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PARAMETER-FREE ADAPTIVE TOTAL-VARIATION BASED

NOISE REMOVAL AND EDGE STRENGTHENING FOR

MITOCHONDRIAL STRUCTURE EXTRACTION

Abstract. We propose an iterative method that will allow noise removal and
edge strengthening for mitochondrial images. The model is based on the well
established total variation (TV) approach to image processing. The main
objective of the method is to decompose the observed image as u0 = u +
η, whereby we can obtain a good approximation to the true image u, with
minimum human intervention. The model can be used as a preprocessing tool
that will allow better segmentation results.
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Carlos Bazan
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1. Motivation. Segmentation is a classical image processing technique employed
in electron tomography 3D structural reconstruction of biological systems. Seg-
mentation allows a tomogram to be decomposed as a series of geometrical objects
(contours) that can be rendered as a 3D model. This decomposition into structural
components also facilitates interpretation, communication of results, and measure-
ments [7]. In spite of the efforts that have been made to automate this process
[2, 13, 19, 25], manual segmentation is still the tool of choice in most cases.

The 3D structural extraction from the tomographic volume relies on the pro-
cessing of several hundred two-dimensional slices. When these images lack the
required quality, the segmentation process can become a great burden. The model
we are proposing aims at helping both the automated segmentation and the manual
tracing processes by the removal of noise and the strengthening of edges of mito-
chondrion images. The model can be used as a preprocessing tool that will improve
segmentation results.

The present paper was inspired by the challenges posed by processing and in-
terpreting image data of mitochondria obtained by electron microscopy. Struc-
tures of interest include multicomponent structures [18], crista junctions [17], and
membrane architecture [15]. Current methods in, and results of modern electron
microscopy can be found in [7, 8, 16].
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2 P. BLOMGREN, C. BAZAN

2. Background. Rudin, Osher and Fatemi [20] propose image noise removal by
minimization of the total variation (TV) norm. The corresponding constrained
minimization formulation for the restored image, u, is

min
u∈BV(Ω)

TV (u)
def
= min

u∈BV(Ω)

∫

Ω

‖∇u‖ dxdy. (1)

subject to a discrepancy constraint involving the original, measured, noisy, image
u0:

1

2

∫

Ω

(u − u0)
2

dxdy = |Ω|σ2. (2)

This constraint uses a priori information of the variance of the noise, σ2, under
the assumption the noise is normally distributed with mean zero. The quantity
|Ω| measures the size of the image domain. In most practical application the noise
intensity will not be known and the success of the method will require a good
noise-estimate.

Common PDE-based solution strategies try to solve the corresponding Euler-
Lagrange equation



















−∇ ·

(

∇u

‖∇u‖

)

+ λ (u − u0) = 0, in Ω

∂u

∂~n
= 0, on ∂Ω.

(3)

The solution procedure proposed in [20] uses a parabolic equation which introduces
synthetic time, t, as an evolution parameter. Equivalently, this can be viewed as
the gradient descent method applied to the minimization problem, i.e.



































ut = ∇ ·

(

∇u

‖∇u‖

)

− λ (u − u0) ,

∂u

∂n
= 0, on ∂Ω,

u(t = 0, x, y) = u0.

(4)

Here the original image, u0, is used as initial condition for the PDE. The parameter
λ measures the tradeoff between regularization, i.e. minimization of the TV-norm,
and fidelity to the measured image. Since, typically, the noise level, and therefore
the correct Lagrange multiplier λ are unknown, Rudin-Osher-Fatemi [20] suggest a
dynamic value estimated by Rosen’s gradient-projection method, which as t → ∞
converges to

λ = −
1

2|Ω|σ2

∫

Ω

[

∇uT (∇u −∇u0)

‖∇u‖

]

dxdy. (5)

This evolution scheme is highly nonlinear and not well-posed in strong sense [21].
Numerically, difficulties arise as ‖∇u‖ → 0. When the scheme converges, it does
so at a linear rate. Further, direct application of classical schemes, e.g. the affine
invariant form of the damped Newton method as described in Deuflhard [6] gener-
ically run into convergence problems due to the ill-conditioning of the problem
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introduced by the non-linearity. In practice, it is common to use a slightly modified
version of the TV-norm [1]:

∫

Ω

√

‖∇u‖
2

+ β dxdy, (6)

where β is a small positive number which smooths out the “corner” at ‖∇u‖ = 0.

Also, when β is very small, the Newton method does not work satisfactorily. To
overcome the problems presented by the highly nonlinearity of the problem Vogel
and Oman [24] propose a fixed point iteration scheme,

−∇ ·

(

∇uk+1

‖∇uk‖

)

+ λ
(

uk+1 − u0

)

= 0. (7)

This is a robust scheme but it is only linearly convergent. Golub, Chan and
Mulet [9] use interior-point primal-dual implicit method to solve the Euler-Lagrange
equation by introducing a new variable

w =
∇u

√

‖∇u‖
2

+ β

, (8)

and writing the problem as a system of nonlinear partial differential equations as
follows











−∇ · w + λ (u − u0) = 0

w

√

‖∇u‖
2

+ β −∇u = 0.

