

Computational Science &
Engineering Faculty and Students

Research Articles

Database Powered by the
Computational Science Research Center

Computing Group & Visualization Lab

COMPUTATIONAL SCIENCE
& ENGINEERING

Computational Science Research Center
College of Sciences

5500 Campanile Drive
San Diego, CA 92182-1245

(619) 594-3430

© 2007

Ab initio nuclear shell model calculations with a
three-nucleon force for 15O, 16O, 17O, and 9Be

Hai Ah Nam

November 7, 2007

Publication Number: CSRCR2007-18

Ab initio nuclear shell model calculations
with a three-nucleon force for 15O, 16O, 17O, and 9Be

Hai Ah Nam

November 7, 2007

Faculty Advisor: Calvin W. Johnson, Department of Physics, San Diego State University
Technical Contact: W. Erich Ormand, Nuclear Theory and Modeling, N-Division,

Lawrence Livermore National Laboratory

Dissertation Proposal
San Diego State University

Claremont Graduate University

This work performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

1

1 EXECUTIVE SUMMARY

A reliable understanding of nuclear reactions is needed for fields as diverse as astrophysics
and stewardship of the nation’s weapons stockpile. When possible, scientists experimentally
measure the reaction rates of interest. There are approximately 3,000 known nuclei, many
of which have been produced and studied experimentally in labs. Yet, there still remains
an estimated 6,000 that have yet to be created. Though new accelerator facilities allow us
to study a wide range of nuclei with greater sensitivity, there are still a large number of
reactions that cannot be reproduced in a laboratory.

Although we largely understand the behaviors of nuclei based on experiment and phe-
nomenological models, a consistent and comprehensive microscopic formulation of nuclear
structure, grounded in the fundamental interactions between constituent nucleons, has yet
to be achieved. This is desired, to replace existing phenomenological models of nuclear struc-
ture and to be used predictively to determine nuclear properties of interest that cannot be
measured experimentally, specifically transition properties needed for Reaction Theory.

Theoretical models provide the ability to study nuclei and their properties beyond the
scope of what is experimentally feasible. The no-core shell model (NCSM) is one of the most
successful methods of describing light nuclei (A ≤ 16). Light nuclei studies are essential for
understanding important thermonuclear and astrophysical reactions.

Due to the complex interactions within nuclei, implementing these models require the
use of high-performance computing resources. Existing shell model codes are limited by run-
time performance and memory constraints for large-scale calculations of interests. Codes
need to be optimized, both serial and parallel portions, and unique algorithms implemented
to overcome these limitations.

REDSTICK is a general utility interacting nuclear shell model program that performs
NCSM calculations. Using REDSTICK and high-performance computing resources, we can
perform first principles calculations of nuclear structure and reactions to address those critical
gaps in our experimental knowledge. Typical shell model codes are created to handle one-
and two-body interactions. Previous studies have shown that shell model calculations with
only two-body forces are insufficient to capture the necessary interactions, and have been
inconsistent with experimental results.

REDSTICK is one of two existing shell model codes that is capable of including three-
body interactions. Although, in principle, REDSTICK can do all three-body calculations,
due to the limitations of memory and run-time, significant improvements need to be made
to the algorithms and parallelization of the code in order operate within these constraints.

This research will (1) focus on the algorithm and parallelization development of RED-
STICK in order to (2) use first principles descriptions of nuclear structure and reactions,
including three-nucleon forces for large-scale shell model calculations of light nuclei, specifi-
cally 15O, 16O, 17O, and 9Be, made possible, through our computational improvements. This
research contributes to the broad effort to study nuclear structure and reactions. Success
will substantially enhance the capabilities of the Nuclear Theory and Modeling Group at
LLNL and DOE, through which funding has been provided for this research, and the overall
national effort.

2

2 TECHNICAL DESCRIPTION

2.1 Scientific Motivation

A consistent microscopic formulation of the nuclear many-body problem is necessary to probe
nuclear properties that cannot be measured experimentally. A complete nuclear theory is
needed to describe element formation, the properties of stars and for use in present and
future energy and defense applications.

Nuclear structure calculations are an important input to reactions. Light nuclei studies
are essential for calculating important thermonuclear reaction rates such as 3He(α, γ)7Be and
12C(α, γ)16O, and in astrophysical reactions to improve the standard solar model, necessary
for an improved understanding of neutrino oscillations. Light nuclei also provide a tractable
testing ground for theoretical models, which become unwieldy as the number of particles in
the nucleus increases.

