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Abstract

In this paper we propose a new image smoothing and edge detection technique that employs a com-
bination of nonlinear diffusion and bilateral filtering. The model is based upon two very well established
methodologies in the image processing community, which makes the method easy to understand and
implement. Our numerical experiments show that the proposed model is capable of achieving more ac-
curate reconstructions from noisy images, as compared to two other popular nonlinear diffusion models
in the literature. We also propose a new and simple diffusion stopping criterion, based on the moving
average of the second derivative of the correlation between the noisy image and the filtered image. This
indirect measure allows stopping the diffusion process very close to the maximum correlation between
the noise-free image and the reconstructed image, in the absence of the former. The stopping criterion
is sufficiently general to be applied with most nonlinear diffusion methods normally used for image noise
removal.

Keywords: Nonlinear diffusion, bilateral filter, scale-space, image denoising.

AMS subject classification: 35Q80, 68U10.

1 Introduction

Analysis of image features in early vision presents two almost mutually exclusive requirements. On the

one hand, it is desirable to smooth homogeneous regions of the image, and on the other hand, we wish to

preserve the location of the boundaries or edges accurately. In order to achieve both goals, the classical

multiscale analysis theory due to Marr and Hildreth [30], later formalized by Witkin [57], Koenderink [27]

and Canny [15], uses a low-pass filtering obtained by convolving the image with Gaussians of increasing

variance. Koenderink [27] soon realized that the convolution of the image with a Gaussian at each scale is

equivalent to the solution of the heat equation with the image as initial state. Thus, given an image u0 (x),

where x = (x1, x2) denotes space coordinates, the scale-space analysis associated with u0 consists in solving
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the system1

∂tu−∇2u = 0, u (x, 0) = u0 (x) . (1)

This system has a unique solution [49]

u (x, t) =





u0 (x) t = 0
(
G√2t ∗ u0

)
(x) t > 0 ,

(2)

provided that (i) the function satisfies |u (x, t)| ≤ M exp
(
a |x|2

)
, M > 0, (ii) it depends continuously

on the initial condition u0 with respect to ‖ · ‖L∞(R2), and (iii) it meets the maximum-minimum principle

inf
R2

u0 6 u (x, t) 6 sup
R2

u0 on R2× [0,∞). The point x is an edge for the scale t where |∇u (x, t)| is large and

∇2u (x, t) changes sign.

The simplicity and effectiveness of the Gaussian smoothing makes it an attractive tool for image noise

removal. However, it also presents at least a couple of serious drawbacks: (i) Gaussian smoothing does not

only smooth the noise but it also smoothes everything else along with it; and (ii) Gaussian smoothing tends

to dislocate edges when one moves from a finer to a coarser scale [57, 58]. Most of the shortcomings of linear

diffusion processes can be avoided through nonlinear diffusion models.

This paper is organized as follows: In section 2, we describe briefly the nonlinear diffusion models applied

in image processing for the reduction of noise and the detection of edges. This serves as background for

our proposed model. In section 3, we define our new model for image smoothing and edge detection and

conjecture the reasons for its practical success. In section 4, we present some computational examples of the

performance of the new model as compared to two other popular models in the literature. In section 5, we

propose a simple, yet efficient diffusion stopping criterion for achieving good results when nonlinear diffusion

processes are applied. We conclude the paper in section 6 with a discussion and outline of possible future

improvements and analysis of the model.

2 Nonlinear Diffusion Models

One of the first attempts to derive a model that incorporates (current) local information from an image

within a PDE framework was conducted by Perona and Malik [38]. They proposed a nonlinear diffusion

model (which they called ’anisotropic’) in order to avoid the blurring of edges and other localization problems

1Unless stated otherwise, ∇· and ∇2· involve derivatives with respect to the spatial variable x.
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presented by linear diffusion models. The model accomplishes this by applying a process that reduces the

diffusivity in places having higher likelihood of being edges. This likelihood is measured by a function of the

(current) local gradient ‖∇u‖. The model can be written as

∂tu−∇ ·
(
g

(
‖∇u‖2

)
∇u

)
= 0, ∂nu = 0, u (x, 0) = u0 (x) , (3)

where ∂nu = 0 denotes homogeneous Neumann boundary conditions. In this model the diffusivity has to be

such that g
(
‖∇u‖2

)
→ 0 when ‖∇u‖ → ∞ and g

(
‖∇u‖2

)
→ 1 when ‖∇u‖ → 0. One of the diffusivities

Perona and Malik proposed is

g
(
‖∇u‖2

)
=

1

1 + ‖∇u‖2
/

λ2
, λ > 0, (4)

where λ is a threshold (contrast) parameter that separates forward and backward diffusion [49]. The model

accomplishes the long sought effect of blurring small fluctuations (possible noise) while enhancing edges.