(9)

All these approaches, which attempt to solve the original TV-minimization problem,
lead to solutions which exhibit the “staircase effect,” i.e. a strong preference for
piecewise constant patches.

Marquina and Osher [11] propose a different version of the transient parabolic
equation that helps speed up the convergence of the scheme. The modified evolution
equation is

ut = ‖∇u‖∇ ·

(

∇u

‖∇u‖

)

− ‖∇u‖λGσ ∗ (Gσ ∗ u − u0) , (10)

in Ω, for t > 0, where Gσ (x, y) is the heat kernel. The well-posedness of this
equation in the sense that there is a maximum principle that determines the solution
is shown by Osher and Sethian [14]. This approach fixes the staircase problem of
the original scheme and is used for removal of both blur and noise.

Strong and Chan [23] introduce the weighted total variation functional for spa-
tially adaptive image restoration:

TVα =

∫

Ω

α (x) ‖∇u‖ dx. (11)

Blomgren, Chan and Mulet [3] propose a new approach considering regularizing
functionals of the type

R (u) =

∫

Ω

Φ (‖∇u‖) dx, (12)

for suitable real functions Φ. They consider the functional in (12) for Φ (x) = xp,
for p ∈ [1, 2]
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R (u) =

∫

Ω

‖∇u‖
p

dx. (13)

For the exponent p = 1, one has the TV-norm and when p = 2, one would be
using the L2-norm of the image gradient. Song [21], in his dissertation, pursues
this approach further and renames it “Adaptive TV Model.” The model considers

min
u

1

p

∫

Ω

‖∇u‖p
dxdy, 1 < p < 2 (14)

subject to 1
2

∫

(u − u0)
2

dxdy = |Ω|σ2. The Euler-Lagrange equation for this model
is

ut −∇ ·
(

‖∇u‖
p−2

∇u
)

+ λ (u − u0) = 0 (15)

The proof of the uniqueness of the solution is given in [10].
Levine, Chen, Stanich and Rao [5, 12] propose a variant to that of Blomgren

et al, where they define the exponent p based on the observed data u0 only, their
model is:

J (u) =

∫

Ω

φ (x,∇u) +
λ

2

∫

Ω

|u0 − u|
2
,

where

φ (x, r) =

{

1
p(x) |r|

p(x) if |r| < ε

|r| − εp(x)−εp(x)

p(x) if |r| ≥ ε.

Here, ε > 0 is fixed, and p (x) is based on a smoothed version of the observed image
u0,

p (x) =
1

1 + k |∇Gσ ∗ u0 (x)|
2

where k and σ are adjustable parameters, and

Gσ (x) =
1

σ
e

−|x|2

4σ2

is a Gaussian smoothing kernel. The authors show existence and uniqueness of
minimizers for this functional, and develop a numerical method for computing them
based on gradient descent.

Chambolle [4] also touches upon this subject where he combines two functionals
∫

|∇u| and
∫

|∇u|2 as

F (u) =
1

2ε

∫

|∇u|<ε

|∇u|2 +

∫

|∇u|≥ε

(

|∇u| −
ε

2

)

+

∫

Ω

|u − u0|
2

where ε is an adjustable parameter to be chosen. The Euler-Lagrange equation for
this functional resembles that of the models discussed in this section.

Schults, Bollt, Chartrand, Esedoglu and Vixie [22] have recently revisited the
subject and they suggest to minimize the following functional,

min
u

J (u) =

∫

Ω

|∇u|
p(|∇u|)

+
λ

2

∫

Ω

|u0 − u|
q
, q = 1 or 2

For two cases:
Case 1: p (x) = P (|∇ (Gσ ∗ u0) (x)|); and
Case 2: p (x) = P (|∇ (Gσ ∗ u) (x)|).

They prove existence in both cases, and uniqueness in the case of q = 2.
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3. Dynamic Implementation. We implement a variation of Blomgren et al ’s
version of the fully nonlinear Euler-Lagrange equation (10),

ut − ‖∇u‖∇ ·
(

L
(

‖∇u‖
p−2

)

∇u
)

+ Λ (u − u0) = 0 (16)

defined in the domain Ω with boundary conditions u~n = 0 on ∂ Ω (where ~n is
the outward unit normal vector to the boundary of the domain Ω). The Neumann
boundary conditions should guarantee that the filtering does not significantly affect
the average gray value of the image. The initial condition is the original image
u (0, x, y) = u0 (x, y) in Ω.

The model (16) can be regarded as an “adaptive TV model with morphological
convection and anisotropic diffusion.” As opposed to the approach of Marquina
and Osher [11], we implement a user-independent choice of all the parameters in
the model. We start by estimating the standard deviation of the noise, i.e. the
parameter σ. Since we consider that the image has been perturbed by additive
Gaussian “white” noise, u0 = u+ η, the variance of the noisy image equals the sum
of the variance of the original image and the variance of the noise, σ2

u0
= σ2

G∗u0
+σ2

η.
Here, the variance of the (unknown) original image is approximated by the variance
of the convolved noisy image. This parameter will be updated iteratively as we will
see below.

