 + 2c2 tan−1

[

(c2 − v2)1/2

v

]

, (28)

Eds =
4

3
(c2 − v2)3/2. (29)

Upon differentiating the above expressions over the soliton velocity v, it can readily be found that

∂Eds

∂Pds

= v, (30)

which shows that, similarly to the bright soliton, the dark soliton effectively behaves like a classical

particle. Note that, usually, dark matter-wave solitons are considered in the simpler case where the

background is at rest, i.e., k = 0; then, the frequency ω actually plays the role of a normalized one-

dimensional chemical potential, namely µ ≡ ψ2
0, which is determined by the number of atoms of the

condensate. Moreover, it should be mentioned that in the case of a harmonically confined condensate,

i.e., for V (z) = 1
2
Ω2z2 (with Ω = ωz/ωr being the normalized trap strength) in Eq. (23), the background

of the dark soliton is actually the ground state of the BEC which can be approximated by the Thomas-

Fermi cloud [see Eq. (13)]; thus, the “composite” wavefunction (containing both the background and

the dark soliton) can be approximated e.g. by the form ψ = ψTF(z) exp(−iψ2
0t)ψds(z, t), where ψds(z, t)

is the dark soliton of Eq. (27).

Both types of matter-wave solitons, namely the bright and the dark ones, have been observed in a

series of experiments. In particular, the formation of quasi-1D bright solitons and bright soliton trains

has been observed in 7Li [40,41] and 85Rb [42] atoms upon tuning the interatomic interaction within the

stable BEC from repulsive to attractive via the Feshbach resonance mechanism (discussed in Sec. 3.3).

On the other hand, quasi-1D dark solitons were observed in 23Na [30,31] and 87Rb [32–34] atoms upon

employing quantum-phase engineering techniques or by dragging a moving impurity (namely a laser

beam) through the condensate. Note that multidimensional solitons (and vortices), as well as many

interesting applications based on the particle-like nature of matter-wave solitons highlighted here will

be discussed in Sec. 5.

∗ Recall that the underlying model, namely the completely integrable NLS equation, has infinitely many

symmetries, including translational and Galilean invariance.
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3.4. Mean-field models with non-cubic nonlinearities

Mean-field models with non-cubic nonlinearities have also been derived and used in various studies,

concerning either the effect of dimensionality on the dynamics of cigar-shaped BECs, or the effect of

the three-body collisions irrespectively of the dimensionality of the system.

Let us first discuss the former case, i.e., consider a condensate confined in a highly anisotropic trap

with, e.g., ωz ≪ ωr and examine the effect of the deviation from one-dimensionality on the longitudinal

condensate dynamics. Following Refs. [115–119], one may factorize the wavefunction as per Eq. (20),

but with the transverse wavefunction Φ depending also on the longitudinal variable z. Then, one may

employ an adiabatic approximation to separate the fast transverse and slow longitudinal dynamics (i.e.,

neglecting derivatives of Φ with respect to the slow variables z and t). This way, assuming that the

external potential is separable, Vext(r) = U(r) + V (z), the following system of equations is obtained

from the 3D GP Eq. (3),

i~
∂ψ

∂t
= − ~

2

2m

∂2ψ

∂z2
+ V (z)ψ + µr(ρ)ψ, (31)

µr(ρ)Φ = − ~
2

2m
∇2

rΦ + U(r)Φ + gρ|Φ|2Φ, (32)

where the transverse local chemical potential µr(ρ) (which depends on the longitudinal density

ρ(z, t) = |ψ(z, t)|2) is determined by the ground state solution of Eq. (32). An approximate solution of

the above system of Eqs. (31)-(32) was found in Ref. [115] (see also Refs. [116,117]) as follows. As the

system is close to 1D, it is natural to assume that the transverse wave function is close to the ground

state of the transverse harmonic oscillator, and can be expanded in terms of the radial eigenmodes Φ̃j,

i.e., Φ(r; z) = Φ̃0(r) +
∑

j Cj(z)Φ̃j(r). Accordingly, expanding the chemical potential µr(ρ) in terms of

the density as µr(ρ) = ~ωr + g1ρ− g2ρ
2 + · · ·, the following NLS equation is obtained:

i~
∂ψ

∂t
=

[

− ~
2

2m

∂2

∂z2
+ V (z) + f(ρ)

]

ψ, (33)

with the nonlinearity function given by

f(ρ) = g1ρ− g2ρ
2. (34)

It is clear that Eq. (33) is a cubic-quintic NLS (cqNLS) equation, with the coefficient of the linear and

quadratic term being given by Ref. [115] g1 = g1D = 2a~ωr and g2 = 24 ln(4/3)a2
~ωr, respectively. In

the effectively 1D case discussed in Sec. 4.2, this cqNLS equation is reduced to the 1D GP Eq. (22).

Note that the cqNLS model has been used in studies of the dynamics of dark [115] and bright [116,117]

matter-wave solitons in elongated BECs.

The transverse chemical potential µr of an elongated condensate was also derived recently by

Muñoz Mateo and Delgado [118] as a function of the longitudinal density ρ. This way, the same authors

presented in the recent work of Ref. [119] the effective 1D NLS Eq. (33), but with the nonlinearity

function given by

f(ρ) =
√

1 + 4aNρ, (35)

where a is the scattering length and N is the number of atoms.♯ Note that in the weakly-interacting

limit, 4aNρ ≪ 1, the resulting NLS equation has the form of Eq. (22), with the same coupling

constant g1D. This model, which was originally suggested in Ref. [120], predicts accurately ground

state properties of the condensate, such as the chemical potential, the axial density profile and the

speed of sound.

Other approaches to the derivation of effective lower-dimensional mean-field models have also

been proposed in earlier works, leading (as in the case of Refs. [118–120]) to NLS-type equations

with generalized nonlinearities [121–125]. Among these models, the so-called non-polynomial

Schrödinger equation (NPSE) has attracted considerable attention. The latter was obtained by

Salasnich et al. [121] by employing the following ansatz for the transverse wavefunction, Φ(r; t) =

[exp (−r2/2σ2(z, t))] /[π1/2σ(z, t)]; then, the variational equations related to the minimization of the

♯ Note that the number of atoms N appears in the nonlinearity function f(ρ) due to the fact that the wavefunction

is now normalized to 1 rather than to N , as in the GP Eq. (22).

CONTENTS 14

action functional (from which the 3D GP equation can be derived as the associated Euler-Lagrange

equation) led to Eq. (33) with a nonlinearity function

f(ρ) =
gN

2πa2
r

ρ√
1 + 2aNρ

+
~ωr

2

(

1√
1 + 2aNρ

+
√

1 + 2aNρ

)

, (36)

and to the following equation for the transverse width σ: σ2 = a2
r

√
1 + 2aNρ. Note that in the weakly

interacting limit of aNρ ≪ 1, Eq. (33) becomes again equivalent to the 1D GP Eq. (22), while the

width σ becomes equal to the transverse harmonic oscillator length ar. The NPSE (33) has been found

to predict accurately static and dynamic properties of cigar-shaped BECs (such as the density profiles,

the speed of sound, and the collapse threshold of attractive BECs) [126], while its solitonic solutions

have been derived in Ref. [121]. Generalizations of the NPSE model in applications involving time-

dependent potentials [124,127], or the description of spin-1 atomic condensates [125], have also been

presented. Moreover, it is worth mentioning that the NPSE has been found to predict accurately the

BEC dynamics in recent experiments [75].

On the other hand, as mentioned above, mean-field models with non-cubic nonlinearities, and

particularly the cqNLS equation in a 1D, 2D or a 3D setting, may have a different physical

interpretation, namely to take into account three-body interactions. In this context, and in the most

general case, the coefficients g1 and g2 in Eq. (34) are complex, with the imaginary parts describing

inelastic two- and three-body collisions, respectively [128]. As concerns the three-body collision process,

it occurs at interparticle distances of order of the characteristic radius of interaction between atoms

and, generally, results in the decrease of the density that can be achieved in traps. Particularly, the

rate of this process is given by (dρ/dt) = −Lρ3 [52], where ρ is the density and L is the loss rate, which

is of order of 10−27–10−30 cm6s−1 for various species of alkali atoms [129]. Accordingly, the decrease

of the density is equivalent to the term −(L/2)|Ψ|4Ψ in the time dependent GP equation, i.e., to the

above mentioned quintic term.

The cqNLS model has been studied in various works, mainly in the context of attractive BECs

(scattering length a < 0, or g1 < 0). Particularly, in studies concerning collapse, both cases with real g2

[130], and with imaginary g2 [131,132] were considered. Additionally, relevant lower-dimensional (and in

particular 1D) models were also analyzed in Refs. [133,134]. The latter works present also realistic values

for these 1D cubic-quintic NLS models, including also estimations for the three-body collision parameter

g2 (see also Refs. [135–137] in which the coefficient g2 was assumed to be real). Additionally, periodic

potentials were also considered in such cubic-quintic models and various properties and excitations of

the BECs, such as ground state and localized excitations [135], or band-gap structure and stability

[136], were studied. Moreover, studies of modulational instability in the continuous model with the

dissipative quintic term [138], or the respective discrete model with a conservative quintic term [137]

were also reported.

3.5. Weakly- and strongly-interacting 1D Bose gases. The Tonks-Girardeau gas

In the previous subsections we discussed the case of ultracold weakly-interacting quasi-1D BECs, which,

in the absence of thermal or quantum fluctuations, are described by an effectively 1D GP equation

[cf. Eq. (22)]. On the other hand, and in the same context of 1D Bose gases, there exists the opposite

limit of strong interatomic coupling [92,93,139]. In this case, the collisional properties of the bosonic

atoms are significantly modified, with the interacting bosonic gas behaving like a system of free fermions;

such, so-called, Tonks-Girardeau gases of impenetrable bosons [140,141] have recently been observed

experimentally [142,143]. The transition between the weakly and strongly interacting regimes is usually

characterized by a single parameter γ = 2/(ρa1D) [92,93], with a1D ≡ a2
r/a3D and a3D being the

effective 1D and the usual 3D scattering lengths, respectively (ar is the transverse harmonic oscillator

length) [53]. This parameter quantifies the ratio of the average interaction energy to the kinetic

energy calculated with mean-field theory. Notice that γ varies smoothly as the interatomic coupling

is increased from values γ ≪ 1 for a weakly interacting 1D Bose gas, to γ ≫ 1 for the strongly-

interacting Tonks-Girardeau gas, with an approximate “crossover regime” being around γ ∼ O(1),

attained experimentally as well [144,145].
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The above mentioned weakly- and strongly-interacting 1D Bose gases can effectively be described

by a generalized 1D NLS of the form of Eq. (33). In such a case, while the functional dependence of f(ρ)

on γ (and its analytical asymptotics) are known [146], its precise values in the crossover regime can only

be evaluated numerically. Such intermediate values have been tabulated in Ref. [139], and subsequently

discussed by various authors in the framework of the local density approximation [147,148]. Note that

following the methodology of Ref. [121], Salasnich et al. have proposed a model different from the

NPSE, but still of the form of Eq. (33), with the nonlinearity function depending on the density |ψ|2
and the transverse width σ of the gas, to describe the weakly- and the strongly-interacting regimes, as

well as the crossover regime [149]. Finally, it is noted that a much simpler approximate model (with

f(ρ) being an explicit function of the density), which also refers to these three regimes, was recently

proposed in Ref. [150].

Coming back to the case of the Tonks-Girardeau gas, it has been suggested that an effective mean-

field description of this limiting case can be based on a 1D quintic NLS equation, i.e., an equation of

the form (33) with a nonlinearity function [151]:

f(ρ) =
π2

~
2

2m
ρ2. (37)

The quintic NLS equation was originally derived by Kolomeisky et al. [152] from a renormalization

group approach, and then by other groups, using different techniques [153–155]; it is also worth noticing

that its time-independent version has been rigorously derived from the many-body Schrödinger equation

[156]. Although the applicability of the quintic NLS equation has been criticized (as in certain regimes

it fails to predict correctly the coherence properties of the strongly-interacting 1D Bose gases [157]), the

corresponding hydrodynamic equations for the density ρ and the phase S arising from this equation are

well-documented in the context of the local density approximation [139,147]. In fact, this equation is

expected to be valid as long as the number of atoms exceeds a certain minimum value (typically much

larger than 10), for which oscillations in the density profiles become essentially suppressed [151,154,158];

in other words, the density variations should occur on a length scale which is larger than the Fermi

healing length ξF ≡ 1/(πρp) (where ρp is the peak density of the trapped gas).

The quintic NLS model has been used in various studies [151,159–161], basically connected to the

dynamics of dark solitons in the Tonks-Girardeau gas, and in the aforementioned crossover regime of

γ ∼ O(1) [150]. In this connection, it is relevant to note that in the above works it was found that,

towards the strongly-interacting regime, the dark soliton oscillation frequency is up-shifted, which may

be used as a possible diagnostic tool of the system being in a particular interaction regime.

3.6. Reduced mean-field models for BECs in optical lattices

Useful reduced mean-field models can also be derived in the case where the BECs are confined in

periodic (optical lattice) potentials. Here, we will discuss both continuous and discrete variants of

such models, focusing —as in the previous subsections— on the 1D case (generalizations to higher-

dimensional settings will be discussed as well). We start our exposition upon considering that the

external potential in Eq. (22) is of the form V (z) = V0 sin2(kz), i.e., an optical lattice of periodicity

L = π/k. Then, measuring length, energy and time in units of aL = L/π, EL = 2Erec = ~
2/ma2

L

(where the recoil energy Erec is the kinetic energy gained by an atom when it absorbs a photon from

the optical lattice), and ω−1
L = ~/EL, respectively, we express Eq. (22) in the dimensionless form of

Eq. (23) with V (z) = sin2(z).

Generally, the stationary states of Eq. (23) can be found upon employing the usual ansatz,

ψ(z, t) = F (z) exp(−iµt), where µ is the dimensionless chemical potential. In the limiting case g → 0

(i.e., for a noninteracting condensate) where the Bloch-Floquet theory is relevant, the function F (x)

can be expressed as [162] F (z) = uk,α(z) exp(ikz), where the functions uk,α(z) share the periodicity of

the optical lattice, i.e., uk,α(z) = uk,α(z + nL) where n is an integer. If the Floquet exponent (also

called “quasimomentum” in the physics context) k is real, the wavefunction ψ has the form of an

infinitely extended wave, known as a Bloch wave. Such waves exist in bands (which are labeled by the

index α introduced above), while they do not exist in gaps, which are spectral regions characterized by

Im(k) 6= 0.
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The concept of Bloch waves can also be extended in the nonlinear case (g 6= 0) [163–170]. In

particular, when the coupling constant is small, the nonlinear band-gap spectrum and the nonlinear

Bloch waves are similar to the ones in the linear case [166]. However, when the coupling constant

is increased (or, physically speaking, the local BEC density grows), the chemical potential of the

nonlinear Bloch wave is increased (decreased) for g > 0 (g < 0) and, thus, the nonlinearity effectively

“shifts” the edges of the linear band. In this respect, it is relevant to note that for a sufficiently strong

nonlinearity, “swallowtails” (or loops) appear in the band-gap structure, both at the boundary of the

Brillouin zone and at the zone center. This was effectively explained in Ref. [170], where an adiabatic

tuning of a second lattice with half period was considered. Swallowtails in the spectrum are related to

several interesting effects, such as a non-zero Landau-Zener tunneling probability [163], the existence

of two nonlinear complex Bloch waves (which are complex conjugate of each other) at the edge of the

Brillouin zone [165,166], as well as the existence of period-doubled states (in the case of sufficiently

strong optical lattices – see Sec. 3.7.2), also related to periodic trains of solitons [169] in this setting.

