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units�; this is a consequence of the extremely small growth
rate of the instability. Eventually, the system settles down to
a steady state, which is qualitatively similar to the initial one.
In particular, as seen in the top panels of Fig. 3, after t
�8000 the pulse in the �0 component broadens and its am-
plitude accordingly decreases, while the hole in the �±1 com-
ponents becomes shallower. This is clearly shown in the
middle panels of Fig. 3, where snapshots of the spatial dis-
tributions of the wave functions at t=0 �solid lines� and t
=10 000 �dashed lines� are shown. Respective snapshots of
the mean-field spin are also displayed in the bottom panel of
Fig. 3; it is seen that the manifestation of the oscillatory
instability does not affect f significantly. Note that here, as in
the previous case with the TF polarized states, fy = fz=0 and
f = fx.

Apart from the states considered above, it is also possible
to find spin-polarized ones which feature, e.g., one hole in
each of the �±1 components, and two holes in �0. Examples
of such a state are shown in the top panels of Fig. 4 �the left
one, for �=2, is stable, while the right one, for �=3, is
unstable�. As seen in this figure, one may consider compo-
nents �−1 and �+1 as built of two overlapping pulses, which
induce two holes in the �0 component due to the repulsive
intercomponent interactions. Results of the stability analysis
for these states are shown in Fig. 4. In this case, two quartets

of eigenvalues with nonzero real parts are found in the spec-
tral plane �see the right panel in the second row of Fig. 4�.
These lead to instability in the interval 2.58���3.22 �see
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FIG. 4. �Color online� Same as Fig. 2 but for a state with one
hole in each of the �±1 components and two holes in the �0 com-
ponent. In this case, the instability is driven by two quartets in the
eigenvalue spectrum of small perturbations, which lead to instabil-
ity in the interval 2.58���3.22. The maximum instability growth
rate is max��r��1.8�10−3 at ��2.9. The unstable state shown in
the top right panel corresponds to �=3.
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FIG. 5. �Color online� Same as Fig. 3, for the unstable state
shown in the top right panel of Fig. 4 �it pertains to �=3�. The
instability manifests itself at large times �t	3500� and results in
strong oscillatory deformation of the spinor condensate; this is
clearly observed in the contour plots of the densities �top panels�,
the snapshots of the wave function profiles �middle panels�, and the
snapshots of the mean-field spin distribution �bottom panel�.
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FIG. 6. �Color online� Initialization of the system when three
spatially separated traps, V−1, V0 �shown by dashed parabolas�, and
V+1 �the solid parabola�, with equal strengths ��=0.1� and centers
placed at x=−10, 0, and +10, hold the TF states of the �−1, �0, and
�+1 components, respectively. Then, two traps �V−1 and V0�, cen-
tered at x=−10 and x=0, are turned off, and a stationary solution,
supported solely by the trap �V+1� centered at x=10, is looked for
by means of the fixed-point algorithm, using the configuration with
the three mutually shifted components as an input.
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the bottom panel in Fig. 4�. The respective largest instability
growth rate is ��r�max�1.8�10−3 for ��2.9, i.e., of the
same order of magnitude as in the previous case. The devel-
opment of the instability was studied, as above, in direct
simulations, starting with initial conditions in the form of a
perturbed solution pertaining to �=3. The result is shown in
Fig. 5, in terms of the evolution of identical densities of the
�±1 components and the density of �0. Again, the instability
manifests itself at large times �t	3500, which corresponds
to t	4.2 s in physical units�, but in this case the final result
is a strong oscillatory deformation of the three components
�after t�5500�, contrary to the establishment of the new
stationary pulse-hole state observed in Fig. 3. This deforma-
tion is clearly seen by the snapshots of the spatial distribu-
tions of the wave functions �middle panels of Fig. 5� and the
mean-field spin �bottom panel of Fig. 5�, at t=0 �solid lines�
and t=10 000 �dashed lines�. Notice that the resulting states
are asymmetric with respect to x→−x transformations, indi-
cating the possibility of asymmetric states in the system such
as domain walls �see also below�.

Similar states with one hole in �0 and two holes in each of
the �±1 components, as well as their counterparts corre-
sponding to �
=�, have also been found. They are not
shown here; as in the previous case, the �in�stability of these
additional states is similar to that reported in Fig. 4.

V. DOMAIN WALLS

In the above sections, we reported the spin-polarized
states in which all three spin components were spatially
overlapping, since they were confined by the same potential
trap. However, it is also possible to use three different traps,
each confining a different component, to initially separate
them, and then allow the system to evolve in the presence of
only one of these traps �i.e., turning off the other two�. In this
section, we present spin-polarized states, including domain-
wall �DW� structures, obtained in this way.

First, we describe the initialization of the system. We as-
sume that the three TF-shaped components are initially
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FIG. 7. �Color online� Top left panel: Wave functions of the components ��+1 and �−1 are identical� in a stationary state found from the
initial configuration prepared as shown in Fig. 6. The resulting spin-polarized state has the form of a domain-wall structure between the �0

and �±1 components. The parameters are �=0.1 and �=2. The top right panel shows the wave functions of the domain-wall state found at
�=1.43. Middle panel: The norm of each component in the domain-wall structure vs the chemical potential �the dependences for �
=0 and
� are identical�. Bottom panels: The spatial distribution of the total mean-field spin �solid lines�. For �=2 �bottom left� f = fx, while for
�=1.43 �bottom right� f =�fx

2+ fz
2� fx; in the latter case, the fx and fz components are depicted by dashed and dashed-dotted lines,

respectively.
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loaded into three different traps, Vj�x�, of the same strength,
�, centered at different positions:

Vj�x� =
1

2
�2�x − j�x�2, j = − 1, 0, + 1. �21�

We choose �x=�−1 �i.e., �x=10 for �=0.1�, which induces
the initially separated TF configurations; see Fig. 6.

