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Abstract

We introduce total variation–based methods for the reduction of noise and the enhancement of mi-
tochondrion structure for electron tomography. We perform a comparative study between two total
variation-based image noise removal techniques, applied to electron microscopic imaging of a mitochon-
drion. Our tests show that both methods perform extremely well at removing the multiplicative noise
present in this type of imagery. The methods facilitate the segmentation that will allow extraction and
rendering of a 3D structural model of the mitochondrion. The structural information contributes to the
better interpretation, measurement, and understanding of the intricate mitochondrial architecture and
its relation to functionality.

1 Introduction

To date, it is firmly established that mitochondrial function plays an important role in the regulation of

apoptosis (programmed cell death) [24]. There is also evidence that defects in function may be related

to many of the most common diseases of aging, such as Alzheimer dementia, Parkinson’s disease, type

II diabetes mellitus, stroke, atherosclerotic heart disease and cancer [43]. This belief is founded in the

observation that mitochondrial function experiences measurable disturbance and observable morphological

changes under these circumstances [43, 16]. Electron tomography (ET) has allowed significant advances in

the understanding of mitochondrial structures. This imaging technique currently provides the highest 3D

resolution of the internal structure of mitochondria in thick sections. Despite the recent advances in imaging

hardware and specimen fixation techniques, it has been argued in the structural biology community [16] that

the image processing methodologies in the 3D ET field are not yet sufficiently developed, so as to correctly

extract features and understand spatial relationships in mitochondrial structures. There is a strong need for

a set of image processing methodologies that will facilitate efficient reconstruction and analysis of the data

obtained via ET.
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Figure 1: Cross-section rendering of a mitochondrion 3D tomogram after applying the homomorphic TV-
based image and structure enhancement algorithm for ET.

In this paper we use total variation (TV) based methods for the reduction of noise and the enhancement

of mitochondrion structure for ET. These methods are used prior to applying image segmentation techniques

that facilitate the 3D rendering and subsequence analysis of the mitochondrion structure (see Fig. 1). We

design an algorithm based on the classic TV-based method by Rudin, Osher and Fatemi [47] within a homo-

morphic system, and compare it to the TV-based image restoration technique by Rudin, Lions and Osher

[46] for reducing the multiplicative noise present in electron microscopy (EM) imagery. In a homomorphic

system, the natural logarithm is used to transform the multiplicative nature of the degradation into an ad-

ditive one and then, the resulting degraded image is processed by using a filter to reduce the additive white

noise. An exponential function is then applied to the output of the filter. The TV constrained optimization

approach involves the variation (oscillations) of the image within its domain, subject to constraints related

to the statistics of the noise. The procedure leads to a nonlinear partial differential equation on a manifold

determined by the constraints which is solved by a time-evolution scheme.

There is a number of reasons for preferring TV-based models over their counterparts. TV-based algo-

rithms are relatively simple to implement and result in minimal ringing (non-oscillatory) while recovering

sharp edges (noninvasive) [46]. In other words, the bounded variation (BV) norm allows piecewise smooth
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functions with jumps and is the proper space for the analysis and recovery of discontinuous functions. Linear

methods, such as those based on the minimization of the gradient’s L2-norm or some higher derivatives as

in [30, 53, 54] cannot satisfy the axioms of morphology [6]. It has been also stated [50] that the use of

linear filters in the homomorphic system would not be effective when the additive noise deviates from the

Gaussian distribution. In such a case, the use of nonlinear filters in the homomorphic system have proven

to be more effective. Furthermore, empirical evidence suggests that the human vision favors the L1-norm

[12]. Therefore, the TV-based formulation is the proper approach to restoring piecewise continuous functions

from noisy and blurry signals.

The paper is organized as follows: In Section 2, we discuss the statistical properties of images corrupted

by multiplicative noise, as well as the statistical properties of the corresponding log-transformed images. In

Section 3, we present the two TV-based formulations, namely the classic Rudin-Osher-Fatemi method [47] for

additive noise applied within a homomorphic system, and the Rudin-Lions-Osher model [46] for multiplicative

noise. In Section 4, we evaluate the performance of the two TV-based noise removal techniques applied to a

2D electron tomogram slice. Finally, in Section 5, we conclude with a summary and discussion of our findings,

and outline the steps necessary for performing a fully 3D image reconstruction of electron tomograms.