We finally note that experimentally it is possible to load a BEC into the ground or excited Bloch state

with an unprecedented control over both the lattice and the atoms [103].

3.6.1. Weak optical lattices. Let us first consider the case of weak optical lattices, with V0 ≪ µ.

In this case, and in connection to the above discussion, a quite relevant issue is the possibility

of nonlinear localization of matter-waves in the gaps of the linear spectrum, i.e., the formation of

fundamental nonlinear structures in the form of gap solitons, as observed in the experiment [44]. The

underlying mechanism can effectively be described by means of the so-called Bloch-wave envelope

approximation near the band edge, first formulated in the context of optics [171], and then used in the

BEC context as well [172,106,173] (see also Ref. [174] and the review [175]). In particular, a multiscale

asymptotic method was used to show that the BEC wave function can effectively be described as

ψ(z, t) = U(z, t)uk,0(z) exp(ikz), where uk,0(z) exp(ikz) represents the Bloch state in the lowest band

α = 0 (at the corresponding central quasimomentum k), while the envelope function U(z, t) is governed

by the following dimensionless NLS equation:

i
∂U

∂t
= − 1

2meff

∂2U

∂z2
+ g′1D|U |2U, (38)

where g′1D is a renormalized (due to the presence of the optical lattice) effectively 1D coupling constant,

and meff is the effective mass. Importantly, the latter is proportional to the inverse effective diffraction

coefficient ∂2µ/∂k2 whose sign may change, as it is actually determined by the curvature of the band

structure of the linear Bloch waves. Obviously, the NLS Eq. (38) directly highlights the abovementioned

nonlinear localization and soliton formation, which occurs formeffg
′
1D < 0. Note that the above envelope

can be extended in higher-dimensional (2D and 3D) settings [176], in which the effective mass becomes

a tensor. In such a case, and for repulsive BECs (g < 0), all components of the tensor have to be

negative for the formation of multi-dimensional gap solitons [177,178].

Coupled-mode theory, originally used in the optics context [171,179], has also been used to describe

BECs in optical lattices [180–184]. According to this approach, and in the same case of weak optical

lattice strengths, the wavefunction is decomposed into forward and backward propagating waves, A(z, t)

and B(z, t), with momenta k = +1 and k = −1, respectively, namely

ψ(z, t) = [A(z, t) exp(ix) +B(z, t) exp(−ix)] exp(−iµt).

This way, Eq. (23) can be reduced to the following system of coupled-mode equations (see also the

recent work [185] for a rigorous derivation),

i

(

∂A

∂t
+ 2

∂A

∂x

)

= V0B + g(|A|2 + 2|B|2)A, (39)

i

(

∂B

∂t
− 2

∂B

∂x

)

= V0A+ g(2|A|2 + |B|2)B. (40)

Notice that Eqs. (39)–(40) are valid at the edge of the first Brillouin zone, i.e., in the first spectral gap

of the underlying linear problem (with g = 0). There, the assumption of weak localization of the wave

function (which is written as a superposition of just two momentum components) is quite relevant: for
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example, a gap soliton near the edge of a gap can indeed be approximated by a modulated Bloch wave,

which itself is a superposition of a forward and backward propagating waves [171]. Thus, coupled-mode

theory was successfully used to describe matter-wave gap solitons in Refs. [180–184]. Note that the

coupled-mode Eqs. (39)–(40) can directly be connected by a NLS equation of the form (38) by means

of a formal asymptotic method [183] that uses the distance from the band edges as a small parameter.

We finally mention that the coupled-mode equations can formally be extended in higher dimensions

[185].

3.6.2. Strong optical lattices and the discrete nonlinear Schrödinger equation. Another useful

reduction, which is relevant to deep optical lattice potentials with V0 ≫ µ, is the one of the GP

equation to a genuinely discrete model, the so-called discrete NLS (DNLS) equation [186]. Such a

reduction has been introduced in the context of arrays of BEC droplets confined in the wells of an

optical lattice in Refs. [187,188] and further elaborated in Ref. [189]; we will follow the latter below.

When the optical lattice is very deep, the strongly spatially localized wave functions at the wells of

the optical lattice can be approximated by Wannier functions, i.e., the Fourier transform of the Bloch

functions. Due to the completeness of the Wannier basis, any solution of Eq. (23) can be expressed

as ψ(z, t) =
∑

n,α cn,α(t)wn,α(z), where n and α label wells and bands, respectively. Substituting the

above expression into Eq. (23), and using the orthonormality of the Wannier basis, we obtain a set

of differential equations for the coefficients. Upon suitable decay of the Fourier coefficients and the

Wannier functions’ prefactors (which can be systematically checked for given potential parameters),

the model can be reduced to

i
dcn,α

dt
= ω̂0,αcn,α + ω̂1,α (cn−1,α + cn+1,α)

+ g
∑

α1,α2,α3

W nnnn
αα1α2α3

c∗n,α1
cn,α2

cn,α3
, (41)

where W nn1n2n3

αα1α2α3
=
∫∞

−∞
wn,αwn1,α1

wn2,α2
wn3,α3

dx. The latter equation degenerates into the so-called

tight-binding model [187,188],

i
dcn,α

dt
= ω̂0,αcn,α + ω̂1,α (cn−1,α + cn+1,α) + gW nnnn

1111 |cn,α|2cn,α, (42)

if one restricts consideration only to the first band. Equation (42) is precisely the reduction of the

GP equation to its discrete counterpart, namely, the DNLS equation. Higher-dimensional versions of

the latter are of course physically relevant models and have, therefore, been used in various studies

concerning quasi-2D and 3D BECs confined in strong optical lattices (see subsequent sections).

4. Some mathematical tools for the analysis of BECs

Our aim in this section will be to present an overview of the wide array of mathematical techniques that

have emerged in the study of BECs. Rather naturally, one can envision multiple possible partitions of

the relevant methods, e.g., based on the type of the nonlinearity (repulsive or attractive, depending on

the sign of the scattering length), or based on the type of the external potential (periodic, decaying or

confining) involved in the problem. However, in the present review, we will classify the mathematical

methods based on the mathematical nature of the underlying considerations. We will focus, in

particular, on four categories of methods. The first one will concern “direct” methods which analyze the

mean-field model directly, without initiating the analysis at some appropriate, mathematically tractable

limit. Such approaches include, e.g., the method of moments, self-similarity and rescaling methods,

or the variational techniques among others. The second one will concern methods that make detailed

use of the understanding of the linear limit of the problem (in a parabolic, or a periodic potential or

in combinations thereof including, e.g., a double-well potential). The third will entail perturbations

from the nonlinear limit of the system (such as, e.g., the integrable NLS equation), while the fourth

one will concern discrete systems where perturbation methods from the so-called anti-continuum limit

of uncoupled sites are extremely helpful.

CONTENTS 18

4.1. Direct methods

Perhaps one of the most commonly used direct methods in BEC is the so-called variational

approximation (see Ref. [190] for a detailed review). It consists of using an appropriate ansatz,

often a solitonic one or a Gaussian one (for reasons of tractability of the ensuing integrations) in

the Lagrangian or the Hamiltonian of the model at hand, with some temporally dependent variational

parameters. Often these parameters are the amplitude and/or the width of the BEC wavefunction.

Then, subsequent derivation of the Euler-Lagrange equation leads to ordinary differential equations

(ODEs) for such quantities which can be studied either analytically or numerically shedding light on

the detailed dynamics of the BEC system. Such methods have been extensively used in examining very

diverse features of BECs including collective excitations [191], studying the dynamics of BECs in 1D

optical lattices [187], offering insights on the collapse or absence thereof in higher dimensional settings

and potentials —see, e.g., Ref. [192] and references therein—, or on the behavior of BECs on space- or

time-dependent nonlinearity settings —see e.g., Ref. [193] as an example—. However, both due to the

very widespread use of the method and due to the fact that detailed reviews of it already exist [190,194],

we will not focus on reviewing it here. Instead, we direct the interested reader to the above works and

references therein. We also note in passing one of the concerns about the validity of the variational

method, which consists of its strong restriction of the infinite-dimensional GP dynamics to a small

finite dimensional subspace (freezing the remaining directions by virtue of the selected ansatz). This

restriction is well-known to potentially lead to invalid results [195]; it is worthwhile to note, however,

that there are efforts underway to systematically compute corrections to the variational approximation

[196], thereby increasing the accuracy of the method.

Another very useful tool for analyzing BEC dynamics is the so-called moment method [197],

whereby appropriate moments of the wavefunction ψ =
√
ρ exp(iφ) (where ρ = |ψ|2 and φ are the BEC

density and phase, respectively) are defined such as N =
∫

ρ dr (the number of atoms), Xi =
∫

xiρ dr

(the center of mass location), Ṽi =
∫

ρ∂φ/∂xi dr (the center speed), Wi =
∫

x2
i ρ dr (the width of the

wavefunction), Bi = 2
∫

xiρ∂φ/∂xi dr (the growth speed), Ki = −(1/2)
∫

ψ∗∂2φ/∂x2
i dr (the kinetic

energy) and J =
∫

G(ρ) dr (the interaction energy). Notice that in the above expressions the subscript

i denotes the i-th direction. Then for the rather general GP-type mean-field model of the form:

i
∂ψ

∂t
= −1

2
∆ψ + V (r)ψ + g(|ψ|2, t)ψ − iσ(|ψ|2, t)ψ, (43)

with a generalized nonlinearity g(ρ) = ∂G/∂ρ, the generalized dissipation σ and, say, the typical

parabolic potential of the form V (r) =
∑

k(1/2)ω2
kx

2
k, the moment equations read [197]:

dN

dt
= − 2

∫

σρ dr, (44)

dXi

dt
= Ṽi − 2

∫

σxiρ dr, (45)

dṼi

dt
= − ωiXi − 2

∫

σ
∂φ

∂xi

ρ dr, (46)

dWi

dt
= Bi − 2

∫

σx2
i ρ dr, (47)

dBi

dt
= 4Ki − 2ω2

iWi − 2

∫

δGdr − 4

∫

σρ∂φ/∂xi dr, (48)

dKi

dt
= − 1

2
ω2

iBi −
∫

δG
∂2φ

∂x2
i

dr

+

∫

σ

[

√
ρ
∂2√ρ
∂x2

i

− ρ

(

∂φ

∂xi

)2
]

dr, (49)

dJ

dt
=
∑

i

∫

δG
∂2φ

∂x2
i

dr − 2

∫

gσρdr +

∫

∂G

∂t
dr, (50)

where δG ≡ G(ρ) − ρg(ρ). One can then extract, for parabolic potentials, a closed-form exact ODE

describing the motion of the center of mass (assuming that the dissipation does not dependent on ρ)
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of the form:

d2Xi

dt2
= −ω2(t)Xi − 2σ(t)

dXi

dt
− 2σ(t)Xi. (51)

In the absence of dissipation (and for constant in time magnetic trap frequencies), this yields a

simple harmonic oscillator for the center of mass of the condensate. This is the so-called Kohn mode

[198], which has been observed experimentally (see, e.g., Refs. [52,53]). In fact, more generally, for

conservative potentials one obtains a general Newtonian equation of the form [199]:

d2Xi

dt2
= −

∫

∂V

∂xi

ρ dr (52)

which is the analog of the linear quantum-mechanical Ehrenfest theorem.

There are some simple dissipationless (i.e., with σ = 0) cases for which the Eqs. (44)–(50) close.

For example, if the potential is spherically symmetric (ωi(t) = ω(t)), one can close the equations for

R =
√
W , together with the equation for K into the so-called Ermakov-Pinney (EP) equation [200] of

the form:

d2R

dt2
= −ω(t)R +

M

R3
, (53)

where M is a constant depending only on the initial data and the interaction strength U (the equations

close only for the two-dimensional case and for G = Uρ2). One of the remarkable features of such EP

equations [200] is that they can be solved analytically provided that the underlying linear Schrödinger

problem d2R/dt2 = −ω(t)R is explicitly solvable with linearly independent solutions R1(t) and R2(t).

In that case, the EP equation has a general solution of the form (AR2
1 + BR2

2 + 2CR1R2)
1/2, where

the constants satisfy AB − C2 = M/w2 and w is the Wronskian of the solutions R1 and R2. Such EP

equations have also been used to examine the presence of parametric resonances for time-dependent

frequencies (such that the linear Schrödinger problem has parametric resonances) in Refs. [201,202].

Another place where such EP approach has been quite relevant is in the examination of BECs with

temporal variation of the scattering length; the role of the latter in preventing collapse has been studied

in the EP framework in Ref. [203]. It has also been studied in the context of producing exact solutions

of the second moment of the wavefunction, which is associated with the width of the BEC, which are

either oscillatory (breathing condensates) or decreasing in time (collapsing condensates) or increasing

in time (dispersing BECs) in Ref. [204]. It should be mentioned that when the scattering length is

time-dependent the EP equation (53) is no longer exact, but rather an approximate equation, relying

on the assumption of a quadratic spatial dependence of the condensate phase. Another case where

exact results can be obtained for the moment equations is when the nonlinearity g is time-independent

and the phase satisfies Laplace’s equation ∆φ = 0, in which case vortex-line solutions can be found for

the wavefunction ψ [197].

It should also be mentioned in passing that such moment methods are also used in deriving rigorous

conditions for avoiding collapse in NLS equations more generally, where this class of methods is known

under the general frame of variance identities (see, e.g., the detailed discussion of Sec. 5.1 in Ref. [12]).

Another comment regarding the above discussion is that Newtonian dynamical equations of the

form of Eq. (52) are more generally desirable in describing the dynamics not only of the full wavefunction

but also of localized modes (nonlinear waves), such as bright solitons. This approach can be rigorously

developed for small potentials V (x) = ǫW (x) or wide potentials V (x) = W (ǫx) in comparison to the

length scale of the soliton. In such settings, it can be proved [205] that the motion of the soliton is

governed by an equation of the form

meff
d2s

dt2
= −∇U(s), (54)

where meff is an effective mass (found to be 1/2 independently of dimension in Ref. [205]) and the

effective potential is given by

U(s) =

∫

V (r)ψ2
0(r − s) dr

∫

ψ2(r) dr
. (55)

In 1D, Eq. (55) can be used to characterize not only the dynamics of the solitary wave, but also its

stability around stationary points such that U ′(s0) = 0. It is natural to expect that its motion will
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comprise of stable oscillations if U ′′(s0) > 0, while it will be unstable for U ′′(s0) < 0. In the case of

multiple such fixed points, the equation provides global information on the stability of each equilibrium

configuration and local dynamics in the neighborhood of all equilibria. In higher dimensions, an

approach such as the one yielding Eq. (54) is not applicable due to the instability of the corresponding

multi-dimensional (bright) solitary waves to collapse [12]. This type of dynamical equations was

originally developed formally using asymptotic multi-scale expansions as, e.g., in Refs. [206,207]. We

will return to a more detailed discussion of such techniques characterizing the dynamics of the nonlinear

wave in Secs. 4.3.2 and 4.3.3.