The results obtained by Perona and Malik are visually very impressive.

Notwithstanding the practical success of the Perona-Malik model, it presents some serious theoretical

problems: (i) None of the classical well-posedness frameworks is applicable to the Perona-Malik model, i.e.

we can not ensure well-posedness results [53, 34]; (ii) Uniqueness and stability with respect to the initial

image should not be expected, i.e. solvability is a difficult problem, in general [26, 25, 24, 39, 16]; (iii) The

regularizing effect of the discretization plays too much of an important role in the solution [23, 9]. The latter

is perhaps the key element in the success or failure of the model. Most practical applications work very well

provided that the numerical schemes stabilize the process through some implicit regularization.

This observation motivated much research towards the introduction of the regularization directly into the

PDE to avoid the dependence on the numerical schemes [16, 34]. A variety of spatial, spatio-temporal, and

temporal regularization procedures have been proposed over the years [8, 16, 51, 49, 55, 28]. The one that

has attracted much attention is the mathematically sound formulation due to Catté, Lions, Morel and Coll

[16]. They proposed replacing the diffusivity g
(
‖∇u‖2

)
of the Perona-Malik model by a slight variation

g
(
‖∇uσ‖2

)
with uσ = Gσ ∗ u, where Gσ is a smooth kernel (Gaussian of variance σ2). Their proposed

model is therefore

∂tu−∇ ·
(
g

(
‖∇uσ‖2

)
∇u

)
= 0, ∂nu = 0, u (x, 0) = u0 (x) . (5)
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We should note that this spatial regularization model belongs to a class of well-posed problems (existence

and uniqueness were proven in [16]), and that its successful implementation is contingent on the choosing of

an appropriate value for the additional regularization parameter σ. Whitaker and Pizer [55] and Li and Chen

[28] suggested making the parameters σ and λ time-dependent, and Benhamouda [9] performed a systematic

study of the influence of these parameters for the one-dimensional case.

Another interesting variation to the Perona-Malik model is the one proposed by Alvarez, Lions and Morel

[2]. They refined (5) further and proposed and studied a class of nonlinear parabolic differential equations

of the form

∂tu− g (|G ∗ ∇u|) |∇u|∇ ·
( ∇u

|∇u|
)

= 0, ∂nu = 0, u (x, 0) = u0 (x) . (6)

The degenerate diffusion term |∇u| ∇ · (∇u/|∇u|) diffuses u in the direction orthogonal to its gradient ∇u

and prevents diffusion in the direction of ∇u. The term g (|G ∗ ∇u|) is used for edge enhancement and it

controls the speed of the diffusion.

3 Nonlinear Diffusion and Bilateral Filtering

In the Catté-Lions-Morel-Coll model the term inside the divergence, g
(
‖∇uσ‖2

)
, is a function of the gradient

of the solution at scale σ of the heat equation with u (x, 0) as initial state. Consequently, it is equivalent to

using an estimate of the gradient of u at point x, obtained by the classical theory [2]. In practice, after the

Gaussian (domain) filtering is performed, the term g
(
‖∇uσ‖2

)
allows detection of the locations of the main

edges and prevents excessive diffusion at these locations. By the same token, the small fluctuations (noise)

will be smooth enough (avoiding them being mistaken for edges) and can be diffused away.

In this paper we propose using a refined estimate of the gradient of u at point x, obtained by applying a

bilateral filter in place of the Gaussian kernel. Bilateral filtering is a technique for smoothing images while

preserving edges. The first application of this method is attributed to Aurich and Weule [3], and it was

subsequently rediscovered by Smith and Brady [43] and Tomasi and Manduchi [46]. Since its introduction,

the bilateral filter has been successfully employed in various contexts [10, 1, 29, 35, 19, 40, 20, 22, 5, 42, 56].