2 Modeling the Noise in Electron Microscopy

2.1 Nature of the noise

Images generated by coherent imaging systems are always degraded by speckle noise [19, 50, 59]. Coherent

imaging systems are very common in many applications such as synthetic aperture radar (SAR), ultrasound,

laser imaging, and EM. In EM, speckle is generated by the random elastic (and inelastic) scattering of

electron beams as they pass through the specimen [37]. The noise appears as dark and bright granulations

and it limits the ability of both manual and automatic interpretation and understanding of the registered

image.

Speckle is usually considered a type of multiplicative noise [19, 50]. Most modern electron microscopes are

equipped with charge-coupled device (CCD)1 cameras for capturing the images. In a CCD camera, images

are generally corrupted by both additive and multiplicative noise [58]. In the more general CCD camera

noise model [27], the following contributions are present: dark current noise, shot noise, readout noise, and

quantization noise. However, it has been shown [58] that the amount of multiplicative noise exceeds the
1There are also available the high-end electron multiplying charge-coupled device (EMCCD) cameras and intensified charge-

coupled device (ICCD) cameras.
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amount of additive noise at intensities greater than 10 to 30% of the intensity range. Therefore, for most

practical applications we can disregard the additive portion of the noise, including the quantization noise.

2.2 Noise Statistics

Speckle can be either partially or fully developed depending on the scatter number density [1]. Fully devel-

oped speckle has the characteristics of random multiplicative noise [23, 57, 59]. Most researchers agree that

the noise in a single image corrupted by speckle follows a negative exponential distribution [22, 23, 28, 55, 57].

When speckle is reduced by image integration, such as in multi-look averaging (SAR) and image back-

projection (used in EM), the resultant speckle is characterized as following either a Gamma distribution

[3, 13, 15, 22, 28, 55, 57] or a Log-normal distribution [4, 19, 50]2. In the case of multi-look images, it

has been stated [19] that using either the gamma distribution or the Log-normal distribution to model the

speckle does not result in a significant difference in the filter performance.

To take advantage of available and well established denoising methods, it is often necessary to apply a

logarithmic transformation to convert the multiplicative model into an additive model. However, care must

be taken when applying approaches based on additive noise models directly to a log-transformed signal. The

logarithmic transformation is a nonlinear operation that can completely change the statistics of the image

[59]. This issue has been addressed by a few authors [29, 32, 59] and the probability density function, mean

value, and variance which characterizes the log-transformed speckle have been devised [59]. (It has been

also found that applying the logarithmic transformation to the signal perturbed by fully developed speckle is

very close to Gaussian distribution [1, 13, 26].) It has been also conjectured that the Gaussian distribution

approximation can be considered in the case of partially developed speckle [1, 13]. This implies, that after an

image integration, the Log-normal distribution could be safely used to approximate the intensity distribution

of the speckle [50].

2.3 Adopted Noise Model

In a digital signal, the noise degradation of a multiplicative nature can be interpreted as each sample of the

true signal being multiplied by a random noise element. A 2D tomographic slice can be represented as

f (x, y) = g (x, y)m (x, y) , (1)

2As the number of images integrated tends to infinity, the speckle intensity tends to follow a Gaussian distribution [7, 23].
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where f (x, y) is the observed degraded image, g (x, y) is the true image, and m (x, y) is the multiplicative noise

with unit-mean following a Gamma probability distribution. Applying the natural logarithmic transform

(homomorphic system) of the observed corrupted image we can write

ln f (x, y) = ln g (x, y) + ln m (x, y)

= g̃ (x, y) + m̃ (x, y) ,

(2)

which can be written as

u0 (x, y) = u (x, y) + η (x, y) . (3)

In (3), η (x, y) is a random zero-mean stationary white noise process [52] and u (x, y) = ln g (x, y) + µm̃,

where µm̃ is the mean of m̃. The variance and mean of m̃ has been derived in [59] for an integer number of

looks L:

µm̃ = −γEM − ln (L) +
L−1∑

k=1

1
k

, (4)

σ2
m̃ =

π2

6
−

L−1∑

k=1

1
k2

. (5)

In (4), γEM = 0.577215664901... is the Euler-Mascheroni constant.