Another class of methods that can be used to obtain reduced ODE information from the original

GP partial differential equation (PDE) concerns scaling transformations, such as the so-called lens

transformation [12]. An example of this sort with

ψ(x, t) =
1

l(t)
exp(if(t)r2) u

(

x

L(t)
, τ(t)

)

, (56)

has been used in Ref. [208] to convert the more general (with time dependent coefficients) form of the

GP equation

i
∂ψ

∂t
= −α(t)

2
∆ψ +

1

2
Ω(t)r2ψ + g(t)ψ − iσ(t)ψ, (57)

into the simpler form with time independent coefficients:

i
∂u

∂τ
= −1

2
∆ηu+ s|u|2u, (58)

where η = x/L(t) and s = ±1. This happens if the temporally dependent functions l(t), f(t), L(t) and

τ(t) satisfy the similarity conditions:

dl

dt
= α(t)dl + σ(t)l, (59)

df

dt
= − 2α(t)f 2 − 1

2
Ω(t), (60)

dL

dt
= 2α(t)fL, (61)

dτ

dt
=
α(t)

L2
, (62)

α(t)

L2
= σ

g(t)

l2
. (63)

Some of these ODEs can be immediately solved, e.g.,

L(t) = exp

(

2

∫ t

0

α(t′)f(t′)dt′
)

, (64)

l(t) = Γ(t) exp

(

d

∫ t

0

α(t′)f(t′)dt′
)

= Γ(t)L(t)
d
2 , (65)

g(t) = sα(t)Γ(t)L(t)d−2, (66)

where Γ(t) = exp(
∫ t

0
σ(t′)dt′). Notice that this indicates that α(t), g(t) and σ(t) are inter-dependent

through Eq. (66). While, unfortunately, Eq. (60) cannot be solved in general, it can be integrated

in special cases, such as, e.g., Ω(t) = 0. Notice that in that case, periodic α(t) with zero average,

i.e.,
∫ T

0
α(t′)dt′ = 0 implies that L(t), l(t) and f(t) will also be periodic. In other settings the above

equations can be used to construct collapsing solutions or to produce pulsating two-dimensional profiles,

as is the case, e.g., for Ω(t) = m(1 − 2sn2(t,m)) in the form:

ψ =
1

dn(t,m)
U

(

x

dn(t,m), τ(t)

)

exp

(

iτ(t) − ir2mcn(t,m)sn(t,m)

2dn(t,m)

)

, (67)

where U(η) is the well-known 2D Townes soliton (see also Sec. 5.4.2) profile and τ(t) =
∫ t

0
dn(t′,m)−2dt′.

Similar types of lens transformations were used to study collapse type phenomena [209,210] and to

examine modulational instabilities in the presence of parabolic potentials [87].
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In the same as the above class of transformation methods one can classify also the scaling methods

that arise from the consideration of Lie group theory and canonical transformations [211] of nonlinear

Schrödinger equations with spatially inhomogeneous nonlinearities of the form (for the stationary

problem)

−ψxx + V (x)ψ + g(x)ψ3 = µψ. (68)

Considering the generator of translational invariance motivates the scaling of the form U(x) = b(x)−1/2ψ

and X =
∫ x

0
[1/b(s)]ds with g(x) = g0/b(x)

3. Then, U satisfies the regular 1D NLS equation (whose

solutions are known from the inverse scattering method [21]) and b satisfies:

b′′′(x) − 2b(x)V ′(x) + 4b′(x)µ− 4b′(x)V (x) = 0, (69)

which can remarkably be converted to an EP equation, upon the scaling b̃(x) = b1/2(x). Then,

combining the knowledge of solvable EP cases (as per the discussion above) with that of the spatial

profiles of the various (plane wave, solitary wave and elliptic function) solutions of the standard NLS

equation for U , we can obtain special cases of g(x) for which explicit analytical solutions are available

[211].

4.2. Methods from the linear limit

When considering the GP equation as a perturbation problem, one way to do so is to consider the

underlying linear Schrödinger problem, obtain its eigenvalues and eigenfunctions; subsequently one can

consider the cubic nonlinear term within the realm of Lyapunov-Schmidt (LS) theory (see Chap. 7 in

Ref. [212]), to identify the nonlinear solutions bifurcating from the linear limit.

We will discuss this approach in a general 1D problem, with both a magnetic trap and an optical

lattice potential,

V (x) = VMT(x) + VOL(x) ≡ 1

2
Ω2x2 + V0 cos(2x), (70)

following the approach of Ref. [213]. Considering the linear problem of the GP equation, using

ψ(x, t) = exp(−iEt)u(x) (where E is the linear eigenvalue) and rescaling spatial variables by Ω1/2

one obtains

Lu = −1

2

d2u

dx2
+

1

2
x2u+

V0

Ω
cos
(

2
x

Ω1/2

)

u =
E

Ω
u. (71)

If we work in the physically relevant regime of 0 < Ω ≪ 1 and for V0/Ω = O(1), then one can use

µ = Ω1/2 as a small parameter and develop methods of multiple scales and homogenization techniques

[213] in order to obtain analytical predictions for the linear spectrum. In particular, the one-dimensional

eigenvalue problem using as fast variable X = x/µ and setting λ = E1/Ω becomes:
[

µ2LMT − µ
∂2

∂x∂X
+ LOL

]

u = µ2λu, (72)

where

LMT = − 1

2

∂2

∂x2
+

1

2
x2, (73)

LOL = − 1

2

∂2

∂X2
+ V0 cos(2X). (74)

One can then use a formal series expansion (in µ) for u and λ

u = u0 + µu1 + µ2u2 + . . . , (75)

λ =
λ−2

µ2
+
λ−1

µ
+ λ0 + . . . . (76)

Substitution of this expansion in the eigenvalue problem of Eq. (72), and after tedious but

straightforward algebraic manipulations and use of solvability conditions for the first three orders of the

expansion (O(1), O(µ) and O(µ2)), yields the following result for the eigenvalue and the corresponding

eigenfunction of the eigenvalue problem of the original operator. The relevant eigenvalue of the n-th

mode is approximated by:

E(n) = −1

4
V 2

0 +

(

1 − 1

4
V 2

0

)

Ω

(

n+
1

2

)

, (77)
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Figure 1. (Color online) The first three (left to right) eigenfunctions of the linear Schrödinger

equation with the potential of Eq. (70). The thick gray solid line corresponds to the eigenfunction

for the case of VMT(x), while the thin red solid and blue dashed lines correspond to the

eigenfunction for VMT(x) + VOL(x), as computed numerically and theoretically [see Eq. (78)],

respectively. The full potential VMT(x)+VOL(x) (shifted for visibility, see scale on the right axis)

is illustrated by the green dash-doted line. The parameters used in this example correspond to

V0 = 0.5 and Ω = 0.1.

and the corresponding eigenfunction is given by:

u(n)(x) = cnHn





x
√

1 − V 2
0

4



 e
− x2

2−
V 2
0
2 × 1√

π

[

1 − V0

2
cos

(

2x

Ω1/2

)]

, (78)

where cn = (2nn!
√
π)−(1/2) is the normalization factor and Hn(x) = e−x2

(−1)n(dn/dxn)ex2

are the

Hermite polynomials.

Considering now the nonlinear problem Lu = −su3 through LS theory, we obtain the bifurcation

function

G(µ,∆E) = −∆Eµ+ s
〈

(u(n))2, (u(n))2
〉

µ3, (79)

for bifurcating solutions Un = µu(n), which bifurcate from the linear limit of E = E(n), with

∆E = E − E(n). The notation 〈f, g〉 =
∫

f(x)g(x)dx will be used to denote the inner product of

f and g. This calculation shows that a nontrivial solution exists only if s∆E > 0 (i.e., the branches

bend to the left for attractive nonlinearities with s = −1 and to the right for repulsive ones with s = 1)

and the nonlinear solutions are created via a pitchfork bifurcation (given the symmetry u→ −u) from

the linear solution. The bifurcation is subcritical for s = −1 and supercritical for s = 1. Typical

examples of the relevant solutions of the linear problem (from which the nonlinear states bifurcate) are

shown in Fig. 1.

Notice that for V0 = 0 the problem becomes the linear quantum harmonic oscillator (parabolic

potential) whose eigenvalues and eigenfunctions are known explicitly and are a special case of those of

Eqs. (77)–(78) for V0 = 0. This perspective has been used in numerous studies as a starting point for

numerical computation, e.g., in 1D [105,214,215], as well as in higher dimensions [216].

It is natural to subsequently examine the stability of the ensuing nonlinear states, stemming

from the linear problem. This can be done through the linearization of the problem around the

nonlinear continuation of the solutions u(n), with a perturbation ũ = w + iv. Then, the ensuing

linearized equations for the eigenvalue λ and the eigenfunction ũ can be written in the standard (for

NLS equations) L+, L− form:

L+w =
[

L + 3s
(

u(n)
)2
]

w = −λv (80)

L−v =
[

L + s
(

u(n)
)2
]

v = λu. (81)

Then, define n(L) and z(L) the number of negative and zero eigenvalues respectively of operator L, kr,

k−i and kc the number of eigenvalues with, respectively, real positive, imaginary with positive imaginary

part and negative Krein sign (see below) and complex with positive real and imaginary part. The Krein

signature of an eigenvalue λ is the sign(〈w,L+w〉). One can then use the recently proven theorem for
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general Hamiltonian systems of the NLS type of Ref. [217] based on the earlier work of Refs. [218–221]

(see also Ref. [222]) according to which:

kr + 2k−i + 2kc = n(L+) + n(L−) − n(D), (82)

where D = dN/dE (N is the number of atoms of the state of interest). Then from Sturm-Liouville

theory and given that u(n) is the only eigenfunction of L− with eigenvalue 0 (by construction), we

obtain n(L−) = j and z(L−) = 1 for the eigenstate U = µu(j) (since it possesses j nodes). Similarly,

using the nature of the bifurcation, one obtains n(L+) = j and n(D) = 0 if s = 1, while n(L+) = j + 1

and n(L−) = 1 if s = −1. Combining these results one has that kr + 2k−i + 2kc = 2j. More detailed

considerations in the vicinity of the linear limit [213] in fact show that the resulting eigenvalues have

to be simple and purely imaginary i.e., kr = kc = 0 and, hence, each of the waves bifurcating from the

linear limit is spectrally stable close to that limit. However, the nonlinear wave bifurcating from the

j-th linear eigenstate has j eigenvalues with negative Krein signature which may result in instability if

these collide with other eigenvalues (of opposite sign). That is to say, the state u(j) has j potentially

unstable eigendirections.

While the above results give a detailed handle on the stability of the structures near the linear

limit, it is important to also quantify the bifurcations that may occur (which may also, in turn, alter

the stability of the nonlinear states), as well as to examine the dynamics of the relevant waves further

away from that limit. A reduction approach that may be used to address both of these issues is that

of projecting the dynamics to a full basis of eigenmodes of the underlying linear operator. Notice that

we have seen this method before in the reduction of the GP equation in the presence of a strong OL to

the DNLS equation. Considering the problem iut = Lu + s|u|2u − ωu, we can use the decomposition

u(x) =
∑M

j=0 cj(t)qj(x), where qj(x) are the orthonormalized eigenstates of the linear operator L.

Setting aj
klm = 〈qkqlqm, qj〉 and following Ref. [223] straightforwardly yields

iċj = (µj − ω)cj + s

M
∑

k,l,m=0

aj
klmckclc

∗
m, (83)

where µj are the corresponding eigenvalues of the eigenstates qj(x). It is interesting to note that this

system with M → ∞ is equivalent to the original dynamical system, but is practically considered for

finite M , constituting a Galerkin truncation of the original GP PDE. This system preserves both the

Hamiltonian structure of the original equation, as well as additional conservation laws such as the L2

norm ||u||2L2 =
∑M

j=0 |cj|2.
A relevant question is then how many modes one should consider to obtain a use-

ful/interesting/faithful description of the original infinite dimensional dynamical system. The answer,

naturally, depends on the form of the potential. The above reduction has been extremely successful

in tackling double well potentials in BECs [223–225], as well as in optical systems [226]. In this sim-

plest case, a two-mode description is sufficient to extract the prototypical dynamics of the system with

M = 2. Then the relevant dynamical equations become:

iċ0 = (µ0 − ω)c0 + sa0
000|c0|2c0 + sa0

110(2|c1|2c0 + c21c
∗
0), (84)

iċ1 = (µ1 − ω)c1 + sa1
111|c1|2c1 + sa0

110(2|c0|2c1 + c20c
∗
1), (85)

where we have assumed a symmetric double well potential so that terms such as a1
000 or a0

111 disappear

and a1
001 = a0

110 = a1
010 = . . . =

∫

q2
0q

2
1dx. None of these assumptions is binding and the general cases

have in fact been treated in Refs. [223,224]. An angle-action variable decomposition cj = ρje
iφj leads

to

ρ̇0 = sa0
110ρ

2
1ρ0 sin(2δφ), (86)

˙δφ = − ∆µ+ s(a0
000ρ

2
0 − a1

111ρ
2
1)

− sa0
110 (2 + 2 cos(δφ)) (ρ2

0 − ρ2
1), (87)

where δφ is the relative phase between the modes. Straightforwardly analyzing the ensuing equations

[particularly Eq. (86)], we observe that the nonlinear problem can support states with ρ1 = 0 and

ρ0 6= 0 (symmetric ones, respecting the symmetry of the ground state of the double well potential). It
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can also support ones with ρ0 = 0 and ρ1 6= 0 (antisymmetric ones); these states are not a surprise

since they did exist even at the linear limit. However, in addition to these two, the nonlinear problem

can support states with ρ0 6= 0 and ρ1 6= 0, provided that sin(2δφ) = 0. These are asymmetric

states that have to bifurcate because of the presence of nonlinearity. A more detailed study of the

second equation shows that, typically, the bifurcation occurs for ||u||2L2 > Nc = ∆µ/(3a0
110 − a0

000)

for s = −1 (attractive case) and is a bifurcation from the symmetric ground state branch, while it

happens for ||u||2L2 > Nc = ∆µ/(3a0
110 − a1

111) in the s = 1 (repulsive case) and is a bifurcation from

the antisymmetric first excited state (see also Fig. 2 which shows the relevant states and bifurcation

diagram). Notice that this is a pitchfork bifurcation (since there are two asymmetric states born at the

critical point, each having principally support over each of the two wells). It should be mentioned that

although this bifurcation is established for the two-mode reduction, it has been systematically confirmed

by numerical analysis of the GP PDE in Refs. [223,224] for the case of a magnetic trap and an optical

lattice or a magnetic trap and a defect respectively and it has been rigorously proved for a decaying

at infinity double well potential in Ref. [225] (in the latter the corrections to the above mentioned

Nc were estimated). Based on the nature of the bifurcation (but this can also be proved within

the two-mode reduction and rigorously from the GP equation), we expect the ensuing asymmetric

solutions to be stable, destabilizing the branch from which they are stemming, as is confirmed in the

numerical linear stability results of Fig. 2. It is also worthwhile to point out that such predictions

(e.g., the stabilization of an asymmetric state beyond a critical power) have been directly confirmed in

optical experiments [226] in photorefractive crystals, and also have a direct bearing on relevant BEC

experiments analyzed in Ref. [75]. We note in passing that in the physics literature, the problem is

often tackled using wavefunctions that are localized in each of the wells of the double well potential

(as linear combinations of the states q1 and q2 used herein) [227–229], especially to study Josephson

tunneling (but also to examine self-trapping) [75]. We refer the interested reader to these publications

for more details.

Such a few-mode approximation has also been successfully used in the case of three wells (in

connection to applications in experiments in photorefractive crystals) in Ref. [230]. Naturally in that

case, one uses three modes for the relevant decomposition and the corresponding dynamical equations

grow in complexity very rapidly (as numerous additional overlap terms become relevant and the analysis

becomes almost intractable). Similarly, such Galerkin approaches can also be used in the case where

there is only a magnetic trap, in which case the underlying basis of expansion becomes that of the

Hermite-Gauss polynomials [231]. In that case, in addition to the persistence of the linear states and

a detailed quantitative analysis of their linearization spectrum that becomes available near the linear

limit, one can importantly predict the formation of new types of solutions. An example of this type

consists of the space-localized, time-periodic (i.e., breathing) solutions in the neighborhood of, e.g., the

first excited state (which has the form of a dark soliton) of the harmonically confined linear problem

[231].