After preparing this state, we turn off the traps V−1�x� and
V0�x�, keeping only the rightmost one, V+1�x�, which now
acts on all three components. The so defined initial configu-
ration is fed, as an input, into the fixed-point algorithm, to
find a spin-polarized state generated by it. Other possibilities,
such as turning off potentials V±1 and keeping V0, arranging
the three components in a different way, etc., eventually lead
to retrieving the spin-polarized states presented in the previ-
ous sections, while the approach outlined above �keeping
V+1�x� and switching V−1�x� and V0�x� off� generates new
DW patterns, which are displayed in Fig. 7, and could not be
obtained otherwise �in fact, the asymmetry of the procedure
is instrumental in generating the new states�.

The most interesting spin-polarized DW states found fol-
lowing this procedure correspond to values of the chemical
potential ��1.43 �or norm N�5400�, for �=0.1; for
smaller �, we typically found structures of the TF type. Two
examples, one for �=2, and another exactly corresponding
to �=1.43, are shown in Fig. 7.

In the former case ��=2�, the �0 component �which has
the larger norm� is centered to the right of the midpoint of
the remaining trap �x+1=10�, while the identical �±1 compo-
nents are pushed to the left, due to the repulsion from �0,
with a DW created between �±1 and �0. Note that the total

mean-field spin is f = fx and has a pulselike distribution
shown in the bottom left panel of Fig. 7.

In the state found at the above-mentioned special value,
�=1.43, which is shown in the top right panel of Fig. 7, the
shape of the �0 component is similar to that displayed in the
left top panel for �=2, while the �±1 components are not
identical, in contrast to the previous example. In the present
case, the �0 and �±1 components overlap over a wider spatial
region, and �−1 changes its sign at x�13, featuring a struc-
ture resembling the waveform of a dark soliton embedded in
a bright one �26�. Notice that in this case fz takes a small
nonzero value and, thus, it has a small contribution to the
total mean-field spin; however, in fact, as seen in the bottom-
right panel of Fig. 7, the latter can be approximated as f
=�fx

2+ fz
2� fx.

The stability of the DW states was also investigated in the
framework of the BdG equations. It was concluded that there
are no unstable eigenvalues, i.e., with a nonzero real part, in
interval 1.43���5, or, equivalently, 5400�N�35 000 for
�=0.1 �not shown here in detail�. Thus the DWs are stable
in this region. Verification of the stability, performed by di-
rect simulations of Eqs. �4� and �5�, is illustrated in Figs. 8
and 9, for �=2 and �=1.43, respectively. It is obvious that
these states indeed remain stable at very large times exceed-
ing t=10 000 �i.e., 12 s in physical units�.

VI. CONCLUSIONS

In this work, we have studied spin-polarized states in an-
tiferromagnetic spinor �F=1� Bose-Einstein condensates. In
particular, our analysis applies to a quasi-1D spinor conden-
sate of sodium atoms. The considerations were based on ana-
lytical calculations and numerical computations of the
coupled Gross-Pitaevskii equations for this setting.

Assuming that all three hyperfine �spin� components are
confined in the same harmonic trap, we have found various
types of spin-polarized states and examined their stability.
The first family consists of Thomas-Fermi configurations,
considered analytically in the framework of the single-mode
approximation �which assumes the similarity of the spatial
profiles of all the components�. Within their existence region,
these states were found to be stable. Also identified were
more complex patterns, which include states composed of
one or more pulselike structures in one component, that in-
duce holes in the other components, and states with holes in
all three components. These states feature windows of weak
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FIG. 8. �Color online� Evolution of the domain-wall structure
shown in the top left panel of Fig. 7, to which a random perturba-
tion was added. Shown in the left and right panels are spatiotem-
poral contour plots of the densities in components �±1 �identical to
each other� and �0, respectively.
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FIG. 9. �Color online� Same as Fig. 8 but for the state shown in the top right panel of Fig. 7. The left, middle, and right panels show,
respectively, the densities in the �−1, �0, and �+1 components. Noteworthy is a stationary dark-soliton-like structure, located at x�13 in the
�−1 component.
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instability. The development of the instability was investi-
gated by means of direct numerical simulations, which dem-
onstrate that it manifests itself at very long times, and results
in a deformation of the states with a single hole in some of
the components, which does not qualitatively change their
form, and a stronger �oscillatory� perturbation and a potential
eventual asymmetry of the states with multiple hoels.

Fully stable families of spin-polarized states develop from
configurations consisting of initially separated components
�that are held in three mutually shifted traps�. These states
form domain-wall structures between the components, at val-
ues of the chemical potential above a certain threshold. Just
at the threshold we have found another spin-polarized state
in which all the components partly overlap.

It would definitely be interesting to investigate the exis-
tence and stability of higher-dimensional counterparts of the
1D spin-polarized states found in this work. In this connec-
tion, a relevant question for further analysis is whether
spinor condensates support stable topological objects, such

as dark solitons or vortices. Moreover, the effect of tempera-
ture on the statics and dynamics of the spin-polarized states
presented in this work is certainly another challenging issue
deserving further investigation. Work in these directions is in
progress.
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