Nuclear modeling has two challenges: (1) calculating the best effective interaction and
single particle energies and (2) the computational difficulties of computing the energy and
wavefunctions for very large scale calculations. This research will focus on the second chal-
lenge. The first shell model calculations began in the 1960s in Oak Ridge and gathered
momentum in the 1980s with the development of the Oxford-Buenos Aires Shell Model
(OXBASH) code for sd -shell nuclei. Since then, advances in computational resources and
nuclear theory allow us to study nuclei with an ab initio approach using the NCSM frame-
work.

Previous shell model calculations of light nuclei have been limited to two-body interac-
tions due to the computational difficulties of higher body calculations. Results from two-
body calculations, though much improved due to higher precision interactions, still remain
inconsistent with experiment. In order to accurately characterize nuclei, a 3-body force is
essential in the calculations. Recent advances in theory and computational power allows for
the 3-body interactions in the NCSM. There have been systematic studies of the effects of
three-body interactions on p-shell nuclei up to 13C in the 4~Ω and 6~Ω model spaces with
favorable results.

I propose to continue the systematic study of light nuclei in the p-shell and low sd -shell
through investigations of 15O, 16O, 17O, and 9Be. These studies have not been possible due to
the computational limits imposed on nuclear shell model codes. Studies will include nuclear
structure calculations with 3-body forces and the effects on spin-observables.

2.2 Background

NUCLEAR SHELL MODEL. The ab initio no-core shell model (NCSM) [1] is one of
the most successful methods used to solve the nuclear structure problem for light nuclei
(A ≤ 16). It treats the atomic nucleus as a system of A particles interacting by realistic
internucleon forces. In the past, studies were limited to only two-nucleon interactions. How-
ever, recent theoretical advancements in deriving a three-body effective interaction [2], [3],
[4] and the ability to solve a three-nucleon system using the NCSM approach [5] allows us

3

to use the three-nucleon interaction (TNI) in the NCSM Hamiltonian for p-shell nuclei (see
Figure 1).

Figure 1: Schematic representation of the shell structure in nuclei up to 5 harmonic
oscillator levels.

The NCSM assumes that all particles are active, leaving no inert core. In order to make
the problem computationally tractable, a truncation is made to the maximum number of al-
lowed harmonic oscillator quanta, designated by N in Figure 1, shared by all nucleons above
the lowest configuration in the model space, (often called Nmax or N~Ω in literature 1), that
the particles can occupy. Typically for more accurate calculations, higher Nmax is desired,
leading to a larger model space, which results in a larger basis dimension. Thus, to per-
form NCSM calculations, a compromise must be made between accuracy and computational
feasibility.

Calculations involve solving the Schrödinger wave equation with a basic eigenvalue prob-
lem:

Hψi = Eiψi. (1)

In second quantization formalism, the nuclear 2- and 3-body Hamiltonian look like:

Ĥ2Body =
∑

i

εia
+
i ai +

1

4

∑

ijkl

Vijkla
+
i a+

j alak, (2)

Ĥ3Body =
∑

i

εia
+
i ai +

1

36

∑

ijklmn

Vijklmna+
i a+

j a+
k anamal, (3)

where a+
i is a creation operator that creates a particle in the ith location and ai is an

annihilation operator that destroys a particle in the j th location. εi is the single-particle

1The N~Ω designation is also used for a tunable parameter in interaction calculations, which can be
confusing. In this paper it will be used only in defining the model space.

4

energy and Vijkl(mn) are the two- or three-body interaction terms. It assumes a single particle
potential and expands the full many-body solution with a convenient choice of orthogonal
basis

ψi =
∑

n

Cinφn, (4)

φ =

∣∣∣∣∣∣∣∣∣

φi(r1) φi(r2) · · · φi(rA)
φj(r1) φj(r2) φj(rA)

...
. . .

...
φl(r1) φl(r2) · · · φl(rA)

∣∣∣∣∣∣∣∣∣
(5)

= a+
i a+

j . . . a+
l |0〉. (6)

The complete set of basis states, called Slater Determinants (SD), are constructed by dis-
tributing the A particles in all possible ways in the single-particle states. This is an optimal
representation for use computationally, as each SD can be written in 1’s and 0’s

|SD〉 = (001110010...), (7)

where each 1 corresponds to a particle occupying the single particle state and 0’s correspond
to an unoccupied state. The SDs are used to construct the many-body Hamiltonian matrix
elements

Hij = 〈φj|Ĥ|φi〉, (8)

that comprise the matrix

H11 H12 · · · H1N

H21 H22
...

