
 

 
  

Computational Science & 
Engineering Faculty and Students 

Research Articles 
 

Database Powered by the 
Computational Science Research Center  

Computing Group & Visualization Lab 

 
COMPUTATIONAL SCIENCE 
& ENGINEERING  

  

 

 
 

Computational Science Research Center 
College of Sciences 

5500 Campanile Drive 
San Diego, CA 92182-1245 

(619) 594-3430 

 

 
© 2008 

Čerenkov-Like Radiation in a Binary Superfluid 
Flow Past an Obstacle 

 
H. Susanto, P.G. Kevrekidis. R. Carretero-González, B.A. Malomed,  

D.J. Frantzeskakis, and A.R. Bishop 
 

January 2, 2008 
 
 
 

Publication Number: CSRCR2008-01 
 



Čerenkov-like radiation in a binary superfluid flow past an obstacle

H. Susanto,1 P. G. Kevrekidis,1 R. Carretero-González,2 B. A. Malomed,3 D. J. Frantzeskakis,4 and A. R. Bishop5

1Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-4515, USA
2Nonlinear Dynamical Systems Group, Department of Mathematics and Statistics, and Computational Science Research Center,

San Diego State University, San Diego, California, 92182-7720, USA
3Department of Interdisciplinary Studies, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel

4Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 15784, Greece
5Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

�Received 18 January 2007; published 8 May 2007�

We consider the dynamics of two coupled miscible Bose-Einstein condensates, when an obstacle is dragged
through them. The existence of two different speeds of sound provides the possibility for three dynamical
regimes: when both components are subcritical, we do not observe nucleation of coherent structures; when
both components are supercritical they both form dark solitons in one dimension �1D� and vortices or rotating
vortex dipoles in two dimensions; in the intermediate regime, we observe the nucleation of a structure in the
form of a dark-antidark soliton in 1D; the 2D analog of such a structure, a vortex-lump, is also observed.

DOI: 10.1103/PhysRevA.75.055601 PACS number�s�: 03.75.�b, 52.35.Mw

In the past few years, there has been an increasing number
of studies of multicomponent Hamiltonian systems. This has
been triggered primarily by the development of theoretical
and experimental results in coupled atomic Bose-Einstein
condensates �BECs� �1� and of coupled nonlinear optical sys-
tems �where the coupling can be, e.g., between different po-
larizations of light or different frequencies� �2�. These have,
in turn, motivated detailed mathematical investigations of
such coupled systems, typically described by nonlinear
Schrödinger �NLS� equations �3�. In the setting of BECs, that
will be the primary focus of this study, mixtures of different
spin states of 87Rb �4� and 23Na �5�, as well as two-
component BECs with different atomic species, such as
41K-87Rb �6� and 7Li-133Cs �7�, have been created in experi-
ments. In the same context, a wide variety of theoretical
studies have examined ground-state solutions �8� and small-
amplitude excitations �9�, as well as the formation of other
nonlinear structures such as domain walls �10�, one-
dimensional �1D� bound dark-dark and dark-bright soliton
complexes �11�, spatially periodic states �12�, vortex dipoles
�13�, vortex rings and slaved waves �14�, coupled vortex lat-
tices �15�, and so on.

At the same time, many theoretical and experimental
studies deal with the dragging of an “impurity” �e.g., a blue-
detuned laser beam� through a one-component condensate.
This setting has been demonstrated to be prototypical for
dark soliton formation in 1D �16,17� and for vortex forma-
tion in 2D �18�. These nonlinear waves can be thought of as
a type of nonlinear Čerenkov radiation that is emitted, when
the motion of the impurity is supercritical with respect to the
local speed of sound of the BEC. Recently, a combined ex-
perimental and theoretical study of the Čerenkov emission of
phonons by a laser obstacle was reported �19�; in a different
study �20�, it has been shown that in the case of large ob-
stacles, the Čerenkov cone transforms into a spatial shock
wave consisting of a chain of dark solitons �20�. In fact, this
setting has been particularly relevant for the study of the
breakdown of superfluidity �and emergence of dissipation�
and the associated Landau criterion �21�. Indeed, earlier ex-

periments �22� have demonstrated the onset of dissipation,
when a blue-detuned laser beam moves through the BEC
with velocities above a threshold. We also note in passing
that the appearance of similar effects �e.g., the backward-
propagating Čerenkov radiation� in photonic crystals �23� is
yet another illustration of the interest in this research direc-
tion.