Finally, we indicate that such methods from the linear limit can equally straightforwardly be

applied to higher dimensional settings and be used to extract complex nonlinear states. For instance,

considering the problem

−∂
2u

∂r2
− 1

r

∂u

∂r
− 1

r2

∂2u

∂θ2
+ iΩ

∂u

∂θ
+ r2u+ s|u|2u = ωu, (88)

where also a rotational stirring term (frequent to condensate experiments [52,53]) is included, one can

use a decomposition into the linear states qm,l(r) exp(ilθ) [232], where m is the number of nodes of qm,l.

Then the underlying linear problem has eigenvalues λm,l = 2(|l| + 1) + 4m+ lΩ and e.g., for solutions

bifurcating from λ = 6, one can write

u = (x1q1,0(r) + y1q0,l′ cos(l′θ) + iy2q0,l′ sin(l′θ)) ǫ1/2, (89)

together with ω = 6 + ǫδω, and derive algebraic equations for x1, y1 and y2:

0 = x1

[

µ+ 2x2
1 + g1(2|y1|2 + y2

1 + y2
2)
]

, (90)

0 = cgµy1 + g2x
2
1(2y1 + y∗1) +

3

4
|y1|2y1 +

1

4
y2

2(2y1 − y∗1), (91)
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Figure 2. (Color online) The left panels illustrate a typical double well problem in the focusing

case, while the right ones in the defocusing case. The top row shows the squared L2 norm

of the solutions (N) as a function of the eigenvalue parameter µ (illustrating in each case the

bifurcation of a new asymmetric branch). The second row shows the instability of the solid (blue)

branch (symmetric in the left and antisymmetric in the right) past the critical point through the

appearance of a real eigenvalue. The third row shows a particular example of the profiles for each

branch and the fourth row shows the spectral plane of the linearization around them (absence of

a real eigenvalue indicates stability).

0 = y2

[

cgµ+ g2x
2
1 +

1

4
(2|y1|2 − y2

1) +
3

4
y2

2

]

, (92)

where µ = −sδω/(g0π), g1 = g0,l′/g0, g2 = g0,l′/gl′ and cg = g2/g1 and g1 =
∫

rq4
1,0dr, gl′ =

∫

rq4
0,l′dr,

g0,l′ =
∫

rq2
1,0q

2
0,l′dr. From these equations one can find real solutions containing only x1 (ring solutions),

only y1 (multipole solutions), both x1 and y1 (soliton necklaces), as well as complex solutions also

involving y2 6= 0 such as vortices and vortex necklaces. A sampler of these solutions is illustrated in

Fig. 3; more details can be found in Ref. [232], where the stability of such states is also analyzed,

leading to the conclusion that the most robust among them are the (soliton and vortex) necklace and

the vortex states.

4.3. Methods from the nonlinear limit

We partition our consideration of such methods to ones that tackle the stationary problem (in

connection to the existence and the stability of the solutions) and to ones that address the dynamics

of the perturbed solitary waves.

4.3.1. Existence and stability methods. Consider a general Hamiltonian system of the form:

dv

dt
= JE ′(v), (93)

where the J matrix has the standard symplectic structure (J2 = −I) and E =
∫

(1/2)[|vx|2 + s|v|4]dx
for the case of the GP equation without external potential (although the formalism presented below

is very general [217,233,234]). Given that the above model in the case of the GP equation has

certain invariances (e.g., with respect to translation and phase shift), one can use the generator Tω
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Figure 3. (Color online) A typical ring solution (top left), multipole solution (top right),

soliton necklace (bottom left) and vortex necklace (bottom right) that can be obtained from

the near-linear analysis of the 2D problem through Eqs. (90)–(92). Reprinted from Ref. [232]

with permission.

of the corresponding semigroup T (exp(ωt)) of the relevant symmetry to make a change of variables

v(t) = T (exp(ωt))u(t), which in turn leads to du/dt = JE ′
0(u;ω), where E ′

0(u;ω) = E ′(u) − J−1Tωu.

Defining then the appropriate conserved functional Qω = (1/2)〈J−1Tωu, u〉, we note that relative

equilibria satisfying E ′
0(u;ω) = 0 will be critical points of E0(u;ω) = E(u) − Qω(u). Then the

linearization problem around such a stationary wave u0 reads:

JE ′′
0 (u0;ω)w = λw. (94)

Given the symmetries of the problem, this linearization operator has a non-vanishing kernel since:

JE ′′
0 (u0;ω)Tωi

u0 = 0, (95)

JE ′′
0 (u0;ω)∂ωi

u0 = Tωi
u0, (96)

where each i corresponds to one of the relevant symmetries and the latter equation provides the

generalized eigenvectors of the operator.

The consideration of the perturbed Hamiltonian problem with a Hamiltonian perturbation such

that the perturbed energy is E0(u)+ ǫE1(u) was considered in Refs. [217,222,233,234] and a number of

conclusions were reached regarding the existence and stability of the ensuing solitary waves. Firstly, a

necessary condition for the persistence of the wave is:

〈E ′
1(u0;ω), Tωi

u0〉 = 0, (97)

for all i pertaining to the original symmetries. This is a rather natural condition intuitively since it

implies that the perturbed wave is a stationary solution if it is a critical point of the perturbation

energy functional. The condition is also sufficient if the number of zero eigenvalues z(M) of the matrix

Mij = 〈Tωi
u0, E

′′
1 (u0;ω)Tωj

u0〉 is given by n− ks, where n is the multiplicity of the original symmetries

and ks the number of symmetries broken by the perturbation.

As a result of the perturbation, 2ks eigenvalues (corresponding to the ks broken symmetries) will

leave the origin, and can be tracked by the following result proved by means of LS reductions in

Ref. [217]. The eigenvalues will be λ =
√
ǫλ1 +O(ǫ), where the correction λ1 is given by the generalized

eigenvalue problem:

(D0λ
2
1 +M1) v = 0, (98)

where the matrix of symmetries (D0)ij = 〈∂ωi
u0, E

′′
0 (u0;ω)∂ωj

u0〉.
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In addition to this perturbative result on the eigenvalues, one can obtain a general count on

the number of unstable eigendirections of a Hamiltonian system [217], using the functional analytic

framework of Refs. [218–221] (see also Ref. [222] for a different approach). In particular, for a

linearization operator Lω = E ′′(u) − J−1Tω and a symmetry matrix Dij = 〈∂ωi
u,Lω∂ωj

u〉,
kr + 2k−i + 2kc = n(Lω) − n(D) − z(D), (99)

where the relevant symbolism has been introduced in Sec. 4.2. In fact, the latter subsection constitutes

a special case example of this formula, in the case of the form of

Lω =

(

L+ 0

0 L−

)

. (100)

We now give a special case example of the application of the theory in the presence of a linear and

a nonlinear lattice potential of the form [235]:

iut = −1

2
uxx − (1 + ǫn1(x)) |u|2u+ ǫn2(x)u. (101)

Then the problem can be rephrased in the above formalism with

E1(u) =

∫ +∞

−∞

(

n2(x)|u|2 −
1

2
n1(x)|u|4

)

dx. (102)

Therefore, as indicated above, the persistence of the stationary bright solitary wave of the form

u0 =
√
µ sech[

√
µ(x − ξ)]eiδ (with δ = µ/2) is tantamount to: ∇ξE1(u) = 0. This implies that

the wave is going to persist only if centered at the parameter-selected extrema of the energy (which

are now going to form, at best, a countably infinite set of solutions, as opposed to the one-parameter

infinity of solutions previously allowed by the translational invariance).

Furthermore, the stability of the perturbed wave is determined by the location of the eigenvalues

associated with the translational invariance; previously, the relevant eigenvalue pair was located at

the origin λ = 0 of the spectral plane of eigenvalues λ = λr + iλi. On the other hand, we expect

the eigenvalues associated with the U(1) invariance (i.e., the phase invariance associated with the

L2 conservation) to remain at the origin, given the preservation of the latter symmetry under the

perturbations considered herein. Adapting the framework of Ref. [217], we have that the matrices that

arise in Eq. (98) are given by:

D0 =

(

(∂xu0,−xu0) 0

0 2(u0, ∂µu0)

)

=

(

µ1/2 0

0 −µ−1/2

)

, (103)

and

M1 =

(

∂
∂ξ

(∂E1

∂u∗

0

, ∂ξu0) 0

0 0

)

=

(

∫

(

1
2

d2n2

dx2 (u0)2 − 1
4

d2n1

dx2 (u0)
4
)

dx 0

0 0

)

. (104)

One can then use the above along with Eq. (98) to obtain the relevant translational eigenvalue as:

λ2 = − ǫ

µ1/2

∫ (

1

2

d2n2

dx2
(u0)

2 − 1

4

d2n1

dx2
(u0)

4

)

dx. (105)

Based on this expression, the corresponding eigenvalue can be directly evaluated, provided that the

extrema of the effective energy landscape E1 are evaluated first. This effective energy landscape

Veff(ξ) = ǫE1 is a function of the solitary wave location ξ. The physical intuition of the above results is

that the stability or instability of the configuration will be associated with the convexity or concavity,

respectively, of this effective energy landscape. Some examples of the accuracy of such a prediction are

provided in Fig. 4, for specific forms of n1(x) and n2(x).

This class of techniques has been applied to different problems with spatial variation of the linear

[236] or nonlinear [237] potential. They can also be applied to multi-component problems [233] or to

problems with different nonlinearity exponents [238] or higher dimensions [239]. We note in passing

that in addition to these methods, for periodic variations of the potential, and for appropriate regimes
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Figure 4. (Color online) Typical examples of the translational eigenvalue as obtained numerically

(solid/blue line) versus the analytical prediction (dashed/green line). The linear and nonlinear

potentials are: n1(x) = A cos(k1x) and n2(x) = B cos(k2x + ∆φ). In the left panels we assume

that A = B = 1, and fix k2 = 2π/5 and ∆φ = 0 and examine the relevant translational eigenvalue

(its real part and its square) as a function of k1. Notice that there is a transition from instability

to stability as k1 is increased. In the right panels we select A = B = 1 and k1 = k2 = 2π/5 and

vary ∆φ ∈ [0, 2π]. Notice that in the latter case the (critical point associated with the stationary)

location of the solitary wave also changes with ∆φ and its theoretical and numerical values are

also given (again in dashed and solid lines, respectively). Notice in all the cases the accuracy of

the theoretical prediction.

(for details see Refs. [238–240]), one can develop multiple-scale techniques exploiting the disparity in

spatial scales between the solution and the potential. We refer the interested reader to the above

references for further technical details. This type of averaging techniques is popular not only when the

linear or nonlinear potential presents spatial variations of a characteristic scale, but also similarly when

these variations are temporal [241–243], especially because it is more straightforward in the averaged

equations to extract conclusions about the possible existence or potential collapse or dispersion of the

solutions [238,239,244].

A similar approach can be used in the case of dark solitons in examining the persistence and

stability of the waves in the presence of external potentials; however in the latter case, it is a much

harder task to control the linearization spectrum of the problem since it encompasses the origin. This

complication has allowed this problem to be tackled only recently at the nonlinear limit [245] and

perturbatively away from that limit [246]. The main result of Ref. [245] is that by using the limit

lim
λ→0

g(λ) = lim
λ→0

〈(L−λ)−1u′, u′〉, (106)

one can infer the stability of the black soliton, since if this quantity is positive the soliton will have

a real eigenvalue and will be unstable, while if non-positive, it will be stable. However, one of the

problems with this expression is that even when the soliton is analytically available, it is relatively

hard to evaluate (see, e.g., the example of the integrable cubic case worked out in Ref. [245]). On

the other hand, although there exist results on the orbital stability of dark solitons [247] and of other

structures such as bubbles (black solitons with zero phase shift) [248] (see Ref. [246] for a more detailed

discussion of earlier works), the work of Ref. [246] was the first one to establish detailed estimates on

the relevant eigenvalues, using once again the technique of Lyapunov-Schmidt reductions in the limit

of small potential perturbations. The main results can be summarized as follows. For the equation:

iut = −1

2
uxx + f(|u|2)u+ ǫV (x)u (107)

(i) The analogous condition to the persistence condition (97) is now:

M ′(ξ) =

∫

V ′(x)[q0 − u2
0(x− ξ)]dx = 0, (108)

where the unperturbed solution u0 asymptotes to ±√
q0 at ±∞; i.e., the background of the

solution is now appropriately incorporated in Eq. (108) [in comparison to Eq. (97)].
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Figure 5. (Color online) An example of a subcritical pitchfork bifurcation in the parameter κ

of the potential V (x) = x2 exp(−κ|x|) for fixed ǫ = 0.2 in Eq. (107). The left panel shows the

center of mass s0 ≡ ξ of the dark soliton kink modes (s0 6= 0 by dashed line, s0 = 0 by thick solid

and dashed lines). The theoretical predictions of s0 based on Eq. (108) are shown by dash-dotted

line. The vertical line gives the theoretical prediction for the bifurcation point κ = κ0 = 3.21.

The right panel shows the real part of the unstable eigenvalues for the corresponding solutions,

using the same symbolism as the left panel. The theoretical predictions of eigenvalues are shown

by thick and thin dash-dotted lines, respectively for the branches with s0 = 0 and s0 6= 0. Notice

that for the quartet of eigenvalues of the branch centered at the origin, the small jumps are due

to the finite size of the computational domain (see Ref. [246] for details).

(ii) The dark soliton will be spectrally unstable in the GP equation with exactly one real

eigenvalue (for small ǫ) in the case where

M ′′(ξ) =

∫

V ′′(x)[q0 − u2
0(x− ξ)]dx < 0, (109)

while it will be unstable due to two complex-conjugate eigenvalues with positive real part

if M ′′(ξ) > 0. This is the analogous condition to the curvature of the effective potential;

however, notice the disparity of this condition from what would be expected intuitively

based on the notion of convexity/concavity. The latter result is a direct byproduct of the

nature of the essential spectrum (encompassing the origin in this defocusing case), which

upon bifurcation of the translational eigenvalue along the imaginary axis makes it directly

complex (case of M ′′(ξ) > 0). The location of the relevant eigenvalue in the GP case of cubic

nonlinearity is given to leading order by:

λ2 +
ǫ

4
M ′′(ξ)

(

1 − λ

2

)

= 0, (110)

which is consonant with the above result. A form of this expression for general nonlinearities

was also obtained in Ref. [246].

A case example of the possible dark soliton solutions for a potential of the form V (x) = x2 exp(−κ|x|) is

shown in Fig. 5, illustrating the quantitative accuracy of Eqs. (108)–(110). In this case, the formalism

elucidates a subcritical pitchfork bifurcation whereby three dark soliton solutions (one centered at ξ = 0

and two symmetrically at ξ 6= 0) eventually merge into a single unstable kink centered at ξ = 0.

One of the fundamental limitations of this result is its being dependent upon the decaying nature of

the potential at ±∞. The fundamentally different nature of the spectrum in the presence of parabolic

or periodic potentials (or both) makes it much harder to provide such considerations in the latter cases.

While this can be done in some special limits (such as the Thomas-Fermi, large chemical potential limit

of the appendix of Ref. [231]), in that setting it is generally easier to use the linear limit approach of

Sec. 4.2.

4.3.2. Perturbation theory for solitons. Dynamics of either bright or dark matter-wave solitons can

be studied by means of the perturbation theory for solitons [249–252] (see also Ref. [253] for a review).