Its characteristics and behavior have been the subjects of extensive theoretical studies [44, 47, 48, 21, 6, 7,

19, 13, 33, 36] which have made bilateral filtering a fairly well understood process.

The basic idea underlying bilateral filtering is to combine domain and range filtering, thereby enforcing
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both geometric and photometric locality. The model can be expressed as

BF (u (x)) =
1

W (x)

∫

Ω

Gσs
(ξ,x)Gσr

(u (ξ) , u (x)) ∗ u (ξ) dξ, (7)

with the normalization constant

W (x) =
∫

Ω

Gσs (ξ,x)Gσr (u (ξ) , u (x)) dξ. (8)

Typically, Gσs
will be a spatial Gaussian that decreases the influence of distant pixels, while Gσr

will be

a range Gaussian that decreases the influence of pixels ξ with intensity values that are very different from

those of u (x), e.g.

Gσs = exp

(
−|ξ − x|2

2σ2
s

)
, Gσr = exp

(
−|u (ξ)− u (x)|2

2σ2
r

)
. (9)

Parameters σs and σr dictate the amount of filtering applied in the domain and the range of the image,

respectively. This filtering technique, as presented thus far, has the possible objection that it might consist

of an expensive proposition. Fortunately, several authors have addressed this limitation and devised very

efficient implementations of the method [41, 54, 36, 17]. In our application, we use the fast approximation

due to Paris and Durand [36] which employs downsampling in the domain and range that achieves important

acceleration of the bilateral filtering.

The proposed model is therefore

∂tu−∇ ·
(
g

(
‖∇uBF ‖2

)
∇u

)
= 0, ∂nu = 0, u (x, 0) = u0 (x) . (10)

Where uBF = BF (u (x)) is the domain- and range-filtered image (7), and g (s) is a smooth nonincreasing

function with g (0) = 1, g (s) > 0, and g (s) tending to zero at infinity. We should recall here that the main

purpose of the function g (s) is to provide ‘intelligent’ smoothing. It should not only inhibit diffusion at edges

and allow it far from them, but it should also precisely locate the position of the main edges. By design,

this is exactly what bilateral filtering accomplishes. It provides image smoothing with strict preservation of

the edges without artificially enhancing them.

The practical success of the proposed model has one its roots in the connection that exists between

bilateral filtering and the Perona-Malik-based methods. Buades, Coll and Morel [14] have established the
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link existing between bilateral filtering and well-known PDE models such as the heat equation and the Perona-

Malik equation. They have proven that for small neighborhoods, bilateral filtering using a box function as

spatial weight, asymptotically behaves as the Perona-Malik model. In a discrete setting, Durand and Dorsey

[19] have shown that the bilateral filter, if constrained to the four neighbors of each pixel, corresponds to

a discrete version of the Perona-Malik filter. Subsequently, Barash [6] used adaptive smoothing as a link

between anisotropic diffusion and bilateral filtering, each of which can be viewed as a generalization of the

former; while Elad [21] and Barash and Comaniciu [7] have shown that bilateral filtering is equivalent to a

sum of several Perona-Malik filters at different scales.

4 Numerical Experiments

In order to compare the performance of the proposed model we implemented the three models below using

finite difference, and a simple performance measure based on the correlation between the noise-free image

and the three filtered images. Model 1 is the classic Perona-Malik model (3)

∂tu−∇ ·
(
g

(
‖∇u‖2

)
∇u

)
= 0, ∂nu = 0, u (x, 0) = u0 (x) ,

g
(
‖∇u‖2

)
=

1

1 + ‖∇u‖2
/

λ2
, λ = 10−2.

(11)

Parameter λ = 10−2 was estimated as an average of the ‘robust scale’ proposed in [11, 12], using the initial

state of the images employed in our tests. Model 2 is the Perona-Malik variant by Catté, Lions, Morel and

Coll (5)

∂tu−∇ ·
(
g

(
‖∇uσ‖2

)
∇u

)
= 0, ∂nu = 0, u (x, 0) = u0 (x) ,

g
(
‖∇u‖2

)
=

1

1 + ‖∇uσ‖2
/

λ2
, λ = 10−2,

uσ = Gσ ∗ u, σ = 1.