In the present work we study the dragging of a �-like
obstacle in a two-component superfluid flow. If the compo-
nents are assumed to be immiscible, then they will tend to
phase separate and the problem reverts to its single-
component version. For this reason, we consider the case of
two miscible components, which is particularly interesting
due to the existence of two distinct “speeds of sound.” In this
setting, we find two critical speeds 0�vc

l �vc
h �superscripts l

and h standing for lower and higher, respectively�. For v
�vc

l , we show that the impurity propagates without emitting
Čerenkov radiation in the form of nonlinear waves. For vc

l

�vc
h�v, both components are supercritical and the impurity

emits gray solitons �in 1D� propagating downstream in both
components. However, the most interesting regime is the in-
termediate one, where one of the components is supercritical,
yet the other is subcritical, leading to the spontaneous forma-
tion of dark-antidark solitary waves previously predicted �in
a stationary form� in Ref. �24�. We demonstrate that when
the strength of the impurity tends to zero, the critical speeds
tend to the corresponding speeds of sound, yet we show how
they deviate from these values for finite impurity strengths.
We also consider the 2D case, where we also obtain the
analog of the dark-antidark state in the form of a vortex-
lump wave.

The paper is structured as follows. We first present the
theoretical framework, and calculate the critical velocities.
We then numerically investigate the 1D �both for untrapped
and trapped BECs� and the 2D case. Finally, we summarize
our findings and present our conclusions.

We consider the following coupled NLS equations, de-
scribing a quasi-1D binary BEC �1�:
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i�t� j = �−
1

2
�x

2 + �
k=1

2

gjk��k�2 + Vext�� j , �1�

where � j �j=1,2� are the mean-field wave functions, and
Vext=V1+V2 is the external potential, assumed to be com-
posed by a repulsive potential of a blue-detuned laser beam,
V1, and a trapping harmonic potential, V2, i.e.,

V1 = Ae−�x − vt�2/2�2
, V2 = 1

2�2x2, �2�

where A, �, and v are, respectively, the strength, width, and
velocity of the laser obstacle, and � the harmonic trap
strength. The nonlinearity coefficients are chosen to be
g11:g12:g22=1.5:1 :1.03. Notice that two of them have the
ratios that are typical for 87Rb �4�, while the third is tuned to
a different value �so as to ensure miscibility since the stan-
dard value of g11=0.97 would lead to immiscibility�. The
tuning can be achieved by means of a Feshbach resonance
�25�. Moreover, throughout the paper we use the following
parameter values for our numerical computations: chemical
potentials �1=1.2, �2=1, obstacle width �=0.5, and har-
monic trap strength �=0.02. The results do not change
qualitatively for other parameter values.

The uniform solutions of Eqs. �1� satisfy

��1
�0��2 =

�1g22 − �2g12

�
, ��2

�0��2 =
�2g11 − �1g12

�
, �3�

where �=g11g22−g12
2 . Expressing Eq. �1� in the traveling-

wave frame �i.e., x→x−vt� and linearizing around these uni-
form states according to � j =� j