...
. . .

...
HN1 · · · · · · HNN

 . (9)

Diagonalization of the matrix using the Lanczos algorithm gives us the low-lying energy
spectrum (eigenvalues). We also get a good description of the nuclear wavefunction (eigen-
vectors), which can be tested by computing observables and transition strengths.

The Lanczos algorithm [6]

Ĥv1 = α1v1 + β1v2

Ĥv2 = β1v1 + α2v2 + β2v3

Ĥv2 = β2v2 + α3v3 + β3v4

Ĥv2 = β3v3 + α4v4 + β4v5

(10)

is an iterative eigenvalue solving method derived from the Arnoldi method, specifically for
real symmetric matrices. It reduces the full matrix to tridiagonal form, making it easier to
solve for the eigenvalues. This method is ideal for solving a large sparse matrix where only
the extremum (smallest) eigenvalues are of interest. Current shell model codes require 100-
200 iterations to achieve convergence for the lowest 10 eigenvalues. The primary operations
include matrix-vector multiplications and vector dot products to solve for the α’s and β’s.

5

COMPUTATIONAL CHALLENGES. Despite the efficiency of the Lanczos method
and the sparsity of the matrices in the shell model, performing the Lanczos operations puts
a strain on the memory and run-time resources of the high-performance computing (HPC)
environment. The possible investigations by shell model codes are limited by the dimensions
of the Hamiltonian matrix. The dimensions grow dramatically with number of particles and
valence space (model space), approximated by Eq. [11],

Dim ≈
(

Np
sps

np

)(
Nn

sps

nn

)
−→ e.g.60Zn, in the fp-shell =

(
20
10

)(
20
10

)
= 3.4× 1010,

(11)

where Nx
sps is the number of single particle states in valence space for species x (proton or

neutron) and nx is the number of active particles for species x. Since we are only dealing
with two- or three-body calculations, the matrices are sparse, as seen in Table 1. Matrices
become more sparse with increase in basis dimension.

Nuclei (π,ν) Model Space proton neutron Dimension Sparsity Matrix Elements
20Ne sd 2 2 640 13.0% 532
24Mg sd 4 4 28,503 0.74% 6,011,915
28Si sd 6 6 93,710 0.34% 29,857,317
46V pf 3 3 121,440 0.36% 53,091,624
48Cr pf 4 4 1,963,461 0.04% 1,542,071,639

Table 1: Sparsity and approximate number of matrix elements using a two-body
interaction for a variety of sd - and pf -shell nuclei.

Table 1 also shows the approximate number of matrix elements. Despite the increasing
sparsity, there is still a considerable number of matrix elements. These values are typically
calculated as REAL(4), which means that it requires 4 bytes for each element. For 48Cr,
the over 1.5 billion matrix elements translates to approximately 6GB of memory. Although
this is not unreasonable for a HPC application, for calculations of higher dimensions, the
required memory goes into the terabytes (1012 bytes).

High Performance Computing Environment The vision evoked by the words “su-
percomputer” involve unlimited memory and processing power. But, this is hardly the case.
The high-performance computing environment is heavily controlled by the cost of production
and daily power consumption. A typical system consists of hundreds to thousands of nodes
on which multiple CPUs share memory as seen in Figure 2. Thunder, the system used to

6

perform my calculations, ranked 34 in the Top 500 list of supercomputers in 2007 2, consists
of 1024 nodes with 4 1.4 GHz CPUs per node for a total of 4096 CPUs of processing power.
Each node shares 8 GB shared memory for a total of 8192 GB of RAM. The allowed run-time

Figure 2: Shared and distributed memory architecture employed in most high-
performance computing environments

is also a limiting factor in the HPC environment. The maximum time to run an application
is 12 hours. There is the possibility of dedicated access time over the weekends, giving one
roughly 48 hours. Additional storage can also be accessed on the parallel file systems using
I/O statements. Thunder has 338 TB of memory available, but this is not allocated to one
user. Usually, each user only receives a small portion of this memory.