Here, we will briefly discuss an application of this approach upon considering the example of soliton

dynamics in BECs confined in an external potential, say V (x), which is smooth and slowly-varying on
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the soliton scale. This means that in the case, e.g., of the conventional parabolic trap V (x) = (1/2)Ω2x2,

the effective trap strength is taken to be Ω ∼ ǫ, where ǫ≪ 1 is a formal small (perturbation) parameter.

Taking into regard the above, we consider the following perturbed NLS equation

i
∂u

∂t
+

1

2

∂2u

∂x2
− g|u|2u = R(u), (111)

with the perturbation being the potential term R(u) ≡ V (x)u, and g = ±1 corresponding to repulsive

and attractive interactions. Soliton dynamics in the framework of Eq. (111) can then be treated

perturbatively, assuming that a perturbed soliton solution can be expressed as

u(x, t) = us(x, t) + ǫud(x, t) + ǫur(x, t). (112)

Here, us(x, t) has the same functional form as the soliton solutions (24) for g = −1 and (27) for g = +1,

but with the soliton parameters depending on time. On the other hand, ud is a function localized near

the soliton, describing the deformation of the soliton (i.e., the change of the soliton shape) and ur is the

radiation (in the form of sound waves) emitted by the soliton. In fact, the effect described by ud is not

significant, as the small change in the soliton shape does not modify its motion, while the emission of

radiation may be neglected for sufficiently weak perturbations. Thus, here we will consider solely the

first term in Eq. (112), which corresponds to the so-called adiabatic approximation of the perturbation

theory for solitons [253].

First we discuss the dynamics of bright solitons in external potentials. Taking into regard that for

g = −1 and R(u) = 0, Eq. (111) has a bright soliton solution of the form given in Eq. (24), we assume

that in the perturbed case with R(u) 6= 0 a soliton solution can be expressed as

u(x, t) = η sech[η(x− x0)] exp[i(kx− φ(t)] (113)

where x0 is the soliton center, the parameter k = dx0/dt defines both the soliton wavenumber and

velocity, and φ(t) = (1/2)(k2 − η2)t is the soliton phase. In the case under consideration, the soliton

parameters η, k and x0 are considered to be unknown, slowly-varying functions of time t. Then, from

Eq. (111), it is found that the number of atoms N and the momentum P (which are integrals of motion

of the unperturbed system), evolve, in the presence of the perturbation, according to the following

equations,

dN

dt
= −2 Im

[∫ +∞

−∞

R(u)u∗dx

]

,
dP

dt
= 2 Re

[∫ +∞

−∞

R(u)
∂u∗

∂x
dx

]

. (114)

We now substitute the ansatz (113) (but with the soliton parameters being functions of time) into

Eqs. (114) and obtain the evolution equations for η(t) and k(t),

dη

dt
= 0,

dk

dt
= − ∂U

∂x0

, (115)

where U(x0) is given by the expression of Eq. (55). In the case, however, of slow variation of the

potential on the scale of the solitary wave (the case of interest here), a simple Taylor expansion yields

the same equation but with U ≡ V i.e., the trapping potential.

Now, recalling that dx0/dt = k, we may combine the above Eqs. (115) to derive the following

equation of motion for the soliton center:

d2x0

dt2
= − ∂V

∂x0

, (116)

which shows that the bright matter-wave soliton behaves effectively like a Newtonian particle. Note

that in the case of a parabolic trapping potential, i.e., V (x) = (1/2)Ω2x2, Eq. (116) implies that

the frequency of oscillation is Ω; this result is consistent with the Ehrenfest theorem of the quantum

mechanics, or the so-called Kohn theorem [198], implying that the motion of the center of mass of a

cloud of particles trapped in a parabolic potential is decoupled from the internal excitations. Note that

the result of Eq. (116) can be obtained by other methods, such as the WKB approximation [254], or

other perturbative techniques [255–257].

We now turn to the dynamics of dark matter-wave solitons in the framework of Eq. (111) for

g = +1. First, the background wavefunction is sought in the form u = Φ(x) exp(−iµt) (µ being the

normalized chemical potential), where the unknown function Φ(x) satisfies the following real equation,

µΦ +
1

2

d2Φ

dx2
− Φ3 = V (x)Φ. (117)
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Then, following the analysis of Ref. [258], we seek for a dark soliton solution of Eq. (111) on top of

the inhomogeneous background satisfying Eq. (117), namely, u = Φ(x) exp(−iµt)υ(x, t), where the

unknown wavefunction υ(x, t) represents a dark soliton. This way, employing Eq. (117), the following

evolution equation for the dark soliton wave function is readily obtained:

i
∂υ

∂t
+

1

2

∂2υ

∂x2
− Φ2(|υ|2 − 1)υ = − d

dx
ln(Φ)

∂υ

∂x
. (118)

Taking into regard the fact that in the framework of the Thomas-Fermi approximation the profile can

be simply approximated by Eq. (117), Eq. (118) can be simplified to the following defocusing perturbed

NLS equation,

i
∂υ

∂t
+

1

2

∂2υ

∂x2
− µ(|υ|2 − 1)υ = Q(υ), (119)

with the perturbation Q(υ) being of the form,

Q(υ) =
(

1 − |υ|2
)

υV +
1

2(µ− V )

dV

dx

∂υ

∂x
. (120)

In the absence of the perturbation, Eq. (119) has the dark soliton solution (for µ = 1) υ(x, t) =

cosϕ tanh ζ+i sinϕ, where ζ ≡ cosϕ [x− (sinϕ)t] (recall that cosϕ and sinϕ are the soliton amplitude

and velocity respectively and ϕ is the soliton phase angle). To treat analytically the effect of the

perturbation (120) on the dark soliton, we employ the adiabatic perturbation theory devised in

Ref. [114]. Assuming, as in the case of bright solitons, that the dark soliton parameters become

slowly-varying unknown functions of t, the soliton phase angle becomes ϕ→ ϕ(t) and, as a result, the

soliton coordinate becomes ζ → ζ = cosϕ(t) [x− x0(t)], where x0(t) =
∫ t

0
sinϕ(t′)dt′, is the soliton

center. Then, the evolution of the parameter ϕ is governed by [114],

dϕ

dt
=

1

2 cos2 ϕ sinϕ
Re

[∫ +∞

−∞

Q(υ)
∂υ∗

∂t
dx

]

, (121)

which, in turn, yields for the perturbation in Eq. (120):

dφ

dt
= −1

2
cosϕ

∂V

∂x0

. (122)

To this end, combining Eq. (122) with the definition of the dark soliton center, we obtain the following

equation of motion (for nearly stationary dark solitons with cosϕ ≈ 1),

d2x0

dt2
= −1

2

∂V

∂x0

. (123)

Equation (123) implies that the dark soliton, similarly to the bright one, behaves like a Newtonian

particle. However, in an harmonic potential with strength Ω, the dark soliton oscillates with another

frequency, namely Ω/
√

2, a result that may be considered as the Ehrenfest theorem for dark solitons.

The oscillations of dark solitons in trapped BECs has been a subject that has attracted much interest;

in fact, many relevant analytical works have been devoted to this subject, in which various different

perturbative approaches have been employed [259–263]. It should also be mentioned that a more

general Newtonian equation of motion, similar to Eq. (123) but also valid for a wider class of confining

potentials, was recently discussed in Ref. [246].

Perturbation theory for dark solitons may also be applied for dark solitons with radial symmetry,

i.e., for ring or spherical dark solitons described by a GP equation of the form

i
∂ψ

∂t
= −1

2
∇2ψ + |ψ|2ψ + V (r)ψ, (124)

where ∇2 = ∂2
r +(D− 1)r−1∂r is the transverse Laplacian, V (r) = (1/2)Ω2r2, and D = 2, 3 correspond

to the cylindrical and spherical case, respectively. In this case, Eq. (124) can be treated as a perturbed

1D defocusing NLS equation provided that the potential term and the term ∼ r−1 can be considered

as small perturbations; this case is physically relevant for weak trapping potentials with Ω ≪ 1, and

radially symmetric solitons of large radius r0. Then, it can be found [264] (see also Ref. [262]) that the

radius r0 of the radially symmetric dark solitons is governed by the following Newtonian equation of

motion,

d2r0
dt2

= −∂Veff

∂r0
, (125)
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where the effective potential is given by Veff(r0) = (1/4)Ω2r2
0 − ln r

(D−1)/3
0 [note that in the 1D limit

of D = 1, Eq. (125) is reduced to Eq. (123)]. Clearly, in this higher-dimensional setting the equation

of the soliton motion becomes nonlinear, even for nearly black solitons, due to the presence of the

repulsive curvature-induced logarithmic potential. We finally note that such radially symmetric solitons

are generally found to be unstable, as they either decay to radiation (the small-amplitude ones) or are

subject to the snaking instability (the moderate- and large-amplitude ones), giving rise to the formation

of vortex necklaces [264].

4.3.3. The reductive perturbation method. Another useful tool in the analysis of the dynamics of

matter-wave solitons (and especially the dark ones) is the so-called reductive perturbation method

(RPM) [265]. Applying this asymptotic method, one usually introduces proper “stretched” (slow)

variables to show that small-amplitude nonlinear structures governed by a specific nonlinear evolution

equation can effectively be described by another equation. Such a formal connection between soliton

equations was demonstrated for integrable systems in Ref. [266], and then extended to the reduction

of nonintegrable models to integrable ones, first in applications in optics (see, e.g., Refs. [267–269])

and later in BECs. Here, we will briefly describe this method upon considering, as an example, an

inhomogeneous generalized NLS equation similar to Eq. (107), namely,

iut = −1

2
uxx + V (X)u+ g(ρ)u, (126)

which is characterized by a general nonlinearity g(ρ) (depending on the density ρ = |u|2), and a slowly

varying external potential V (X), depending on a slow variable X ≡ ǫ3/2x (with ǫ being a formal small

parameter). Our main purpose is to show that this rather general NLS-type mean-field model can be

reduced to the much simpler Korteweg-de Vries (KdV) equation with variable coefficients. The latter,

has been used in the past to describe shallow water-waves over variable depth, or ion-acoustic solitons

in inhomogeneous plasmas [270], and, as we will discuss below, it provides an effective description of

the dark soliton dynamics in BECs.

Following the analysis of Ref. [150], we first derive from Eq. (126) hydrodynamic equations for

the density ρ and the phase φ, arising from the Madelung transformation u =
√
ρ exp(iφ), and then

introduce the following asymptotic expansions,

ρ = ρ0(X) + ǫρ1(X,T ) + ǫ2ρ2(X,T ) + · · · , (127)

φ = − µ0t+ ǫ1/2φ1(X,T ) + ǫ3/2φ2(X,T ) + · · · , (128)

where ρ0(X) is the ground state of the system determined by the Thomas-Fermi approximation

g(ρ0) = µ0 − V (X) (with µ0 being the chemical potential), and T = ǫ1/2
(

t−
∫ x

0
C−1(x′)dx′

)

is a

slow time-variable [where C =
√
ġ0ρ0 is the local speed of sound and ġ0 ≡ (dg/dρ)|ρ=ρ0

]. This way, in

the lowest-order approximation in ǫ we obtain an equation for the phase,

φ1(X,T ) = −ġ0(X)

∫ T

0

ρ1(X,T
′)dT ′, (129)

and derive the following KdV equation for the density ρ1,

ρ1X − (3ġ0 + ρ0g̈0)

2C3
ρ1ρ1T +

1

8C5
ρ1TTT = − d

dX

[

ln (|C|ġ0)
1/2
]

ρ1, (130)

where g̈0 ≡ (d2g/dρ2)|ρ=ρ0
. Importantly, in a homogeneous gas with ρ0(X) = ρp = const., Eq. (130)

is the completely integrable KdV equation; the soliton solution of the latter, which is ∼ sech2(T ),

is in fact a density notch on the background density ρp [see Eq. (127)], with a phase jump across it

[see Eq. (129), which implies that φ1 ∼ tanh(T )] and, thus, it represents an approximate dark soliton

solution of Eq. (126). On the other hand, the results obtained earlier for the analysis of the KdV

equation with variable coefficients [271,272] have been used to analyze shallow soliton dynamics in the

BEC context. In particular, the KdV Eq. (130) was obtained in the framework of the cubic nonlinear

version of Eq. (126) (with g(ρ) ∼ ρ), and used to study the dynamics and the collisions of shallow

dark solitons in BECs [260,273]. Moreover, other versions of Eq. (130) relevant to the Tonks gas

(corresponding to g(ρ) ∼ ρ2) [159], as well as the BEC-Tonks crossover regime (corresponding to a

generalized nonlinearity) [150] were derived and analyzed as well.
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Finally, it is relevant to note that there exist studies in higher-dimensional (disk-shaped) BECs,

where the RPM was used to predict 2D nonlinear structures, such as “lumps” described by an effective

Kadomtsev-Petviashvili equation [274], and “dromions” described by an effective Davey-Steartson

equation [275,276].

4.4. Methods for discrete systems

As our final class of methods, we will present a series of results that are relevant to systems with

periodic potentials and, in particular, with discrete lattices per the Wannier function reduction of

Sec. 3.7.2. Starting with the prototypical discrete model of the 1D DNLS equation (see, e.g., Ref. [186]

for a review) of the form:

iu̇n = −ǫ(un+1 + un−1) − |un|2un, (131)

we look for standing waves of the form: un = exp(iµt)vn which satisfy the steady state equation

(µ− |vn|2)vn = ǫ(vn+1 + vn−1). (132)

One of the fundamental ideas that we exploit in this setting is the so-called anti-continuum (AC) limit

of MacKay and Aubry [277] for ǫ = 0, where Eq. (132) is completely solvable vn = {0,±√
µ exp(iθn)},

where θn is a free phase parameter for each site. However, a key question is which ones of all these

possible sequences of vn will persist as solutions when ǫ 6= 0. A simple way to see this in the 1D case of

Eq. (131) is to multiply Eq. (132) by v∗n and subtract the complex conjugate of the resulting equation,

which in turn leads to:

v∗nvn+1 − vnv
∗
n+1 = const. ⇒ 2arg(vn+1) = 2arg(vn), (133)

since we are considering solutions vanishing as n→ ±∞. Without loss of generality (using the scaling

of the equation), we can scale µ = 1, in which case the only states that will persist for finite ǫ are

ones containing sequences with combinations of vn = ±1 and vn = 0. A systematic computational

classification of the simplest ones among these sequences and of their bifurcations is provided in

Ref. [278]. Notice that we are tackling here the focusing case of s = −1, however, the defocusing

case of s = 1 can also be addressed based on the same considerations and using the so-called staggering

transformation wn = (−1)nun (which converts the defocusing nonlinearity into a focusing one, with an

appropriate frequency rescaling which can be absorbed in a gauge transformation).

We subsequently consider the issue of stability, using once again the standard symplectic formalism

JLw = λw, where L is given by Eq. (100) and J is the symplectic matrix. In this case, the L+ and L−

operators are given by:

(1 − 3v2
n)an − ǫ(an+1 + an−1) = L+an = −λbn (134)

(1 − v2
n)bn − ǫ(bn+1 + bn−1) = L−bn = λan. (135)

We again use the AC limit where we assume a sequence for vn with N “excited” (i.e., 6= 0) sites;

then, it is easy to see that for ǫ = 0 these sites correspond to eigenvalues λL+
= −2 for L+ and to

eigenvalues λL−
= 0 for L−, and they result in N eigenvalue pairs with λ2 = 0 for the full Hamiltonian

problem. Hence, these eigenvalues are potential sources of instability, since for ǫ 6= 0, N − 1 of those

will become nonzero (there is only one symmetry, namely the U(1) invariance, persisting for ǫ 6= 0).