3 Noise Reduction Techniques

Most of the multiplicative noise reduction techniques employ some variation of Oppenhein’s homomorphic

systems [42]. Oppenhein introduced the idea of a canonical form of a system comprising a point operation

to convert the signal and noise combination to an additive one. Then, he applied a linear system to suppress

the now additive noise, and finally an inverse point operation to return the processed signal and noise to

the original intensity domain. In the present, a number of methods (using this approach) exist to address

the problem of speckle noise including median filtering [11, 21], temporal averaging [9, 19], geometry-based

filtering [10], nonlinear multiscale filtering [60], adaptive speckle reduction [8, 14, 17, 33, 34, 36, 38, 39, 40],

homomorphic Wiener filtering [5, 19, 20, 31], wavelet [18, 19, 25, 28, 35, 41, 49] and curvelet [48, 49, 51, 56].

We will use a similar approach as above for our “homomorphic TV image denoising” technique. The

problem we are trying to solve is (1) where the electron tomogram has been corrupted by multiplicative

noise. We will start by considering a 2D slice (see Fig. 2) that we want to restore prior to applying the
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segmentation technique that will allow better classification and interpretation. For the homomorphic TV

method, we recast (3) as

u0 = u + η. (6)

Our constrained minimization problem is

minimize
u∈BV (Ω)

∫

Ω

√
u2

x + u2
y, (7)

where Ω represents the domain of the image, subject to the following constraints involving the statistics of

the signal and the noise ∫

Ω

u dxdy =
∫

Ω

u0dxdy, (8)

∫

Ω

(u− u0)
2
dxdy = |Ω|σ2

η. (9)

Constraint (8) suggests that the mean of the noise is zero, thus the mean of the intensity values of the image

remains constant, while constraint (9) implies that the standard deviation of the noise, ση, is known a priori.

Using Lagrange multipliers to minimize this constrained optimization problem leads to the Euler-Lagrange

equations

0 =
∂

∂x


 ux√

u2
x + u2

y


 +

∂

∂y


 uy√

u2
x + u2

y


− λ (u− u0) in Ω, (10)

∂u

∂n
= 0 on ∂Ω. (11)

The solution procedure proposed in [47] uses a parabolic equation with time as an evolution (scale) parameter,

or equivalently, the gradient descent method. This is

∂u

∂t
=

∂

∂x


 ux√

u2
x + u2

y


 +

∂

∂y


 uy√

u2
x + u2

y


− λ (u− u0) , (12)

in Ω, for t > 0, with homogeneous Neumann boundary condition ∂nu = 0 on ∂Ω, and u (0, x, y) = u0 is the

observed image used as initial condition. For the parameter λ the authors suggested a dynamic value λ (t)

estimated by Rosen’s gradient-projection method [44, 45], which as t →∞ converges to

− 1
2 |Ω|σ2

η

∫

Ω




√
u2

x + u2
y −

(u0)x ux√
u2

x + u2
y

− (u0)y uy√
u2

x + u2
y


 dxdy. (13)
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For our second TV-based implementation [46], we solve (1) in its original form

f = gm. (14)

In doing so, we again minimize the TV of the image

minimize
g∈BV (Ω)

∫

Ω

√
g2

x + g2
y, (15)

subject to the following constraints involving the statistics of the noise

∫
m = 1, ∀g or

∫

Ω

m = |Ω| , (16)

∫
(m− 1)2 = σ2

m, ∀g or
∫

Ω

(m− 1)2 = |Ω|σ2
m. (17)

Constraint (16) is necessary to account for the case of a noise–free image, while constraint (17) is a direct

consequence of (16) and implies that the standard deviation of the noise, σm, is also known a priori.

Thus, the constrained optimization (15) is subject to the following constraints

∫
f

g
= 1, (18)

1
2

∫ (
f

g
− 1

)2

=
1
2

∫ ((
f

g

)2

− 1

)
=

σ2
m

2
. (19)

Using Lagrange multipliers leads to

∂g

∂t
=

∂

∂x


 gx√

g2
x + g2

y


 +

∂

∂y


 gy√

g2
x + g2

y


− λ1

f2

g3
− λ2

f

g2
, (20)

in Ω, for t > 0, with homogeneous Neumann boundary condition ∂ng = 0 on ∂Ω, and g (0, x, y) = f is the

observed image used as initial condition. We now have two Lagrange multipliers λ1 and λ2, which can be

computed by requiring

∂

∂t

∫
f

g
= −

∫
f

g2

∂g

∂t
= 0, ∀g or

∂

∂t

∫

Ω

f

g
=

∫

Ω

f

g2

∂g

∂t
= 0, (21)

7



∂

∂t

∫ ((
f

g

)2

− 1

)
= −

∫
f2

g3

∂g

∂t
= 0, ∀g

or
∂

∂t

∫

Ω

((
f

g

)2

− 1

)
=

∫

Ω

f2

g3

∂g

∂t
= 0.