Memory and Run-time Solutions Parallelizing a code and distributing the work
amongst a large number of CPUs should reduce the overall run-time. Efficient work dis-
tribution is necessary for optimal scaling, but it is not a trivial task. Programs are also
constrained by the portion of work done in serial, therefore optimized programming and
algorithms are necessary, especially when working with a large-scale production code.

The pressing issue for shell model calculations are the memory constraints. To address
the memory issue created by the large number of matrix elements, several approaches have
been implemented in different shell model codes:

• Store all matrix elements on disk. Since many hundreds of terabytes are now typical
in disk storage, this method is attractive. But, a dedicated disk space is not generally
available on most HPC environments and would require a propriety system. In order
to access the stored values, a very high-speed interconnect is necessary for fast I/O.
Disk access is ∼ 1000 times slower than RAM access, resulting in higher run-times.
Currently this method is used in OXBASH, Glasgow-Los Alamos, and CMICHSM.

• Store all matrix elements in RAM. This method utilizes the shared memory available
on each node and is feasible in standard HPC environments. It is limited by the number
of nodes one has available for the calculation. For example, 3,000 processors with 2GB
of memory provides 6,000 GB RAM. As calculations become larger, the memory needs
rapidly exceed the available RAM of most HPC systems. The MFD code implements
this method.

2http://www.top500.org

7

• On-the-fly recomputing of the many-body matrix elements. This method only requires
storage of the arrays that keep track of the non-zero matrix elements. On each iteration,
the many-body matrix elements are recomputed from the two- (and three-) body matrix
elements. It can put a strain on run-time due to the extra work to recompute on
each iteration. The on-the-fly approach is efficient if you only compute the non-zero
matrix elements. Shell model codes using this method are ANTOINE and REDSTICK
(REDSTICK employs a mixture of the on-the-fly approach and storage on RAM).

3 BODY FORCES. It has been shown that the inclusion of a three-body interaction
significantly improves the characterization of light nuclei [7]. Systematic studies of p-shell
nuclei show that the structural impact of adding a realistic three-nucleon interaction to calcu-
lations increases the spin-orbit splitting. This results in increasing total ground state binding
energy to be more consistent with experiment and improving low-lying excitation spectra
(level ordering). Figure 3 (a) shows a significant improvement in the ground state energy
of 6Li when using the three-body interaction (AV8’ + TM’) over the two-body interaction
(AV8’) in a 6~Ω model space. Figure 3 (b) shows how the correct level ordering is achieved

Figure 3: Effects of 3 Body Forces (a) on ground state binding energy, (b) level ordering of
spectra, and (c) spin-observables (Gamow-Teller transition strengths) from Ref [7]

for the ground state and first excited state of 10B by adding the three-nucleon interaction
to the calculations in a 4~Ω space. The ordering is inverted for the two-body interaction.
The addition of the TNI also improves calculations of spin-observables (e.g. magnetic mo-
ment and Gamow-Teller transition strengths) to better match experimental values. Figure
3 (c) shows closer agreement to experimental data of Gamow-Teller transition strengths for

8

11B →11 C when using the three-nucleon interaction. Other results for p-shell nuclei show
similar improvements using a three-nucleon interaction [7].

COMPUTATIONAL CHALLENGES OF 3 BODY FORCES. Most shell model
codes perform 2-body calculations. In order to handle 3-body calculations, considerable
restructuring of the code is necessary, although the algorithms can remain much the same.
Assuming one has a 3-body nuclear shell model code, it still needs to be optimized and
efficiently parallelized in order to handle the computational load.

The overall basis dimension for the shell model calculation does not change by going from
a 2-body to a 3-body interaction. But, the calculations are more computationally intensive
because the Hamiltonian matrix is far less sparse. When doing a two body calculation, the
non-zero matrix elements are the result of proton-proton (p-p), neutron-neutron (n-n), and
proton-neutron (p-n) interactions. For the three-body calculations, we must now consider
p-p-p, n-n-n, p-p-n, and n-n-p interactions. Simple combinatorics show how choosing two
items at a time is much less than choosing three items at a time:

(
10
2

)
= 45 <

(
10
3

)
= 120. (12)

The Hamiltonian matrix has far more elements, increasing the memory requirements and
run-time for the calculations. For example, 10B in a 4~Ω model space has basis dimensions
of 581,740 states. The number of matrix elements and run-time to converge the lowest ten
eigenvalues for:

• 2 Body are 145× 106 non-zero elements with ∼ 1− 2 CPU-hr

• 3 Body are 2.2× 109 non-zero elements with ∼ 200 CPU-hr

Given the substantial increase in non-zero matrix elements, it is imperative to address the
algorithms and parallelization of the shell model code. Only with optimization in both areas
can we achieve calculations for higher p-shell nuclei and low sd -shell nuclei.