(12)

It has been shown [31] that σ = 1 is sufficient for a large interval of noise variances provided that the noise

in neighboring pixels is uncorrelated and that the grid size is one. Model 3 is the proposed model (10)
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∂tu−∇ ·
(
g

(
‖∇uBF ‖2

)
∇u

)
= 0, ∂nu = 0, u (x, 0) = u0 (x) ,

g
(
‖∇u‖2

)
=

1

1 + ‖∇uBF ‖2
/

λ2
, λ = 10−2,

uBF = BF (u) , σs = 3, σr = 10−2.

(13)

The parameters σs and σr are chosen according to the desired amount of low-pass filtering and desired

amount of combination of pixel values, respectively [46]. We loosely followed the recommendations given in

[29] for choosing σs, and the ones in [37] for choosing σr. They give us a compact kernel that allows a very

fast execution of the bilateral filtering.

The experiment consisted in running the three models using an explicit Euler method with a time step2

of δt = 10−2, and trying to restore the noise-free image, f (x), that has been perturbed by additive Gaussian

white noise. The three models were run for 50 iterations and the correlation coefficient between the noise-

free image and each of the filtered images was measured at each iteration. For every case, we observe that

the best image reconstructed by the proposed model is closer to the noise-free image than the best images

reconstructed by the other two models tested (see Fig. 1, 2 and 3). We can also observe that the proposed

model performs ‘in between’ the other two models in terms of speed of reconstruction. The Catté-Lions-

Morel-Coll model accomplishes the fastest reconstruction, i.e. it attains its best reconstructed image in fewer

iterations than the other two methods. The classic Perona-Malik model achieves a better reconstruction if

one were to iterate beyond the optimal stopping times of the three models, i.e. 50 iterations in this case.

Lastly, in order for any of the three models to accomplish its best possible reconstruction, one has to be

able to stop the diffusion process at the peak of its performance, in the absence of the noise-free image. In

general, this remains an open problem. In the next section we propose a procedure that works very well all

the models considered in this paper.

5 Diffusion Stopping Criterion

Determining when the diffusion process should be stopped is crucial for obtaining a good image reconstruc-

tion. Several authors have addressed this issue in the past in an attempt to devise an optimal stopping

criterion. Sporring and Weickert [45] focused on the maximal entropy change by scale to estimate the size

of image structures. They argued that the minimal change by scale indicates especially stable scales with
2Weickert [52] has shown that, for explicit discretization schemes, the stability condition (assuming δx = 1 and ∀s : g (s) 6 1)

is δt < 1/(2d), with d being the number of dimensions of the data, which for a 2D image d = 2.
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Figure 1: Correlation coefficient between the noise-free image of Lena and the filtered image of Lena at each
iteration, along with the noise-free image of Lena (left) and the noisy image of Lena (right) corrupted by
additive Gaussian white noise, SNR = 17.4 dB. The maximum value of the correlation coefficient for each
model is as follows: Perona-Malik, 0.9553; Catté-Lions-Morel-Coll, 0.9544; Bazan-Blomgren, 0.9571.
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Figure 2: Correlation coefficient between the noise-free image of the Boats and the filtered image of the
Boats at each iteration, along with the noise-free image of the Boats (left) and the noisy image of the
Boats (right) corrupted by additive Gaussian white noise, SNR = 18.9 dB. The maximum value of the
correlation coefficient for each model is as follows: Perona-Malik, 0.9418; Catté-Lions-Morel-Coll, 0.9416;
Bazan-Blomgren, 0.9449
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Figure 3: Correlation coefficient between the noise-free image of the Clown and the filtered image of the
Clown at each iteration, along with the noise-free image of the Clown (left) and the noisy image of the
Clown (right) corrupted by additive Gaussian white noise, SNR = 21.2 dB. The maximum value of the
correlation coefficient for each model is as follows: Perona-Malik, 0.9749; Catté-Lions-Morel-Coll, 0.9757;
Bazan-Blomgren, 0.9763.

respect to evolution time, and conjectured that these scales could be good candidates for stopping times

in nonlinear diffusion processes. Weickert [50] also pointed out that the monotonically decreasing ‘relative

variance’, 0 6 var (u)/var (u0) 6 1, could be used to measure the distance of u from the initial state u0 and,

by prescribing an appropriate value for the relative variance, it can constitute a good criterion for stopping

the nonlinear diffusion.