(22)

These, together with (20), lead to two algebraic equations for the two unknowns and the resulting Gram

determinant is nonzero.

4 Experimental Results

4.1 Homomorphic TV-based Additive Noise Removal

For this case, we implemented a slight variation of (12) [2] with Neumann boundary condition and the

observed image as initial condition, using finite element method. The parameter λ was implemented as

suggested in (13) and for the standard deviation of the noise, ση, we used σm̃ as defined in (5) since

var (η) = var (m̃− µm̃) = var (m̃), assuming the back-projection was performed using 61 micrographs. We

need to correct the output u to account for the applied shift u = ln g+µm̃ where µm̃ is given by (4), and then

apply the exponential transformation to obtain the final approximation to the true image. Finally, we apply

gamma correction to the output above to obtain the final image3. The resulting image after applying the

described technique is shown in Fig. 3, along with the extraction of the mitochondrion structure obtained

by automatic segmentation. The obtained results are extremely encouraging.

4.2 TV-based Multiplicative Noise Removal

In this case we implemented (20) with Neumann boundary condition and the observed image as initial

condition, also using finite element method. For the parameters λ1 and λ2 we solve the two equations with

two unknowns and obtained

λ1 (t) =
1

D (x, y)

(∫

Ω

f2

g4

∫

Ω

f2

g3
B (x, y)−

∫

Ω

f3

g5

∫

Ω

f

g2
B (x, y)

)
, (23)

λ2 (t) =
1

D (x, y)

(∫

Ω

f4

g6

∫

Ω

f

g2
B (x, y)−

∫

Ω

f3

g5

∫

Ω

f2

g3
B (x, y)

)
, (24)

3Most CCD cameras use some form of gamma adjustment to map the image into the available quantization range in order
to obtain a better looking image [58].
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Figure 2: (left) After taking a slice from the 3D electron tomogram of the mitochondrion, through histogram
equalization, the intensity range is spread over the entire dynamic range [0, 255]. A linear histogram
stretching is used to avoid compromising the statistics of the noise as it would be if gamma correction is
employed at this stage. (right) Segmented image using a threshold algorithm before applying the image
processing techniques.

Figure 3: (left) Output image obtained by applying the homomorphic TV–based denoising after gamma
correction. We can observe that the image is better suited for automatic segmentation. (right) Segmented
image using a threshold algorithm that allows the extraction of the mitochondrion structure.
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where

D (x, y) =
∫

Ω

f4

g6

∫

Ω

f2

g4
−

∫

Ω

f3

g5

∫

Ω

f3

g5
, (25)

B (x, y) =
gxx + gyy√

g2
x + g2

y

− g2
xgxx + 2gxgygxy + g2

ygyy

(
g2

x + g2
y

) 3
2

. (26)

The resulting image after applying the described technique is shown in Fig. 4, along with the extraction of

the mitochondrion structure obtained by automatic segmentation. The obtained results are also extremely

encouraging.

Figure 4: (left) Output image obtained by applying the TV–based denoising method for multiplicative noise
after gamma correction. We can observe that the image is better suited for automatic segmentation. (right)
Segmented image that allows the extraction of the mitochondrion structure.

5 Conclusions

We have designed an algorithm based on the classic TV–based model by Rudin, Osher and Fatemi for

additive noise removal within a homomorphic system, and compared its performance to that of the TV–based

image restoration technique by Rudin, Lions and Osher for reducing multiplicative noise. Both approaches

were applied to a stack of 2D images taken from a 3D electron tomogram of a mitochondrion. The image

denoising techniques were employed prior to an automatic image segmentation algorithm for the extraction
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of the mitochondrion’s structural details.

Our results show that both methods perform extremely well at removing the multiplicative noise present

in this type of image. Once the segmentation has been performed and the structure has been outlined, the

2D images were used to render the 3D structural model of the mitochondrion with relative ease (see Fig.

1). However, the procedure we have employed in this paper has the limitation that the information in the

z direction is neglected in favor of simplicity. Our next step will be to carry out a similar approach as the

one in this paper, to remove the noise from the 3D tomogram by using a fully 3D approach: 3D histogram

stretching, 3D homomorphic TV–based denosing, 3D segmentation, and 3D image rendering. That way, we

will obtain an even better approximation to the structure of the mitrochondrion.
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