2.3 RESEARCH
15O, 16O, 17O, 9Be. Continuing the systematic investigation of light nuclei, I propose to
study the effects of three-nucleon interactions on higher p-shell nuclei (9Be, 15O, 16O), and
into the low sd -shell (17O). Calculations on these nuclei with a three-nucleon interaction have
not been available due to the computational inability of shell model codes to reach these
dimensions in the NCSM approach. The current limit of the NCSM with a three-nucleon
interaction is 13C in a 6~Ω model space [8]. The basis dimension is roughly 32.6 million
states. These calculations took roughly 4 hours on 3500 processors, or 14,000 CPU hours
using the MFD shell model code.

16O is a widely studied nuclei, both experimentally and theoretically. Since it is a closed-
shell nuclei with eight protons and eight neutrons closing the p-shell, considered a “simpler”

9

Figure 4: (a) Comparison of experiment and the 4~ω and 2~ω shell model spectrum
for 16O with a two-body interaction, [9] (b) ground state energies for oxygen isotopes
[10]

nuclear system, the shell model postulates distinct features of its structural behavior. How-
ever, two-body interactions have failed to produce shell closure evident in the divergence
from experimental spectra [9].

Since 16O is a closed-shell nuclei, it remains an optimal testing ground to determine
whether the physics emerges from the shell model and/or realistic nuclear interactions. This
is also true for 15O and 17O, which are 1-hole and 1-particle systems, respectively, meaning
they are 1-hole or 1-particle away from a closed shell. We expect to see single particle
behavior in these systems described by the shell model. Again, experimental results have
not been consistent with theory. Based on the lacking theoretical results using two-body
interactions only for these nuclei, seen in Figure 4, and the success of adding three-nucleon
forces to other p-shell nuclei (see Figure 3), we know that the three nucleon interaction plays
a critical role in determining the structure of nuclei.

9Be provides an important test case as new experimental data will be available for com-
parison with theoretical results. It is believed that 9Be is a gateway nucleus to heavier
nuclei. Due to its richness of low-lying levels, understanding 9Be will provide insight into the
formation of larger nuclei. Two body results for 9Be (see Figure 5) improve with increase
in model space, but still fail to show the correct level ordering, especially for positive parity
states.

10

Figure 5: Two nucleon interaction results for 9Be (a) ground state energies (even and
odd parity) and (b) low-lying excitation spectra) [11]

.

REDSTICK. In order to do three-body calculations for these nuclei, significant optimiza-
tions need to be applied to the shell model code. The code employed in this research is
REDSTICK, a general utility shell model code created by W. Erich Ormand of Lawrence
Livermore National Laboratory and Calvin W. Johnson of San Diego State University. It is
written in Fortran 90 and MPI, using an on-the-fly construction of the Hamiltonian matrix
with an option to store some elements. The 2-body version has over 65 subroutines with
over 16,000 lines of code. There exists a 3-body version. Parallelization methods are strictly
confined to the Lanczos iterations, where the matrix multiplication is distributed amongst
the CPUs. Standard distribution of the work for matrix multiplication can be seen in Figure
6, where each processor is given the same number of rows from the matrix to be multiplied
by the vector.

Figure 6: Standard work distribution scheme for matrix-vector multiplication

The setup of the code, involving creating the basis and establishing the necessary arrays
to determine which matrix elements are non-zero, is done in serial. The utilization of on-
the-fly recomputing of the matrix elements means that there are no strict memory limits
for storing the matrix elements. This advantage allows REDSTICK to scale and address
larger dimension problems. But, on-the-fly computing increases the run-time. Keeping the

11

run-time performance optimal through efficient parallelization is crucial to REDSTICK’s
success. General release of REDSTICK is slated for the spring of 2008.

PREVIOUS WORK. My usage and development contributions to REDSTICK are shown
in the timeline below:

• 2004-2005: Learn how to use REDSTICK for scientific investigations (input, output,
physics significance).

• 2006-2007: Implement a new Jump algorithm to various subroutines in the setup of
the 2 body version. The new algorithm improves the run-time performance.