The key question for stability purposes is to identify the location of these N − 1 small eigenvalue pairs.

One can manipulate Eqs. (134)–(135) into the form:

L−bn = −λ2L−1
+ bn ⇒ λ2 = − (bn,L−bn)

(bn,L−1
+ bn)

(136)

Near the AC limit, the effect of L+ is a multiplicative one (by −2). Hence:

lim
ǫ→0

(bn,L−1
+ bn) = −1

2
⇒ λ2 = 2γ = 2(bn,L−bn) (137)

Therefore the problem reverts to the determination of the spectrum of L−. However, using the fact

that vn is an eigenfunction of L− with λL−
= 0 and the Sturm comparison theorem for difference

operators [279], one infers that if the number of sign changes in the solution at the AC limit is m
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Figure 6. (Color online) A typical example of a two-site configuration is shown in the left panels

of the figure, and a corresponding one of a three-site configuration in the right panels. The top

panels show a solution (for a particular value of ǫ) and its corresponding spectral plane (λr, λi)

of eigenvalues λ = λr + iλi, while the bottom ones show the dependence of the relevant real

eigenvalues as a function of the inter-site coupling ǫ obtained analytically (dashed/red lines) and

numerically (solid/black lines).

(i.e., the number of times that adjacent to a +1 is a −1 and next to a −1 is a +1), then n(L−) = m

and therefore from Eq. (137), the number of imaginary eigenvalues pairs of L is m, while that of real

eigenvalue pairs is consequently (N − 1) − m. An immediate conclusion is that unless m = N − 1,

or practically unless adjacent sites are out-of-phase with each other, the solution will be immediately

unstable for ǫ 6= 0. Notice that this is also consistent with the eigenvalue count of Refs. [217,222] since

n(L)− n(D) = (N +m)− 1 = (N +m− 1) + 2×m+ 2× 0 = kr + 2k−i + 2kc (it is straightforward to

show by the definition of the Krein signature [280] to show that these m imaginary pairs have negative

Krein signature).

One can also use Eq. (137) quantitatively to identify the relevant eigenvalues perturbatively for

the full problem by considering the perturbed (originally zero when ǫ = 0) eigenvalues of L− in the

form:

L(0)
− b(1)n = γ1b

(0)
n − L(1)

− b(0)n , (138)

where L− = L(0)
− + ǫL(1)

− + O(ǫ2) and a similar expansion has been used for the eigenvector bn. Also

λL−
= ǫγ1 + O(ǫ2). Projecting the above equation to all the eigenvectors of zero eigenvalue of L

(0)
− ,

one can explicitly convert Eq. (138) into an eigenvalue problem [280] of the form Mc = γ1c, where

the matrix M has off-diagonal entries: Mn,n+1 = Mn+1,n = − cos(θn+1 − θn) and diagonal entries

Mn,n = (cos(θn−1 − θn) + cos(θn+1 − θn)). Then it is straightforward to compute γ1 and subsequently

from Eq. (137) to evaluate the corresponding λ = ±√
2ǫγ1. For example, for one-dimensional

configurations with two-adjacent sites with phases θ1 and θ2, the matrix M becomes:

M =

(

cos(θ1 − θ2) − cos(θ1 − θ2)

− cos(θ1 − θ2) cos(θ1 − θ2)

)

, (139)

whose straightforward calculation of eigenvalues leads to λ2 = 0 and λ2 = ±2
√

ǫ cos(θ1 − θ2). Notice

that this result is consonant with our qualitative theory above since for same phase excitations (θ1 = θ2),

the configuration is unstable, while the opposite is true if θ1 = θ2 ±π. Similar calculations are possible

for 3-site configurations with phases θ1,2,3, in which case, one of the eigenvalues of M is again 0 (as has

to generically be the case, due to the U(1) invariance), while the other two are given by:

γ1 = cos(θ2 − θ1) + cos(θ3 − θ2)

±
√

cos2(θ2 − θ1) − cos(θ2 − θ1) cos(θ3 − θ2) + cos2(θ3 − θ2). (140)

Some of the examples of the accuracy of these theoretical predictions for some typical two-site and three-

site configurations (in particular, the in-phase ones, which should have one and two real eigenvalue pairs

respectively) are shown in Fig. 6.
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This approach can be generalized to different settings, such as in particular higher dimensions

[281,282] or multi-component systems [283]. Perhaps the fundamental difference that arises in the

higher dimensional settings is that one can excite sites over a contour and then, for the N excited sites

around the contour the persistence (Lyapunov-Schmidt) conditions can be obtained as a generalization

of Eq. (131) that reads [281,284]:

sin(θ1 − θ2) = sin(θ2 − θ3) = . . . = sin(θN − θ1), (141)

which indicates that a key difference of higher dimensional settings is that not only “solitary wave”

structures with phases θ ∈ {0, π} are possible, but also both symmetric and asymmetric vortex families

[281,284] may, in principle, be possible [although Eq. (141) provides the leading order persistence

condition and one would need to also verify the corresponding conditions to higher order to confirm

that such solutions persist [281]]. Such vortex solutions had been predicted numerically earlier [285,286]

and have been observed experimentally in the optical setting of photorefractive crystals [287,288].

Performing the stability analysis is possible for these higher dimensional structures, although the

relevant calculations are technically far more involved. However, the theory can be formulated in

an entirely general manner: we give its outline and some prototypical examples of higher dimensional

theory-computation comparisons below.

The existence problem can be generally formulated in the multi-dimensional case as the vanishing

of the vector field Fn of the form:

Fn(φ, ǫ) =

[

(1 − |φn|2)φn − ǫΣφn

(1 − |φn|2)φ∗
n − ǫΣφ∗

n

]

. (142)

If we then define the matrix operator:

Hn =

(

1 − 2|φn|2 −φ2
n

−φ̄2
n 1 − 2|φn|2

)

− ǫ (s+e1
+ s−e1

+ s+e2
+ s−e2

+ s+e3
+ s−e3

)

(

1 0

0 1

)

, (143)

where the s±ei
denotes the shift operators along the respective directions, then the stability problem

is given by σHψ = iλψ, where the 2-block of σ is the diagonal matrix of (1,−1) at each node n.

Furthermore, the existence problem is connected to H through: H = DφF(φ, 0). At the AC limit of

ǫ = 0

(H(0))n =

[

1 0

0 1

]

, n ∈ S⊥, (H(0))n =

[

−1 −e2iθn

−e−2iθn −1

]

, n ∈ S,

where S is the set of excited sites. Then the eigenvectors of zero eigenvalue will be of the form:

(en)k = i

[

eiθn

−e−iθn

]

δk,n.

Defining the projection operator:

(Pf)n =
(en, f)

(en, en)
=

1

2i

(

e−iθn(f1)n − eiθn(f2)n

)

, n ∈ S, (144)

and decomposing the solution as:

φ = φ(0)(θ) +ϕ ∈ X, (145)

one can obtain the Lyapunov-Schmidt persistence conditions as [282]:

g(θ, ǫ) = PF(φ(0)(θ) +ϕ(θ, ǫ), ǫ) = 0. (146)

This leads to the persistence theorem [282]: The configuration φ(0)(θ) can be continued to the domain

ǫ ∈ O(0) if and only if there exists a root θ∗ of the vector field g(θ, ǫ). Moreover, if the root θ∗
is analytic in ǫ ∈ O(0) and θ∗ = θ0 + O(ǫ), the solution φ of the difference equation is analytic in

ǫ ∈ O(0), such that

φ = φ(0)(θ∗) +ϕ(θ∗, ǫ) = φ(0)(θ0) +
∞
∑

k=1

ǫkφ(k)(θ0). (147)
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One can also formulate on the same footing a general stability theory. More specifically, let the solution

of interest persist for ǫ 6= 0. If the operator H has a small eigenvalue µ of multiplicity d, such that

µ = ǫkµk + O(ǫk+1), then the full Hamiltonian eigenvalue problem admits (2D) small eigenvalues λ.

These are such that λ = ǫk/2λk/2 + O(ǫk/2+1), where non-zero values λk/2 are found from

odd k: M(k)α =
1

2
λ2

k/2α, (148)

even k: M(k)α+
1

2
λk/2L(k)α =

1

2
λ2

k/2α, (149)

where

M(k) = Dθg
(k)(θ0),

L(k) = P
[

H(1)Φ(k′)(θ0) + ...+ H(k′+1)Φ(0)(θ0)
]

,

and k′ = (k − 1)/2. For more details, we refer the interested reader to Ref. [282].

In Fig. 7 we show typical examples of 2D and 3D configurations that satisfy the persistence

conditions formulated above. The former configuration is a vortex of topological charge S = 2 (i.e.,

its phase changes uniformly by π/2 from each site to the next so that it changes from 0 to 4π around

the discrete contour of the solution). This structure is unstable due to a real eigenvalue pair that is

theoretically predicted from Eqs. (148)–(149) to be λ = ±
√√

80 − 8ǫ (while it also has a pair of simple

eigenvalues λ± iǫ
√√

80 + 8, a quadruple eigenvalue λ± iǫ
√

2 and a single eigenvalue of higher order).

The latter configuration is a three-dimensional diamond configuration (a quadrupole in the plane with

phases 0, π, 0, π and two out-of-plane sites with phases π/2 and 3π/2). This is a stable 3D structure

with a single eigenvalue λ = ±4iǫ, a triple eigenvalue λ = ±2iǫ and an eigenvalue of higher order

according to Eqs. (148)–(149). Notice in both cases the remarkable agreement between the theoretical

prediction for the eigenvalues (dashed lines) and the full numerical results (solid lines).

5. Special topics of recent physical interest

In this section we give a very brief overview of some of the more recent themes of interest in the nonlinear

phenomenology emerging in the realm of Bose-Einstein condensation. We pay special attention to the

physical motivation of the different topics. Note that an in-depth treatment of the emergent nonlinear

behavior displayed by BECs and the synergy between experiments and theory can be found in the

recent review [55].

5.1. Spinor/Multicomponent condensates

Advances in trapping techniques for BECs have opened the possibility to simultaneously confine

atomic clouds in different hyperfine spin states. The first such experiment, the so-called pseudospinor

condensate, was achieved in a mixtures of two magnetically trapped hyperfine states of 87Rb [289].

Subsequently, experiments in optically trapped 23Na [290] were able to produce multicomponent

condensates for different Zeeman sub-levels of the same hyperfine level, the so-called spinor condensates.

In addition to these two classes of experiments, mixture of two different species of condensates have been

created by sympathetic cooling (i.e., condensing one species and allowing the other one to condense by

taking advantage of the coupling with the first species) were 41K atoms were sympathetically cooled by
87Rb atoms [291]. More exotic mixtures are also been currently explored in degenerate fermion-boson

mixtures in 40K-87Rb [292] and pure degenerate fermion mixtures in 40K-6Li [293–295].

The mean-field dynamics of such multicomponent condensates is described by a system of coupled

GP equations analogous to Eq. (43), that for mixtures of N bosonic components reads

i
∂ψn

∂t
= −1

2
∆ψn + Vn(r)ψn +

N
∑

k=1

[

gn,k|ψk|2ψn − κn,kψk + ∆µkψn

]

− iσnψn, (150)

were ψn is the wavefunction of the n-th component (n = 1, . . . ,N ), Vn(r) is the potential confining

the n-th component, ∆µn,k is the chemical potential difference between components n and k, and

σn describes the losses of the n-th component. The components n and k are coupled together via
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Figure 7. (Color online) The top panel shows a 2D S = 2 vortex configuration (left panels show

its real and imaginary part -top- as well as amplitude and phase -bottom-) and its linear stability

real and imaginary eigenvalues (right panels). Same thing in the bottom for a diamond 3D

configuration (see the explanation for its phases in the text). The diamond configuration is shown

using iso-level contours of different hues: blue/red (dark gray/gray in the black-and-white version)

are positive/negative real iso-contours while the green/yellow (light gray/very light gray in the

black-and-white version) correspond to positive/negative imaginary iso-contours. The theoretical

predictions for the eigenvalues as a function of the coupling are shown by dashed line, while the

full numerical results by solid ones. Partially reprinted from Ref. [280] with permission.

(i) nonlinear coupling with coefficients gn,k and (ii) linear coupling with coefficients κn,k; where, by

symmetry, gn,k = gk,n and κn,k = κk,n. The nonlinear coupling results from inter-atomic collisions while

the linear coupling accounts for spin state interconversion usually induced by a spin-flipping resonant

electromagnetic wave [296]. In the case of fermionic mixtures one needs to replace the self-interacting

nonlinear terms by gn,n|ψn|4/3ψn [297–299]. In the absence of losses (σn = 0), the total number of

atoms is conserved:

N ≡
N
∑

k=1

Nk =
N
∑

k=1

∫

|ψk|2dr. (151)

In fact, in the further absence of linear interconversions (κn,k = 0) each norm Nk is conserved separately.

The simplest case of two species (N = 2) has been studied extensively. In particular, if one

considers the trapless system (Vn = 0) in the absence of linear interconversion, losses, and chemical

potential differences, the two components tend to segregate if the immiscibility condition

∆ ≡ (g12g21 − g11g22)/g
2
11 > 0 (152)

is satisfied [300]. This condition can be interpreted as if the mutual repulsion between species is stronger

than the combined self-repulsions. In typical experiments, the miscibility parameter (an adimensional

quantity) is rather small: ∆ ≈ 9× 10−4 for 87Rb [289,301] and ∆ ≈ 0.036 for 23Na [66]. Depending on

the various nonlinear coefficients, a vast array of solutions can be supported by a binary condensate.

These include, ground-state solutions [302–304], small-amplitude excitations [305–308], bound states

of dark-bright [309] and dark-dark [310], dark-gray, bright-gray, bright-antidark and dark-antidark
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Figure 8. (Color online). Nonlinear dynamics of a binary 50:50 mixture of two spin states

(|1,−1〉 and |2, 1〉) of N = 375, 000 Rb atoms. Each component is depicted by a contour slice at

half of its corresponding maximal density. The bottom (side) projection corresponds to the z- (x-)

integrated density for the |1,−1〉 component as it is observed in the laboratory experiments [322].

Please visit: http://www.rohan.sdsu.edu/∼rcarrete/ [Publications] to view movies showing the

inter-penetrating time evolution between the two components over a span of 220 ms. Reprinted

from Ref. [322] with permission.

[311] complexes of solitary waves, vector solitons with embedded domain-walls (DWs) [312], spatially

periodic states [313], and modulated amplitude waves [314]. Extensions of some of these patterns in

two dimensions, namely DWs, have been investigated in Refs. [303,304,315–321]. The non-equilibrium

dynamics of a binary condensate has been shown to support (experimentally and theoretically) long

lived ring excitations whereby each component inter-penetrates the other one repeatedly [322] (see

Fig. 8). The effects of adding the linear inter-species coupling between the components has also been

studied in some detail [313,323–333]. One of the salient features of adding the linear inter-species

coupling is the suppression or promotion of the transition to miscibility (cf. Ref. [334] and Chap. 15

in Ref. [55]). Spinor condensates with three species have also drawn considerable attention since their

experimental creation [66,335]. Such systems give rise to spin domains [290], polarized states [336],

spin textures [337], and multi-component (vectorial) solitons of bright [338–341], dark [342], gap [343],

and bright-dark [344] types.

5.2. Vortices and vortex lattices

Arguably, one of the most striking nonlinear matter-wave manifestations in BECs is the possibility of

supporting vortices [345,346]. Vortices are characterized by their non-zero topological charge S whereby

the phase of the wavefunction has a phase jump of 2πS along a closed contour surrounding the core

of the vortex (cf. phase profile for a singly charged vortex, S = +1, in the right panel of Fig. 9).