Dolcetta and Ferretti [18] formulated a stopping criterion within the framework of optimal control theory.

They considered the minimization of the performance index

E (t) =
∫ t

0

(Ec + Eα) dt, (14)

where Ec is the computing cost and Eα is the stopping cost, which encourages diffusion for small values of

the scale factor. The authors argued that a careful balancing of the two terms is necessary for achieving

good results, and suggested to take Ec = c and Eα = −
(∫

Ω
|u− u0|2 dx

)α
2 , for some positive constants c

and α. Mrázek [32] developed a new interesting time-selection strategy based on the correlation between

the signal and the noise. He argued that, if the noise-free image and the noise were uncorrelated, it is

appropriate to require that their artificial substitutes u and (u0 − u) share the same property, and select the

stopping time such that t = arg min
t

corr (u0 − u, u). The author also pointed out that the assumption about
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the noise-free image and the noise being uncorrelated holds initially, but it does not necessarily hold for the

filtered image, u, and the filtering noise (u0 − u). More recently, Awate and Whitaker [4] found empirically

that entropy reduction by gradient descent reduces the randomness introduced by the noise faster than it

reduces the inherent randomness in the signal. They suggested that an efficient stopping time would be

when the relative rate of change of entropy, within two consecutive iterations, falls below some threshold to

be chosen.

We propose a new (very simple) diffusion-stopping criterion inspired by observation of the behavior of

the correlation between the noise-free image and the filtered image, corr (f, u), and the correlation between

the noisy image and the filtered image, corr (u0, u). Although the former measure is only available in

experimental settings it helps validate the usefulness of the latter. The nonlinear diffusion process starts

from the observed (noisy) image, u0 (x), and creates a set of filtered images, u (x, t), by gradually removing

noise and details from scale to scale until, as t → ∞, the image converges to a constant value. During

this process the correlation between the noise-free image and the filtered image increases as the filtered

image moves closer to the noise-free image. This behavior continues until it reaches a peak from where the

measure decreases as the filtered image moves slowly towards a constant value. During the same process the

correlation between the noisy image and the filtered image decreases gradually from a value of 1.0 (perfect

correlation), to a constant value, ≈ corr (f, u0), as the filtered image becomes smoother (see Fig. 4). By

comparing both measures we observe that as corr (f, u) reaches its maximum (best possible reconstructed

image), the curvature of corr (u0, u) changes sign. This suggests that a good stopping point of the diffusion

process is where the second derivative of corr (u0, u) reaches a maximum. In order to avoid ‘false positives’,

we found it is best to ‘smooth’ the measure of the second derivative, say, by a moving average of the measure3.

The performance of the proposed stopping criterion can be observed below along with the reconstructed

images of ‘Lena’ (Fig. 5 and 6), the ‘Boats’ (Fig. 7 and 8), and the ‘Clown’ (Fig. 9 and 10). We observe

that the stopping criterion is almost optimal, allowing the diffusion process to stop near the point when the

three filtering methods reach their best possible image reconstructions. In our experiments, we also observed

that the stopping criterion overestimate or underestimate the stopping time under two circumstances: when

the noisy image has excess details, e.g. the ‘Baboon’ (see Fig. 11-left), the stopping criterion tends to stop

a little too late, causing some lost of details (this phenomenon has been also observed in [31].) When the

noisy image is cartoon-like image, e.g. the ‘Cameraman’ (see Fig. 11-right), the stopping criterion tends to

stop a little too soon, causing a premature output. This is due to the design of the filters which prevent
3In our experiments we used an exponential moving average of width 4.
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diffusion across edges.
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Figure 4: The correlation coefficient between the noise-free image and the filtered image increases as the
filtered image moves closer to the noise-free image. When the measure reaches a peak it decreases as the
filtered image moves slowly towards a constant value. The correlation coefficient between the noisy image
and the filtered image decreases gradually from a value of 1.0 (perfect correlation), to a constant value as
the filtered image becomes smoother.