• Summer 2007: Create a 3-body code using the jump algorithm.

Algorithms. When first creating a program, often the first algorithms used are the
most intuitive. For large production codes however, it is necessary to find the most efficient
algorithms to optimize the run-time. To do on-the-fly recomputing of the matrix elements,
a systematic method of finding the non-zero matrix elements is necessary. In REDSTICK,
an often used procedure is determining whether two basis states connect by a one-body
operator (i.e. where π+

i πj is a one-body proton operator that removes a particle from the
j th single-particle state and puts on in the ith state). If an initial and final state are found to
connect by a one-body operator then the matrix element exists. For example, when finding
the Hpn matrix elements, the contribution from one proton and one neutron interactions,
the equation to find the matrix elements is:

Hpn =
∑

ijkl

〈φp
f |π+

i πj|φp
i 〉〈φn

f |ν+
l νk|φn

i 〉V pn
ijkl. (13)

Within the equation is a proton one-body jump and a neutron one-body jump. It is only
when both of these are not the empty set that an Hpn element exists.

The previous algorithm to find these one-body matches used straight comparison. The
bits from each initial state (dimension n) were compared to the bits from each final state
(dimension n) to see if there was a one-particle difference. This resulted in an n2 operation.
The new algorithm I implemented uses a search routine. I start from the initial state and
move the bits to unoccupied states to create all possible one-body jumps. Then using these
potential final states, I search for them in the list of final states using a bisection search.
Search is a log(n) operation, making the new “jump” algorithm a n log(n) operation which is
a substantial improvement as seen in Figure 7, especially as the dimension size grows larger.

Parallel Performance Analysis. Using the Tuning and Analysis Utility (TAU), a
portable profiling and tracing toolkit for performance analysis of parallel programs 3, we

3http://www.cs.uoregon.edu/research/tau

12

Figure 7: Dimension (n) vs. operation count for an n2 and n log(n) operation.

can determine the run-times for the various subroutines in REDSTICK on each processor.
Figure 8 shows a bar graph of the relative run-times for 11C in a 5~Ω model space on 32
processors. The run-times for the subroutine apply_pn are unequal for across the different
processors, thus affecting the run-times for the MPI_Barrier call. The unequal run-times
for each processor means that the overall run-time is less than optimal, and can be improved
by distributing the work more efficiently.

The natural work distribution scheme for the matrix multiplication is to give each proces-
sor an equal number of basis states. Additional analysis, shown in Figure 9, highlights how
some states require several orders of magnitude more flops for their matrix multiplication
workload. To avoid a workload bottleneck, and ensure proper scaling of the application, an
advanced workload distribution method is necessary.

Analysis of the 2-body code, the foundation for the 3-body code, shows that the work
distribution is unbalanced, affecting the scalability and run-time performance. Now that the
3-body code has been created and tested, additional parallel optimizations are necessary to
perform the calculations for this research.

PROPOSED DEVELOPMENT. Although previous calculations could still run within
the system’s allotted time constraints with these parallelization inefficiencies, in order to
perform the calculations for this research (see Table 2), we need to aggressively optimize
REDSTICK. Along with additional performance analysis, I plan to implement several phases
of additional parallelization.

1. Multiple Instruction Multiple Data: Rather than distributing the work of multi-
plying the Hamiltonian matrix H = Hppp + Hnnn + Hppn + Hnnp to the vector v1

simply by the rows of the matrix to each node, we can also distribute the work
by each component that forms the matrix. Thus, one MPI Group (with a different

13

Figure 8: Bar graph showing the relative run-times broken down by subroutine on 32
processors of a 2-body REDSTICK run.

Nuclei (π,ν) Model Space Basis Dimension pSD nSD

15O (7,8)
4 ~Ω 602,455 36,369 18,999
6 ~Ω 34,854,023 706,318 322,795

16O (8,8)
4 ~Ω 345,365 16,812 16,812
6 ~Ω 26,483,625 382,612 382,612

17O (8,9)
4 ~Ω 1,517,012 4122.87 2454.29
6 ~Ω 105,359,444 893,586 1,426,267

9Be (4,5)
4 ~Ω 288,930 4122.87 2454.29
6 ~Ω 5,206,484 54,480 159,831
8 ~Ω 63,003,395 282,712 1,016,878

Table 2: Dimensionality for 15O, 16O, 17O, and 9Be in a variety of model spaces.

