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Abstract: We consider a collocation method using radial functions for the 
solution of partial differential equations in irregular domains. We use a 
regularised least squares approach to solve the potentially ill-conditioned 
problems that may arise. This meshless method is easy to implement and 
eliminates most of the problems that mesh oriented methods have with irregular 
boundaries and complicated domains. When solving, also, for the position and 
shape parameters of the radial functions we obtain an adaptive, albeit  
non-linear, method. In this case, the resulting problem is a separable non-linear 
least squares one that can be efficiently solved by the Variable Projection 
method.
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1 Introduction 

Radial basis function collocation methods for solving partial differential equations  
are truly meshfree algorithms, in the sense that collocation points can be chosen  
freely and no connectivity between the points is needed or used (Kansa, 1990a, 1990b; 
Narcowich et al., 1994). These methods, which are spatial dimension independent, can be 
easily extended to solve 3D problems. Moreover, due to the absence of a grid, these 
techniques are better suited than classical methods to cope with problems having complex 
boundaries. 

On the other hand, despite the advances of the last decade, there are many  
open problems, both from a theoretical and a numerical point of view. To mention some 
of them: 

• The invertibility of the algebraic system of equations corresponding to the 
asymmetric collocation method is still a conjecture (Hon and Schaback, 2001). 

• From a numerical point of view, it is well known (Schaback, 1995) that the increase 
in the number of basis functions produces an increase in the condition number of the 
corresponding collocation matrix. Except for pre-conditioning techniques this 
problem is extant. 

The methods described in this paper deal with these two issues by using regularised least 
squares calculations, which are robust under high levels of ill-conditioning. We also offer 
a new global error estimation procedure and two types of nodal basis adaptation. 

The collocation methods to be considered are based on the interpolation theory of 
radial basis functions and can be classified according to the different kernels associated 
with these techniques. 

Let φ : R+ → R; R(x) = φ (||x – x*||), where ||.|| is the Euclidean norm in Rn; then,  
if we let 1{ *}i i

β
=x ⊂ D ⊂ Rn, the RBF interpolation problem is defined by 

1

( ) ( , *) ( ), ( ) , 1, , ,i i i j j
i

y w R c p y y j
β

κ
=

= − + = =x x x x x
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x ∈ Rn where 1{ , }j j jx y κ
= are data pairs. In the former equation, ci, is called the shape

parameter, and p ∈ Pl(Rn) (the polynomials of degree l in Rn), depend on the specific 
RBF R.

These kernels can be broadly divided into three groups: the piecewise kernels, the C∞

radial functions and compact support radial basis functions. The most representative 
examples of these groups are, respectively: the thin plate splines (Duchon, 1977), the  
Wendland (1995) and Wu (1995) compact support RBF and the C∞ multi-quadric and 
Gaussian kernels. For C∞ radial basis functions it has been proved that spectral order of 
convergence holds depending both on the fill distance and the shape parameter ci
(Buhmann, 2003). However, the requirement of good conditioning is at odds with the 
accuracy of the interpolation, the so called problem of “good conditioning vs. good fit”. 

Preconditioning techniques, (Beatson et al., 1999; Ling and Kansa, 2004), domain 
decomposition algorithms (Hon and Wu, 2000; Li and Hon, 2004; Mu oz-Gomez et al.,n
2006b; Zhou et al., 2003) and node adaptive strategies, which we shall mention below, 
have appeared in the literature to deal with this problem. In the field of node adaptive 
methods, several algorithms have been published. In Behrens and Iske (2002) and 
Behrens et al. (2001), one of the authors has formulated an adaptive strategy based on 
local RBF interpolants in two dimensions. This technique has been successfully applied, 
in a semi-Lagrangian context, to linear evolutionary PDEs. 

In Wu (2004, 2005) an adaptive meshfree RBF algorithm for non-linear scalar 
conservation laws was developed and successfully applied to the inviscid Burger 
equation. Although this method is formulated in one dimension, the author points out 
how to extend his technique to two dimensions. 

Other techniques (Hon, 1999; Sarra, 2005; Schaback, 1995), mainly in one 
dimension, have been also developed for different RBFs. More recently, in 
( Mu oz-Gomez et al.,n 2006a), an adaptive node scheme based on thin plate spline kernels 
is developed by using local error estimates combined with a quad-tree type algorithm. 
Moreover in Driscoll and Heryudono (2006), the authors built an adaptive algorithm 
based on multi-quadric kernels, in which both the nodes and the shape parameters are 
adapted. Their results are applied to linear and non-linear problems in two space 
dimensions. 

In all these algorithms the centres and the collocation points coincide. The case when 
this is not so has been barely treated in the literature. As it has been pointed out in 
Fasshauer (2005), “There are only limited results addressing the situation in which the 
centres for the basis functions and the data sites may differ”. Among the few results 
related to this problem, we have those in Quak et al. (1993) and Sivakumar and Ward 
(1993), where the authors deal with discrete and continuous least squares approximation 
problems, respectively. In both papers the authors investigate the non-singularity of the 
coefficient matrix obtained from a system of normal equations. However, these works do 
not investigate the collocation techniques for PDE. Thus, some of the results presented in 
this paper pertain to a fairly new area of research. 

In Pereyra and Scherer (2006), some of us have demonstrated the use of tensor 
product B-spline bases to solve elliptic problems in 2 and 3 dimensions on irregular 
domains, using embedding and an overdetermined system of collocation points. The key 
there was to employ regularised linear least squares methods to solve the resulting 
algebraic problem, since the scattered collocation points on the non-rectangular domain 
could easily lead to ill-conditioned, or even rank deficient, problems. In that and previous 
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works on scattered data fitting (Pereyra and Scherer, 2002a; 2002b), we used effectively 
truncated SVD’s and conjugate gradients as possible approaches to solve those ill-posed 
linear least squares problems. 