6 Discussion

In this paper we propose a new image smoothing and edge detection technique by combining two very well

established methods based on nonlinear diffusion and bilateral filtering. The new model is able to obtained

the best possible reconstruction of a noisy image as measured by the correlation coefficient between the noise-

free image and the reconstructed image. In a real-world situation, the true (unperturbed) image would not

be known, hence the correlation coefficient between this and the reconstructed image could not be measured.

Therefore, we also propose a new and simple diffusion stopping criterion, based on the moving average of the

second derivative of the correlation between the noisy image and the filtered image. This measure allows one

to stop the diffusion process close to the point of maximum similarity between the noise-free image and the

filtered image. Furthermore, no knowledge (e.g. noise variance, noise and signal correlation or lack-off, etc.)

is required to implement the stopping criterion, which makes the method applicable under a wide range of

noise conditions. Some further research has to also be done to make the stopping criterion suitable for the

two exception cases mentioned above. Also, more rigorous analytical analysis should be made for a better

understanding of the successful practical performance of the proposed model.
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Stopping Criterion

Figure 5: Stopping criterion performance along with the reconstructed image of Lena using the proposed
model. The measure corr (f, u) suggests stopping the diffusion process after 21 iterations, while the proposed
stopping criterion suggests to stop the diffusion process after 22 iterations.
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Figure 6: (left) Stopping criterion performance along with the reconstructed image of Lena using the Perona-
Malik model. The measure corr (f, u) suggests stopping the diffusion process after 30 iterations, while the
proposed stopping criterion suggests to stop the diffusion process after 28 iterations. (right) Stopping
criterion performance along with the reconstructed image of Lena using the Catté-Lions-Morel-Coll model.
The measure corr (f, u) suggests stopping the diffusion process after 18 iterations, while the proposed stopping
criterion suggests to stop the diffusion process after 20 iterations.
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Figure 7: Stopping criterion performance along with the reconstructed image of the boats using the proposed
model. The measure corr (f, u) suggests stopping the diffusion process after 25 iterations, while the proposed
stopping criterion suggests to stop the diffusion process after 26 iterations.
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Figure 8: (left) Stopping criterion performance along with the reconstructed image of the boats using the
Perona-Malik model. The measure corr (f, u) suggests stopping the diffusion process after 36 iterations, while
the proposed stopping criterion suggests to stop the diffusion process after 34 iterations. (right) Stopping
criterion performance along with the reconstructed image of the boats using the Catté-Lions-Morel-Coll
model. The measure corr (f, u) suggests stopping the diffusion process after 19 iterations, while the proposed
stopping criterion suggests to stop the diffusion process after 22 iterations.
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Figure 9: Stopping criterion performance along with the reconstructed image of the Clown using the proposed
model. The measure corr (f, u) suggests stopping the diffusion process after 20 iterations, while the proposed
stopping criterion suggests to stop the diffusion process after 22 iterations.
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Figure 10: (left) Stopping criterion performance along with the reconstructed image of the Clown using
the Perona-Malik model. The measure corr (f, u) suggests stopping the diffusion process after 27 iterations,
while the proposed stopping criterion suggests to stop the diffusion process after 31 iterations. (right)
Stopping criterion performance along with the reconstructed image of the Clown using the Catté-Lions-
Morel-Coll model. The measure corr (f, u) suggests stopping the diffusion process after 16 iterations, while
the proposed stopping criterion suggests to stop the diffusion process after 19 iterations.
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Figure 11: (left) Stopping criterion performance along with the reconstructed image of the Baboon using the
proposed model. The measure corr (f, u) suggests stopping the diffusion process after 19 iterations, while
the proposed stopping criterion suggests to stop the diffusion process after 29 iterations. (right) Stopping
criterion performance along with the reconstructed image of the Cameraman using the proposed model. The
measure corr (f, u) suggests stopping the diffusion process after 44 iterations, while the proposed stopping
criterion suggests to stop the diffusion process after 34 iterations.
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[23] J. Fröhlich and J. Weickert. Image processing using a wavelet algorithm for nonlinear diffusion. Report
104, Laboratory of Technomathematics, University of Kaiserslautern, Kaiserslautern, 1994.
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