For the parameter λ, we implement a variation of the method suggested in [20].
Instead of integrating over the domain Ω, we implement a pixel-wise Λ ≡ ‖∇u‖λ

as

Λ = −
1

2|Ω|σ2

[

∇uT (∇u −∇u0)
]

. (17)

The dynamic parameter Λ has the following attributes:

1. The smaller the value of Λ, the more the diffusion contributed by the forc-
ing term. Analogously, the larger the value of Λ, the lesser the diffusion
contributed by the forcing term.

2. At the beginning of the time-marching iterations the gradients ∇u ≈ ∇u0,
therefore the gradient discrepancies (∇u−∇u0) are very small and the forcing
term tends to contribute more to the diffusion process. In areas of large
gradients (i.e. near edges), these values compensate for the small terms (∇u−
∇u0).

3. As the evolution progresses the discrepancies (∇u − ∇u0) get larger. Near
edges, the forcing term prevents diffusion and helps reach convergence.

We can also get an a posteriori estimate to the variance of the noise σ2 by inte-
grating over the domain after convergence,

σ2 = −
1

2|Ω|

∫

Ω

1

Λ

[

∇uT (∇u −∇u0)
]

dxdy. (18)

This will be an improved value that can be used to run the model with a better
estimate of the unknown parameter σ.

The diffusion tensor L
(

‖∇u‖
p−2

)

incorporates the parameter 1 ≤ p ≤ 2, as

suggested in [3]. The diffusion tensor becomes

L
(

‖∇u‖
p−2

)

=

[

‖∇u‖
px−2

−‖∇u‖
pxy−2

−‖∇u‖
pxy−2

‖∇u‖
py−2

]

, (19)
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where px, py, pxy, are the following unnormalized Gaussians:

px = 1 + e−ũ2
x/4σ

py = 1 + e−ũ2
y/4σ

pxy = 1 + e−(ũ2
x
+ũ2

y)/4σ

(20)

In equation (20) above, ũx and ũy are the gradient-components of the convolved
noisy image G ∗ u0 used to estimate the unknown parameter σ.1 The dynamic
parameters px, py, pxy, have the following attributes:

1. For every pixel in the image, the parameters take values 1 ≤ px ≤ 2, 1 ≤ py ≤
2, and 1 ≤ pxy ≤ 2.

2. When px = 1, py = 1, or pxy = 1 the model uses the TV-norm in the
corresponding direction, and when px = 2, py = 2 or pxy = 2, the model uses
the L2− norm in the corresponding direction.

3. When the parameters 1 < px < 2, 1 < py < 2 and 1 < pxy < 2, the model
interpolates between both norms.

4. Experimental Results. The mitochondrial images produced by the electron
microscope are of extremely low contrast (see Figure 1). If we plot the distribution
of intensities of the image we observe that the intensity range is very narrow.
It does not cover the potential range of gray tones [0, 255], and is missing the
high and low values that would result in good contrast. To improve the contrast
in the image we spread the intensity values over the full range of the image by
histogram equalization. This process notably improves the contrast of the image
which becomes more suitable for the application of our method.
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Figure 1. (Left) Image histogram: the intensity range is very
narrow in the original electron microscope image, and when the
data is visualized it looks “flat gray” to the human eye; (Right)
Image histogram: after histogram equalization, the intensity range
is spread out over the range [0, 255].

After the histogram equalization we estimate the value of the variance of the
noise as described above, σ2

η = σ2
u0

− σ2
G∗u0

. This value will be dynamically up-
dated each time the model reaches convergence using (18). Figure 2 shows the

1Alternatively, at a higher computational cost, the current iterate u can be used for an updated
estimate, σ = G ∗ u
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Figure 2. (Left) Mitochondrion image after histogram equaliza-
tion. (Right) Image contours: although the human eye can extract
the structure in the left panel, any gradient-driven segmentation
algorithm has to contend with noise-induced false edges.

mitochondrion image after the histogram equalization and its corresponding image
contours. Figure 3 illustrate the processed image and its contours. We observe that
the treated image presents better characteristics for either automated or manual
segmentation. Figures 4 and 5 show the final values of the adaptive parameters px,
py, pxy and Λ.

Figure 3. (Left) Mitochondrion image after processing by the
proposed dynamic model. (Right) Image contours of the image:
here, the contours clearly outline the structures of interest.
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Figure 4. (Left) The adaptive parameter px, final value. (Right)
The adaptive parameter py, final value.

Figure 5. (Left) The adaptive parameter pxy, final value. (Right)
The adaptive parameter Λ, final value.

5. Discussion. Good three-dimensional reconstruction of the structure of mito-
chondria depends upon good segmentation of either the full three-dimensional to-
mograms, or hundreds of thin two-dimensional sections of it. This segmentation
process usually involves tracing membrane profiles in each of the many parallel im-
age slices either manually or via an automated process. In both cases the quality
of the images prior to segmentation plays a fundamental role in the results. Pre-
processing the images before segmentation can help obtain better results without
losing much information. Our proposed model is based on the well established
TV approach for noise removal. The implementation is such that almost no hu-
man intervention is necessary making it very attractive for its incorporation into
automated systems.
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