MPI_Communicator) with a set of nodes, will handle the multiplication for Hppp, one
for Hnnn and so forth. The benefit of allowing for each group of nodes to handle a
different instruction is to alleviate the memory burden. The necessary arrays used to
determine the non-zero matrix elements is also becoming quite large. The memory
available to a single processor cannot handle the necessary arrays from the p-p-p, n-
n-n, p-p-n, and n-n-p elements. Thus, by allowing for each group of nodes to tackle

14

Figure 9: Proton basis index vs. the Number of floating point operations for matrix
multiplication for 11C in a 5~Ω space.

different instructions, and each node to have different data on which to perform these
instructions, these calculations will be possible.

2. Order by Jumps and Distribute Work: In order to address the unequal run-
times and idling of the processors, I will restructure the distribution of the work to the
processors. Since some basis states have more non-zero matrix elements, meaning more
one- and two-body jumps, by reordering the basis states by the number of jumps, we can
isolate those states with more work. Then, a single processor can do the calculations
for a single basis state requiring many operations, whereas several basis states with
a low number of operations can be given to another processor. This will ensure and
equal work distribution. The only issue we face with this is that we will always be
constrained by the one state with the most number of operations. If this far exceeds
the number of operations from the other states combined, we will once again see a
run-time bottleneck.

3. OpenMP and a Hybrid Programming Model: Allowing for each processor to
have a copy of the vector v1 on which to perform the matrix multiplication is an
inefficient use of the shared memory environment. Rather, using OpenMP, a shared
programming application programming interface (API), we can give each node 1 copy of
the vector and allow for each processor to perform operations. The challenge here comes
from ensuring that each processor is not trying to write to the same data source. This
hybrid programming model will also lessen the memory requirements of the program.

15

ADDITIONAL IMPROVEMENTS. To push the limits on the possible calculations
for the nuclear shell model, a major restructuring of existing shell model codes is necessary.
As the basis dimensions grow larger, the size of a single Lanczos vector will be too large to
store on a single processor. For example, basis dimensions of 109 requires 4GB of memory
for a single vector. More advanced algorithms will be required to break up the vector across
the nodes. One method could be to distribute the matrix as columns rather than rows. Since
a matrix-vector multiplication is also the sum of the rows multiplied by the vector elements,
this alternative approach would allow for a break up of the vector.

16

References

[1] P. Navratil, J. P. Vary, and B. R. Barrett. Large-basis ab initio no-core shell model and
its application to 12O. Phys. Rev. C, 62:054311, 2000.

[2] P. Navratil and B. R. Barrett. Four-nucleon shell-model calculations in a faddeev-like
approach. Phys. Rev. C, 59:1906, 1999.

[3] P. Navratil, G.P. Kamuntavic̆ius, and B. R. Barrett. Few-nucleon systems in a transla-
tionally invariant harmonic oscillator basis. Phys. Rev. C, 61:044001, 2000.

[4] P. Navratil and W. E. Ormand. Ab initio shell model calculations with three-body
effective interactions for p-shell nuclei. Phys. Rev. Lett., 88:152502, 2002.

[5] P. Navratil and W. E. Ormand. Feasibility study of a three-nucleon force in the no-core
shell model: 3H binding energy. Phys. Rev. C, 66:044007, 2002.

[6] L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, Philadelphia, 1997.

[7] P. Navratil and W. E. Ormand. Ab initio shell model with a genuine three-nucleon force
for the p-shell nuclei. Phys. Rev. C, 68:034305, 2003.

[8] P. Navratil, V. G. Gueorguiev, J. P. Vary, W. E. Ormand, and A. Nogga. Structure of
a = 10 − 13 nuclei with two- plus three-nucleon interactions from chiral effective field
theory. Phys. Rev. Lett., 99:042501, 2007.

[9] W. C. Haxton and C. W. Johnson. Weak-interaction rates of 16O. Phys. Rev. Lett.,
65:1325–1328, 1990.

[10] J. R. Gour, P. Piecuch, M. Hjorth-Jensen, M. Wloch, and D. J. Dean. Coupled-cluster
calculations for valence systems around 16O. J. Phys. G, 31:51291–51299, 2005.

[11] C. Forssén, P. Navratil, W. E. Ormand, and E. Caurier. Large basis ab initio shell
model investigations of 9Be and 11Be. Phys. Rev. C, 71:044312, 2005.

17