�0�+� j
�1� we obtain the equa-

tions for the small amplitudes � j
�1�,

1

4

d2

dx2� j
�1� = �cj

2 − v2�� j
�1� + gjk� j

�0��k
�0��k

�1�, �4�

with j ,k� 	1,2
, k� j, and cj
2=gjj�� j

�0��2. Writing this system

as one of four first-order equations �for 	 j
�1�= �̇ j

�1�

��d /dx�� j
�1� and � j

�1��, namely,

�
	̇1

�1�

�̇1
�1�

	̇2
�1�

�̇2
�1�
 =�

0 c1
2 − v2 0 b

1 0 0 0

0 b 0 c2
2 − v2

0 0 1 0
�

	1
�1�

�1
�1�

	2
�1�

�2
�1�
 , �5�

where b=g12�1
�0��2

�0�. Then, the 4
4 matrix has eigenvalues
�2= c̃2−v2±�c̃4−���1

�0��2
�0��2, with c̃2= �c1

2+c2
2� /2. For sta-

bility, we need the eigenvalues to be real, hence �2�0 im-
plies that v�vc

l �vc
h, where the critical velocities, corre-

sponding to the two distinct speeds of sound, are given by
vc

l,h= c̃2�c̃4−���1
�0��2

�0��2. Thus, for the parameters men-
tioned above, vc

l =0.34393 and vc
h=1.04796. We expect that

superfluidity will break down when the speed v of the defect
overcomes these speeds; in fact, as argued in Refs. �16,21�,
the actual critical point should be expected to be lower than
the above Landau prediction.

We now turn to the numerical investigation of the above
setting. In Fig. 1, we test the theoretical prediction for the
existence of two critical velocities for the dynamical evolu-
tion in the two components. The top panel of the figure
shows a relevant “bifurcation diagram,” where the depen-
dence of the critical velocities on the “strength” A of the
impurity is numerically evaluated. Note that as the strength
of the impurity tends to zero �A→0� one recovers the nu-
merical values for vc

l,h stated above. The critical velocities are
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FIG. 1. Top panel: Critical velocities for the
first �dashed line� and the second �solid line�
component as a function of the impurity strength
A. Middle panels: Space-time evolution of the
density for the two components in moving coor-
dinate frame with velocity v=0.2 �the speed of
the impurity�; clearly the impurity induces the ra-
diation of dark-antidark pairs. Bottom panels:
similar to the middle panels but with v=0.3,
where both dark-antidark dipoles and dark-dark
pairs are emitted. Impurity parameters: A=0.9
and �=0.5.
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computed by finding �i� the speed vc
l above which, appar-

ently, one component is supercritical emitting dark solitons,
while the other is subcritical emitting antidark solitons �i.e.,
bright solitons on a finite background� that “accompany” the
dark ones and �ii� the speed vc

h above which both compo-
nents nucleate dark solitons �see also bottom panels of the
figure for a space-time evolution of the density contour plot
for the two components for such a supercritical—in both
components—velocity v�. It is noteworthy that such struc-
tures had been predicted in a steady form in Ref. �24�, but, to
our knowledge, this is the first demonstration of their dy-
namical nucleation. A further observation is worth making
about the case of v�vc

h. Note that, especially for early times,
the impurity �stationed at x=0 in the computations of Fig. 1
performed in the co moving frame� initially emits structures
that appear more similar to dark-antidark dipoles, i.e., dark-
antidark pairs in one-component coupled with antidark-dark
pairs in the other component. This is again the first manifes-
tation of such structures �to the best of our knowledge�; how-
ever, we will make a connection below to their 2D analog
that has been previously proposed �26�.

The above phenomenology also persists in the presence of
a harmonic trap, which is a more realistic setting for mag-
netically confined BECs. This is clearly shown in Fig. 2,
where all parameters are the same as in the corresponding
plots of Fig. 1, but incorporating a harmonic trap of fre-
quency �=0.02.

We now turn to the 2D case where the second spatial
derivatives in Eq. �1� are substituted by the Laplacian and the
impurity potential is replaced by its 2D counterpart V1�x ,y�
= �A /4�exp�−�x−vt�2 /2�2��tanh�y+w /2�+1��tanh�−y+w /2�
+1�, modeling a light sheet of strength A, width �, and size w
�see elongated vertical bar in panels �a� and �c� of Fig. 3�. In
our 2D simulations we took A=0.9, �=0.5 �i.e., same param-
eters as for the 1D case�, and w=10,15,20. Given the simi-
larities of the trapped and untrapped case in the relevant
phenomenology, we only show the latter here. In Fig. 3 we
illustrate the two regimes leading to vortex nucleation �the
trivial regime for subcritical velocity in both components is
not shown here�: �A� v=0.235 is subcritical in the first com-
ponent, but supercritical in the second, resulting for the latter
in a vortex state which is coupled to a lump �a 2D structure