Historically, the first observation of vortices in BECs was achieved [28] by phase imprinting between

two hyperfine spin states of Rb [347]. Nowadays, the standard technique to nucleate vortices in BECs

is based on stirring [35] the condensate cloud above a certain critical angular speed [348–350]. This

technique has proven to be extremely efficient, not only in creating single vortices, but also, from a

few vortices [350], to vortex lattices [351]. It is also possible to nucleate vortices by dragging a moving

impurity through the condensate for speeds above a critical velocity (depending on the local density

and also the shape of the impurity) [352–359]. Yet another possibility to nucleate vortices can be

achieved by separating the condensate in different fragments and allowing them to collide [360–362].

The profile of a vortex in a two dimensional setting (see left panel of Fig. 9) can be obtained by

solving for the density U(r) when considering a wave function of the form ψ(r, θ) = U(r) exp(iSθ− iµt)
that satisfies the 2D GP equation with repulsive nonlinearity (g = +1), where (r, θ) are the polar

coordinates and µ is the chemical potential. The equation for U takes the form

d2U

dr2
+

1

r

dU

dr
− S2

r2
U +

(

µ− V (r) − U2
)

U = 0, (153)

with boundary conditions U(0) = 0 and U(+∞) =
√
µ for a confining potential V (r = +∞) = +∞.

Unfortunately, the ensuing equation for the vortex profile cannot be solved exactly (even in the simplest

homogeneous case with V (r) ≡ 0) and one has to resort to numerical or approximate methods [363].

The asymptotic behavior of the vortex profile U(r) can be found from Eq. (153), i.e., U(r) ∼ r|S| as
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Figure 9. (Color online) Two-dimensional, singly charged (S = 1), vortex inside a parabolic

magnetic trap V (z) = 1

2
Ω2(x2 + y2) with Ω = 0.2. Depicted are the density (left) and the phase

profile (right) for a chemical potential µ = 2.

Figure 10. (Color online). Top: Experimental look at component separation in a rotating BEC

of Rb atoms [369] after 30 ms evolution, release and 20 ms free expansion from a relatively tight

trapping potential. The percentages quoted are the fraction of atoms transferred from the |1,−1〉
state (top row) to the |2, 1〉 state (bottom row). Bottom: Numerical vortex lattice (VL) transfer

by linear coupling from the first (top row) to the second component (bottom row). The initial VL

(left column) is successfully transferred between components (see middle column where the scale in

the top panel clearly indicates that the first component is almost depleted of atoms after transfer).

More importantly, note that the phase distribution is also transferred between components (right

column).

r → 0, and U(r) ∼ √
µ−S2/(2r2) as r → +∞. Note that the width of singly charged vortices in BECs

is of O(ξ) [where ξ is the healing length given in Eq. (19)], while higher-charge vortices (|S| > 1) have

cores wider than the healing length and are unstable in the homogeneous background case (V (r) ≡ 0)

but might be rendered stable by external impurities [364] or by external potentials [365–368]. When

unstable, higher order charge vortices typically split in multiple single charge vortices.

Single charge vortices are extremely robust due to their inherent topological charge since continuous

transformations/deformation of the vortex profile cannot eliminate the 2πS phase jump —unless that

the density is close to zero (this is the reason why, in the stirring experiments, vortices are nucleated

at the periphery of the condensate cloud where the density tends to zero for confining potentials [370–

373]). Vortices are prone to motion induced by gradients in both density and phase of the background

[374]. These gradients can be induced by an external potential or the presence of another vortex.

The effect of vortex precession induced by the external trap has been extensively studied [375–382].
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The motion induced on a vortex by another vortex is equivalent to the one observed in fluid vortices

whereby vortices with same charge travel parallel to each other at constant speed, while vortices of

opposite charges rotate about each other at constant angular speed.

Another topic that has attracted an enormous deal of attention in recent years is the ubiquitous

existence of robust vortex lattices in rapidly rotating condensates consisting of ordered lattices of

vortices arranged in triangular configurations (the so-called Abrikosov lattices [383]). The first

experimental observation of vortex lattices consisted of just a few (< 15) vortices [351] but soon

experiments were able to maintain vortex lattices with some 100 vortices [384]. Alternative methods

to describe vortex lattice configurations have been given in terms of Kelvin’s variational principle [385]

and through a linear algebra formulation [386]. Another approach is to treat each vortex as a quasi-

particle and apply ideas borrowed from molecular dynamics to find the most energetically favorable

configurations [387]. Some other interesting phenomenology of vortex lattices includes the excitation

of Tkachenko modes [388] via the annihilation of a central chunk of vortex lattice matter through a

localized laser heating [389].

Yet another promising avenue of research that is currently being explored is the topic of vortex

lattices in multicomponent condensates. For example, starting with a two-component BEC mixture

with only one atomic species containing a vortex lattice, and subsequently “activating” the linear

coupling, it is possible to entirely transfer the vortex lattice to the second component (cf. results in

Fig. 10). This “Rabi oscillation” between atomic species [390,313] is an extremely useful tool for

controllably transferring desirable fractions of atoms from one state to another and can be extended

to multicomponent, condensates [391,392]. Furthermore, it is important to note that the interaction of

vortex lattices in a multicomponent BEC can result in structural changes in the configurations of the

vortex lattices, i.e., resulting in lattices with different symmetry [393,394].

5.3. Shock waves

One of the classical types of nonlinear waves appearing in the context of BECs is shock waves. Shock

waves were first observed in the experiments reported in Ref. [31], where a slow-light technique was

used to produce density depressions in a sodium BEC. More recently, they were observed in rapidly

rotating 87Rb BECs triggered by repulsive laser pulses [395], while their formation was discussed in

an experiment involving the growth dynamics of a 1D sodium quasi-condensate in a dimple microtrap

created on top of the harmonic confinement of an atom chip [396]. Finally, shock waves were studied

experimentally and theoretically in Ref. [397]; in the experiments reported in this work, repulsive laser

beams were used (as in Ref. [395], but with a nonrotating condensate) to push atoms from the BEC

center, thus forming “blast-wave” patterns.

On the theoretical side, shock waves in repulsive BECs were mainly studied in the framework

of mean-field theory and the GP equation for weakly-interacting Bose gases [397–405], but also

for strongly interacting ones [406] and in the BEC-Tonks crossover [407]; additionally, the effect

of temperature (see Sec. 5.7) on shock wave formation and dynamics and the effect of depleted

atoms were respectively discussed in Refs. [396] and [407]. Many of the above mentioned theoretical

studies rely on the hydrodynamic equations that can be obtained from the GP equation via the

Madelung transformation ψ =
√
ρ exp(iφ) (with ρ and φ being the condensate’s density and phase,

respectively, see also Sec. 4.3.3). These hydrodynamic equations are then treated in the long-wavelength

limit (or, equivalently, in the weakly dispersive regime) where the so-called quantum pressure term,

∼ (∇2√ρ)/√ρ, is negligible. Qualitatively speaking, one may ignore this term if the so-called “quantum

Reynolds number” [399,400] (see also the discussion in Refs. [398,402]) is R ≡ an0L
2
0 ≫ 1, where

a is the scattering length, n0 the peak density of the BEC and L0 a minimal scale among all the

characteristic spatial scales of the condensate wavefunction. In fact, a more rigorous treatment relies

on the assumption that the quantum pressure term is small, as in the case of the theoretical analysis

(and the pertinent experimental results) of Ref. [397]. In any case, since the quantum pressure is

reminiscent of viscosity in classical fluid mechanics, this weakly dispersive regime suggests the possibility

of “dissipationless shock waves” in BECs (according to the nomenclature of Ref. [403]).

The above mentioned hydrodynamic equations were treated in the limiting case of zero quantum
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pressure in Refs. [398–401]. In this case, the hydrodynamic equations resulting from the GP equation

are reduced to a hyperbolic system of conservation laws of classical gas dynamics, namely an Euler and

a continuity equation (see, e.g., Ref. [408]). In this gas dynamics picture, the above hyperbolic system is

characterized by two real eigenspeeds (i.e., characteristic speeds of propagation of weak discontinuities)

υ± = v ± c, where v is the velocity of the gas and c is the speed of sound. Since the latter depends on

the condensate density ρ [see Eq. (18)], it is clear that higher values of ρ propagate faster than lower

ones and, as a result, any compressive part of the wave ultimately breaks to give a triple-valued solution

for ρ; this is a signature of the formation of a shock wave. In this system, a Gaussian input produces

two symmetric shocks at finite time, as was shown e.g., in Refs. [401,407] (see also Ref. [409] for a

rigorous discussion). Importantly, the trailing edge of the shock wave as observed in the simulations

and the experiments (see, e.g., Refs. [31,396,397,401,407]) can be considered as a modulated train of

dark solitons [397,403].

In the work [402], a more careful investigation of the regimes of validity of the condition R ≫ 1

(which may fail, e.g., in the case of expanding BECs) led to an experimentally relevant protocol to

produce shock waves in BECs. This protocol is based on the use of Feshbach resonance to control the

scattering length a, namely to make a an increasing function of time (by a proper ramp-up procedure),

so as to increase the time domain in which the quantum pressure is negligible. This way, this “Feshbach

resonance management” technique †† was shown to produce multi-dimensional shock waves. On the

other hand, in Ref. [403] the Whitham averaging method [413] was used in the weakly dispersive

regime to show that dissipationless shock waves are emanating from density humps in repulsive BECs.

Moreover, the formation of shock waves in BECs confined in optical lattices was discussed in Ref. [404],

while in Ref. [397] an in depth analysis of the shock waves appearing in BECs and in gas dynamics

(also in connection to relevant experiments of the JILA group) was presented. Finally, it should also

be mentioned that the above mentioned works chiefly refer to repulsive BECs; an analysis of the shock

wave formation in attractive BECs can be found in Ref. [91].

5.4. Multidimensional solitons and collapse

As was highlighted in Sec. 3, a strong transverse confinement may effectively render the BEC quasi-

1D, in which case the 1D soliton solutions are physically relevant and are stable. On the contrary, in

the absence of a tight transversal trapping, higher dimensional extensions of 1D solitons are generally

unstable [12]. However, by restricting the transverse direction(s) of the condensate, it is possible to

obtain higher dimensional soliton solutions that are stabilized for times longer than the lifespan of the

experiments [414–416].

Let us now showcase some of the possible higher dimensional soliton solutions displayed by the

GP model. We do not cover here “true” 3D solutions (i.e., solutions that do not have a 1D equivalent)

such as 2D vortices (see previous section), 3D vortex lines [11,417–420], vortex rings [421,422,33] or

more complicated topologically charged structures such a skyrmions [423–428].

5.4.1. Dark solitons. The trademark of a dark soliton is its phase jump along its center separating

two repelling phases. In a 2D geometry a dark soliton corresponds to a nodal line separating the two

phases while in 3D it corresponds to a nodal plane. Both the 2D and 3D dark solitons, respectively

called band (or stripe) and planar dark solitons, are prone to the snaking instability along their nodal

extent [429,430]. These instabilities result in the nucleation of vortex pairs in 2D [431,432] and pairs of

vortex lines and/or vortex rings in 3D. When the dark soliton is set into motion inside a confining trap,

it suffers bending resulting from the different speeds of sounds at the edge of the cloud (low density

and thus slower speeds compared to the speed at the center of the cloud) accelerating the formation of

vortices at the trailing edges [30]. It is also possible to create dark soliton structures whose nodal sets,

instead of extending linearly, can be wrapped around. It is therefore possible to create in 2D ring dark

solitons and in 3D spherical shell dark solitons, as the ones discussed in Sec. 4.3.2. Such structures

††This technique was suggested in earlier works in various important applications, as e.g., a means to prevent

collapse of higher-dimensional attractive BECs [193,203,410], to produce periodic waves [107], robust matter-wave

breathers [241,242,411,412], and so on.
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can be described by nonlinear Bessel functions (cf. Ref. [433] and Chap. 7 in Ref. [55]), are also prone

to the snaking instability. It is worth mentioning that the abovementioned instabilities can be weak

(slow) enough so that these solitons can be observed in the experiments [33,31,434].

5.4.2. Bright solitons and collapse. Bright solitons in higher dimensions are prone to a different type

of instability due to the intrinsic collapse of solutions of the NLS equation [12]. The first experiments

with attractive condensates suffered from this collapse instability [81,82,435,436] while the more recent

experiments were able to focus on stable regimes and demonstrate bright soliton formation [40–42]. In

fact, the key feature of these experiments was the quasi-1D nature of the attractive BEC realized in

anisotropic traps as discussed in Sec. 3. Thus, the observed bright solitons were found to be robust,

which would not be the case in a higher-dimensional system, as they should either collapse or expand

indefinitely depending on the number of atoms and the density profile. The solution that constitutes

the unstable separatrix between expansion and collapse is the well-known Townes soliton [437,438].

In this connection, it is important to mention that even though the experimental condensates are

never truly 1D, fortunately, the tight trapping in the transverse direction(s) is able to slow collapse to

times much longer than the duration of the experiments. Nonetheless, interactions of bright solitons

in higher dimensions, in contrast with their 1D counterparts, may be inelastic [117,89,439], and,

furthermore, when two (or more) solitons overlap their combined number of atoms can exceed the

critical threshold and initiate collapse. The overlap of higher dimensional solitons, even when the

critical number of atoms is exceeded, might not result in collapse since one has to take into account the

time of the interaction (depending on the velocities of the solitons and their relatives phases, cf. Chap. 7

in Ref. [55] and references therein).

Finally, we note that stabilization of higher-dimensional bright solitons by means of lower-

dimensional optical lattices has been proposed in Refs. [192,440,412]. Moreover, stable bright ring

solitons carrying topological charge have been theoretically predicted to exist [441,83,442,443,366] but

no experiment has yet corroborated these results.

5.5. Manipulation of matter-waves

As discussed in Sec. 3, one of the most appealing features in BECs is the level of control over the different

contributions on the GP equation. This includes the possibility to craft almost any desired external

potential (by the appropriate superposition of multiple laser beams), and to change the strength and

sign of the nonlinearity via the Feshbach resonance mechanism. This is to be contrasted with other

contexts where the NLS equation is also a relevant model, as, e.g., in nonlinear optics [17], where it is

extremely difficult and often impossible to demonstrate such control. In the BEC context, particularly

appealing is the fact that the external potential and/or nonlinearity can be made to follow in time

any desired evolution. In this section we focus on the use of appropriately crafted time-dependent

external potentials to manipulate mater-waves in BECs. In this section we only consider matter-

wave manipulation by two main types of external potentials: localized and periodic potentials. These

potentials are experimentally generated by laser beams as explained in Sec. 2.4. Here, it would be

useful to recall that the sign of the external optical potential is positive (negative) for blue- (red-)

detuned laser beams.