on a finite background� in the first component. Notice that
the presence of vortex states is clearly illustrated in all the
figures contained herein, by means of the contours of the
vorticity �=�
vs, where vs= ��*��−���*� / i���2 is the
velocity field. Such structures have been reported previously
for g11=g22 in Ref. �26�. �B� v=0.350 is supercritical for
both components. This results in the formation of a dipole
state which contains a vortex-lump pair, coupled to a lump-
vortex pair, in a form similar to the stationary states reported
in Ref. �13�.

The last case �supersonic in both components� is exam-
ined in further detail in Fig. 4 for different velocities and
widths of the quasi-1D obstacle. In the figure, the actual
spatio-temporal evolution of the vorticity is shown. This
clearly reveals the presence of a vortex dipole between the
two components; moreover, this robust type of state appears
to be clearly rotating, as time evolves. Furthermore, it can be
noted that the wider the obstacle, the more complex the en-
suing vortex patterns will be, with multiple vortex pairs be-
ing emitted.

We have considered the nucleation of coherent structures
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FIG. 2. Space-time contour plots of the com-
ponents’ density, when the obstacle’s velocity is
v=0.2 �top panels� and v=0.3 �bottom panels� in
the trapped case ��=0.02�. Impurity parameters:
A=0.9 and �=0.5.

(A) v = 0.235 (B) v = 0.350

FIG. 3. �Color online� Snapshots after vortex nucleation for dif-
ferent velocities of a running impurity of size w=10 �elongated
vertical bar in panels �a� and �c�. �A� v=0.235 is subsonic for com-
ponent �1 and supersonic for component �2. �B� v=0.350 is super-
sonic for both components. The top �bottom� panel corresponds to
component �1 ��2�. Left panels �a�,�c� show the square modulus of
the solution together with the moving impurity. The right panels
�b�,�d� show the vorticity � in the rectangular area depicted in the
left panel counterparts. Red and blue �top and bottom spots� corre-
sponds to regions with positive and negative vorticity.
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by a moving obstacle in two miscible BEC components. In
one spatial dimension, we identified three different regimes:
one without nucleation, one involving the nucleation of dark-
antidark solitons previously predicted in stationary form in

Ref. �24�, and one producing dark-dark soliton pairs, as well
as dark-antidark dipoles. The critical points between these
regimes were numerically obtained and, consistently with the
corresponding single-component theory, were shown to ap-
proach the Landau criterion for impurity strength tending to
zero; they were systematically lower than that as this
strength increased. It was shown that similar behavior also
occurs in the case of the harmonically trapped coupled
BECs. We also examined the same type of behavior in 2D
systems. We observed the existence of similar types of re-
gimes, as in the 1D case �subcritical in both, supercritical in
one, and supercritical in both�. The intermediate regime gave
rise to vortex-lump type structures �also discussed in Ref.
�26��, while the supercritical regime gave an example of
nucleation of vortex-lump dipoles �obtained in stationary
form in Ref. �13��, which were actually observed to be rotat-
ing as time evolved. This investigation indicates that there is
an interesting spectrum of dynamical possibilities available
in multicomponent condensates, which would certainly be
relevant to explore experimentally. The recent realization of
spinor condensates with more than two components may
provide a fertile ground for further theoretical investigations
in such higher-component settings.
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FIG. 4. �Color online� Vortex nucleation by a running impurity.
The panels depict 3D contour plots of the vorticity ��x ,y , t� for the
different velocities and impurity sizes. Left panel: w=15 and
v=0.35 and right panel: w=20 and v=0.325. Both cases correspond
to supersonic impurity velocities for both components. The red and
blue isosurfaces correspond to positively and negatively charged
vortices in the first component. We also superimpose the vorticity
isocontours of the second component where green and magenta
correspond to positive and negative vorticity. Note how rotating
vortex dipole pairs between the two components are formed �left-
most red and green and blue and magenta intertwined vorticity
lines�.
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