5.5.1. Localized potentials. The interaction of solitons with localized impurities has attracted much

attention in the theory of nonlinear waves [253,254,444] and solid state physics [445,446]. In 1D BECs

confined by an harmonic trap, bright and dark solitons perform harmonic oscillations as discussed in

Sec. 4 as a consequence of the Kohn’s theorem (the “nonlinear analogue” of the Ehrenfest theorem)

[198,447], which states that the motion of the center of mass of a cloud of particles trapped in a

parabolic potential decouples from the internal excitations. The existence, stability and dynamics of

bright solitons in the presence of the external potential can be analyzed using perturbation techniques

expounded in Sec. 4. In fact, the combined effects of the harmonic trap VHT(x) = Ω2x2/2 and an

infinitely localized delta impurity, located at xi, namely VImp(x) = V
(0)
Imp δ(x − xi), yield the following
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effective force on a bright soliton [448],

Feff = FHT + FImp = −2Ω2η ζ − 2η3V
(0)
Imp tanh(η(xi − ζ)) sech2(η(xi − ζ)), (154)

where ζ and η are, respectively, the center and height of the bright soliton, while the first (second)

term in the right-hand side corresponds to the harmonic trapping (localized impurity) potential. This

effective force induces a Newton-type dynamics for the center ζ of the bright soliton, as discussed

previously. Note that the force induced by the harmonic trap always points towards its center, while

the direction of the force induced by the impurity depends of the sign of V
(0)
Imp. In the case of an attractive

impurity it is possible to not only pin the bright soliton away from the center of the harmonic trap

but also to adiabatically drag it and reposition it at, almost, any desired location by slowly moving the

impurity [448]. The success in dragging the soliton not only depends on the profiles of the soliton and

the impurity, but more crucially, on the degree of adiabaticity when displacing the impurity.

A similar study can also be performed in the case of dark solitons. The interactions of dark solitons

with localized impurities was analyzed in Ref. [449], by using the so-called direct perturbation theory

for dark solitons [450], and later in the BEC context in Ref. [258], by using the adiabatic perturbation

theory for dark solitons [114]. Following the analysis of Ref. [258], it is possible to show that the center

ζ of a dark matter-wave soliton obeys a Newton-type equation of motion with an effective potential

given by:

Veff(ζ) = V eff
HT(ζ) + V eff

Imp(ζ) =
1

2
VHT(ζ) +

1

4
V

(0)
Impsech

2(ζ). (155)

Thus, similarly to the bright soliton case, one can use the above pinning of the dark soliton to drag it

by adiabatically moving the impurity [258].

Finally, it is also possible to pin and drag vortices with a localized impurity (see Chap. 17 in Ref. [55]

for more details). As discussed above, the presence of the harmonic trap induces vortex precession [375–

382]. Therefore, in order to pin/drag the vortex at an off-center position, the pinning force exerted by

the impurity has to be stronger than the vortex precession force induced by the harmonic trap and the

impurity has to be deep enough to avoid emission of sound waves [451]. An interesting twist to this

manipulation problem is the possibility to snare a moving vortex by an appropriately located/designed

impurity.

5.5.2. Periodic potentials. A similar approach as the one described in the previous section can be

devised by using periodic potentials. This method relies, as in the case of localized impurities, on

the pinning properties of properly crafted periodic potentials. Specifically, a periodic potential with a

wavelength longer than the width of the soliton width induces a periodic series of effective potential

minima that help to pin the soliton. For instance, in a 1D BEC, a bright soliton subject to a periodic

potential generated by an optical lattice of the form

VOL(x) = V
(0)
OL sin2(kx), (156)

behaves (in appropriate parameter ranges) as a quasi-particle inside the effective potential [257]:

Veff(ζ) = ηΩ2ζ2 − πV
(0)
OL k csch(kπ/η) cos(2kζ). (157)

This effective potential possesses minima that, as indicated above, can be rigorously shown to

correspond to stable positions for the solitons [217–222,452,453]. This in turn can be used, in the

same manner as above for the localized impurities, to successfully pin, drag and capture bright solitons

[257].

The case of manipulation of dark solitons by periodic potentials is more subtle because dark solitons

subject to tight confinements are prone to weak radiation loss, as shown numerically in Refs. [454–

457] and analytically in Ref. [263]). Since a dark soliton is an effectively negative mass (density void)

structure, radiation loss implies that the soliton travels faster and eventually escapes the local minimum

in the effective potential landscape. The motion of a dark soliton subject to an external potential has

been treated in detail before [258–263,458]. In the presence of both the magnetic trap and the optical

lattice of Eq. (156), the motion of the dark soliton depends on the period of the optical lattice when

compared to the soliton’s width [459]. The case of an optical lattice with long-period can be treated

as a perturbation (see Sec. 4.3.2), and the dynamics of the dark soliton can adjust itself to the smooth
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potential. The short period optical lattice case can be treated by multiple-scale expansion [459] and it is

equivalent to the motion of a dark soliton inside a renormalized magnetic trap (with no optical lattice)

[459]. For intermediate periods, the optical lattice has the ability to drag/manipulate the dark soliton

as shown in Refs. [459,460]. However, the effects of radiation loss described above eventually drive

the dark soliton into large amplitude oscillations inside the local effective potential minima leading,

eventually, to its expulsion.

Finally, we briefly discuss vortices under the presence of periodic potentials. Their stability and

dynamics has been studied in Refs. [461,462], while the existence of gap vortices in the gaps of the

band-gap spectrum due to Bragg scattering were considered in Ref. [177]. Also, in the presence of deep

periodic lattices, where the discrete version of the GP equation (namely the DNLS equation, see, e.g.,

Sec. 3.6.2) becomes relevant, purely 3D discrete vortices can be constructed [463–465]. An interesting

twist of the pinning of vortices (which has been observed experimentally [466]) is the case when a

vortex lattice is induced to transition from a triangular Abrikosov vortex lattice to a square lattice by

an optical lattice [467,468]. Another type of vortex lattice manipulation is the use of large-amplitude

oscillations to induce structural phase transitions (e.g., from triangular to orthorhombic) [39].

5.6. Matter-waves in disordered potentials

Recently, there has been much attention focused on the dynamics of matter-waves in disordered

potentials. Generally speaking, disorder in quantum systems has been a subject of intense theoretical

and experimental studies. In the context of ultracold atomic gases disorder may result from the

roughness of a magnetic trap [469] or a magnetic microtrap [470]. However, it is important to note

that controlled disorder (or quasi-disorder) may also be created by means of different techniques. These

include the use of two-color superlattice potentials [471–473], the employment of so-called quasi-crystal

(i.e., quasi-periodic) optical lattices in 2D or 3D [474–476], the use of impurity atoms trapped at random

positions in the nodes of a periodic optical lattice [477], random phase masks [478], or optical speckle

patterns [479–481]. The latter is a random intensity pattern which is produced by the scattering of a

coherent laser beam from a rough surface (see, e.g., Ref. [482] for a detailed discussion).

The theoretical and experimental investigations of ultracold atomic gases confined in disordered

potentials pave the way for the study of fundamental effects in quantum systems. Among them, the

most famous phenomenon is Anderson localization, i.e., localization and absence of diffusion of non-

interacting quantum particles, which was originally predicted to occur in the context of electronic

transport [483]. Other important effects, include the realization of Bose [484,485] or Fermi [486,487]

glasses, quantum spin glasses [488], the Anderson-Bose glass and crossover between Anderson glass to

Bose-glass localization, and so on (see also the recent review [489]). Importantly, as we will discuss

below, there exist very recent relevant experimental results (and theoretical predictions) towards these

interesting directions.

The first experimental results concerning BECs confined in disordered potentials were reported

almost simultaneously on 2005 [478–481]. In the first if these experiments [479], static and dynamic

properties of a rubidium BEC were studied and it was found that both dipole and quadrupole

oscillations are damped (the damping was found to be stronger as the speckle height was increased).

The suppression of transport of the condensate in the presence of a random potential was also reported

in Refs. [480,481]. In these works, a strong reduction of the mobility of atoms was demonstrated, as the

1D expansion of the elongated condensate along a magnetic [480] or an optical [481] guide was found

to be strongly inhibited in the presence of the speckle potential. On the other hand, in Ref. [478] a

speckle pattern was superimposed to a regular 1D optical lattice and, thus, a genuine random potential

was created. In this setting the possibility of observation of Anderson localization was analyzed in

detail, and the crossover from Anderson localization in the absence of interactions to the “screening

regime” (where nonlinear interactions suppress Anderson localization in the random potential) was

investigated.

Although the above mentioned results underscore a disorder-induced trapping of the condensate,

this effect does not correspond to a genuine Anderson localization: for the latter, the correlation

length of the disorder has to be smaller than the size of the system (see discussion in Ref. [489]).
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Nevertheless, a detailed study [490] has shown that expansion of a quasi-2D cloud may lead to weak

and even strong localization using currently available speckle patterns. Other works have revealed that

Anderson localization may occur during transport processes in repulsive BECs [491–493]. In this case,

however, and for condensates at equilibrium, the interaction-induced delocalization dominates disorder-

induced localization, except for the case of weak interactions [494] (see also earlier work in Ref. [495]).

Another possibility is Anderson localization of elementary excitations in interacting BECs, as analyzed

in the recent works [496,497]. Finally, it is worth also mentioning in passing parallel developments in

this area, within the mathematically similar setting of photonic lattices, where Anderson localization

and transition from ballistic to diffusive transport were recently observed in the presence of random

fluctuations [498].

In any case, the above discussion shows that there exists an intense theoretical and experimental

effort concerning this hot topic of BECs in disordered potentials. Although it seems that relevant

experiments have just started, the perspectives are very promising: they include not only the possibility

of the detection of Anderson localization, but also other relevant effects, such as the observation of a

Bose-glass phase [499], the possibility of the appearance of a novel Lifshits glass phase [500], and so on.

5.7. Beyond mean-field description

The GP equation has been extremely successful in describing a wide range of mean-field phenomena

in Bose-Einstein condensation. By construction, as explained in detail in Sec. 2, the GP equation

is the mean-field description of the multi-body quantum Hamiltonian describing the interaction of a

dilute gas of bosonic atoms and it relies on two main assumptions: (a) collisions between atoms are

approximated by hard sphere collisions with a Dirac delta interatomic potential, and (b) the gas is at

absolute zero temperature where thermal effects are not present. Nonetheless, in many BEC settings,

finite temperature effects and quantum fluctuations may play an important role. The main effect of

finite temperature is due to the fact that a part of the atomic cloud is not condensed (the so-called

thermal cloud) and couples to the condensed cloud. A microscopic derivation of the mean-field operator

for the gas of bosonic particles reveals that the (standard) condensate mean-field is coupled to higher

order mean-fields (cf. the insightful review in Chap. 18 of Ref. [55] and references therein for more

details). Neglecting the exchange of particles between condensed and non-condensed atoms and taking

into account the three lowest mean-field orders, the so-called Hartree-Fock-Bogoliubov (HFB) theory,

leads to the generalized GP equation for the condensate wavefunction ψ(r, t) [501–504]

i~
∂

∂t
ψ(r, t) = [HGP + g [2n′(r, t)]]ψ(r, t) + m̃0(r, t)ψ

∗(r, t), (158)

where HGP = −(1/2)∇2 + Vext(r, t) + g|ψ|2 accounts for the “classical” GP terms in non-dimensional

units, n′(r, t) denotes the non-condensate density and m̃0(r, t) the anomalous mean-field average [505–

508]. Furthermore, taking into account that atomic collisions happen within the gas (and not in

vacuum), one has to modify the inter-atomic interactions by a contact potential with a position-

dependent amplitude: g → g[1 + m̃0(r)/ψ
2(r)] [509–511].

A similar approach to the above is to consider the coupling with the thermal cloud by ignoring

the anomalous average and including a local energy and momentum conservation [512,513] that yields

i~
∂

∂t
ψ(r, t) = [HGP + g [2n′(r, t)] − iR(r, t)]ψ(r, t), (159)

where the non-condensate density n′(r, t) is described terms of a Wigner phase-space representation

and a generalized Boltzmann quantum-hydrodynamical equation (see Chap. 18 of Ref. [55]). This term

includes collisions between non-condensed atoms and transfer to and from the condensed cloud. In

Eq. (159), R(r, t) accounts for triplet correlations.

Other approaches to incorporate the thermal cloud include Stoof’s non-equilibrium theory based

on quantum kinetic theory [514–517] and Gardiner-Zoller’s quantum kinetic master equation using

techniques borrowed from quantum optics [518–524]. Also, efforts to include stochastic effects have

been considered in Ref. [525] by considering the thermal cloud to be close enough to equilibrium that it

can be described by a Bose cloud with chemical potential µT at temperature T . In fact, this approach
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leads, after neglecting noise terms, to the phenomenological damping included in the GP equation

through the damped GP equation

i~
∂

∂t
ψ(r, t) = (1 − iγ) (HGP − µT )ψ(r, t), (160)

with damping rate γ > 0. This approach was originally proposed by Pitaevskii [526] and applied with

a position-dependent loss rate in Ref. [527]. A similar phenomenological damping term (but on the left

hand side) has been used in Refs. [371,372] to remove the excess energy to dynamically simulate the

crystallization of vortex lattices in rapidly rotating BECs.

It is important to note that recently there has been a lot of activity on the study of formation,

stability and dynamics of matter-wave solitons beyond the mean-field theory. In particular, in the case

of attractive BECs, the velocity and temperature-dependent frictional force and diffusion coefficient of a

matter-wave bright soliton immersed in a thermal cloud was calculated in Ref. [116]. Moreover, the full

set of the time-dependent HFB equations was used in Ref. [528] to show that the matter flux from the

condensate to the thermal cloud may cause the bright matter-wave solitons to split into two solitonic

fragments (each of them is a mixture of the condensed and non-condensed particles); these may be

viewed as partially incoherent solitons, similar to the ones known in the context of nonlinear optics

[529,530]. Partially incoherent lattice solitons at a finite temperature T were also predicted to exist in

Ref. [531]; there, a numerical integration of the GP equation, starting with a random Bose distribution

at finite T , revealed the generation of lattice solitons upon gradual switch-on of an optical lattice

potential. In a more recent study [532], the time-dependent HFB theory was used to find inter-gap and

intra-gap partially incoherent solitons (composed, as in Ref. [528] by a condensed and a non-condensed

part). On the other hand, in Refs. [533,534], the so-called Zaremba-Nikuni-Griffin formalism [512]

was used to analyze the dissipative dynamics of dark solitons in the presence of the thermal cloud, as

observed in the Hannover experiment [32]. Finally, other quantum effects associated to matter-wave

solitons have been considered as well; these include quantum depletion of dark solitons [535–538] (see

also Ref. [115]), formation of a broken-symmetry bright matter-wave soliton by superpositions of quasi-

degenerate many-body states [539], quantum-noise squeezing and quantum correlations of gap solitons

[540], and so on.
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[119] A. Muñoz Mateo and V. Delgado, Phys. Rev. A 77, 013617 (2008).

[120] F. Gerbier, Europhys. Lett. 66, 771 (2004).

[121] L. Salasnich, A. Parola, and L. Reatto, Phys. Rev. A 65, 043614 (2002).

[122] Y.B. Band, I. Towers, and B.A. Malomed, Phys. Rev. A 67, 023602 (2003).

[123] A.M. Kamchatnov and V. Shchesnovich, Phys. Rev. A 70, 023604 (2004).

[124] P. Massignan and M. Modugno, Phys. Rev. A 67, 023614 (2003).

[125] W. Zhang and L. You, Phys. Rev. A 71, 025603 (2005).

[126] L. Salasnich, A. Parola, and L. Reatto, Phys. Rev. A 69, 045601 (2004).
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[317] P. Öhberg and S. Stenholm, Phys. Rev. A 57, 1272 (1998).

[318] B.D. Esry and C.H. Greene, Phys. Rev. A 59, 1457 (1999).

[319] A.A. Svidzinsky and S.T. Chui, Phys. Rev. A 68, 013612 (2003).

[320] B.A. Malomed, H.E. Nistazakis, D.J. Frantzeskakis, and P.G. Kevrekidis, Phys. Rev. A 70, 043616 (2004).

[321] B.A. Malomed, H.E. Nistazakis, P.G. Kevrekidis, and D.J. Frantzeskakis, Math. Comput. Simulat. 69, 400

(2005).
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