We will do likewise here in the case that no adaptive radial basis functions are used. 
The additional novelty in this work is in the use of radial functions and adaptive bases 
based on the solution of a separable non-linear least squares problems by the Variable 
Projection method. 

The key concept in that method is to solve analytically for the linear weights, leading 
to the Variable Projection functional containing only the non-linear parameters, which is 
then solved by any conventional procedure for non-linear least squares, such as 
Marquardt’s or its variations. This method has been extremely effective through the  
years for fitting linear combinations of exponentials, Gaussians and many other types of 
non-linear functions to data, as is documented in Golub and Pereyra (2003). 

We also implement a global error estimation algorithm that is akin to a deferred 
correction approach and use it as a monitor function in an additional refinement  
post-process, based on error equidistribution, in order to achieve a desired accuracy. 

2 Elliptic problems 

2.1 Problem formulation and discretisation by collocation 

Given an elliptic partial differential equation 

( ( )) 0, ,nF y D R= ⊂x xε

with boundary conditions 

( ( )) 0, ,B y D= ∂x x (1)

we consider the Ansatz 

*

1
( ) ( ; ),i i i

i
y w R c

β

=

= −x x x  (2) 

where the R’s are radial functions, ci is the shape parameter and { *}ix  is the centre point. 
In the case of Gaussian basis functions we have: 

2 2
2|| ||** *( ; ) ( ; ) .i ic

i i i iR c G c e− −− = − = x xx x x x

The Ansatz is then replaced in the differential equations and boundary conditions and a 
number κ of collocation points Xk, equal or larger than the number of free parameters, are 
chosen. We finally obtain the discrete problem to be solved in order to approximate the 
exact solution: 

*

1

( ; ) 0, ,i i k i k
i

F w R c D
β

ε
=

− =x x x
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*

1

( ; ) 0, .i i k i k
i

B w R c D
β

ε
=

− = ∂x x x  (3) 

If we prescribe the non-linear parameters ci, *
ix , then this is either a square (β = κ) or an 

overdetermined linear system (β < κ). The most common case is the first, which then 
requires a linear equation solver. In the less common second case, we can only minimise 
the residual if we use the two-norm that lead to a linear least squares problem.  
We emphasise that the collocation points need not be coincident with the centres of the 
basis functions. 

If the parameters of the radial functions are not prescribed but are also to be 
determined, then it is necessary to select enough collocation points to account for these 
additional degrees of freedom. The problem now is non-linear and it requires appropriate 
techniques. 

Clearly, in order to activate the boundary conditions, collocation points and/or basis 
function centres should be selected both in the interior as well as in the boundary of the 
domain. In principle, there is no impediment to having basis function centres in the 
exterior of the domain. 

Observe that, in this somewhat abstract presentation, the boundary conditions can be 
as general as desired and also the order of the differential operator can be arbitrary.  
We only assume that the problem is well posed and has a unique solution. As a matter of 
fact, F and/or B could also be non-linear or time dependent, although we do not discuss 
those cases in this paper. 

Observe also that, since there is no mesh connecting either the basis functions or  
the collocation points, there are no special problems with the discretisation near the 
boundaries. The boundaries (either exterior or interior) need to be identified in  
the formulation of the problem, in order to know how to select points on them or in the 
interior of the integration domain and also to apply the appropriate collocation 
conditions. 

Depending on the distribution of collocation points and the position of the basis 
function centres the discrete system can be ill-conditioned, for instance, if for some radial 
basis function there are not enough collocation points within its effective support. 

3 Global error estimation and basis equidistribution 

Let u(x) be the exact solution of the linear BVP (1) and let y(x) be the collocation 
approximation. Then, the global error e(x) = u(x) – y(x) satisfies: 

( ( )) ( ),j jF e r= −x x

( ( )) ( ),i iB e rb= −x x  (4) 

where r(x) = F(y(x)) and rb(x) = B(y(x)) are the residuals evaluated at (possibly) a 
different set of control points. This is done since, in the interpolation case, those residuals 
would be essentially zero, if they were evaluated at the same points for which the weights 
were obtained; in this way we also monitor the approximate solution elsewhere, a more 
reliable and significant test. 
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Thus, solving equation (4), where e(x) is replaced by a linear combination of the same 
basis functions used earlier with weights we, we can obtain an approximation to the 
global error everywhere in the domain. This is quite different from the ‘local error’ 
estimates commonly used (Behrens et al., 2001) and it is more of the classical deferred 
correction type (see Driscoll and Heryudono, 2006; Pereyra, 1984). Although it is not a 
rigorous estimate (and certainly not a bound), it gives additional (hopefully useful) 
information on the numerical solution obtained by this method in real life problems. 

Observe that for linear differential equations, even in the adaptive case, only a linear 
least squares solve is required to obtain the weights of the collocation solution e(x).
In consequence, this process amounts to a correction of the weights: 

(2) .i i iw w we= +

We can use this global error estimate as a monitor function in a post-process to 
approximately equidistribute the error, by adding k – 1 (k > 1) basis functions where the 
error is greater than k times the average. Naturally, this solve-error estimate-add basis 
functions process can be re-iterated, such as is done in Driscoll and Heryudono (2006), 
where the residual is used as the monitor error function. 

3.1 Example: Poisson’s equation in 2D 

We exemplify the above procedure in a simple case: Poisson’s equation with Dirichlet 
boundary conditions on a general domain D ⊂ R2:

( ) ( ), ,y g Dε∆ =x x x

( ) ( ), .y b Dε= ∂x x x

We choose Gaussians for our basis functions and consider first the general case with 
fixed parameters ci, *

ix . In order to apply the differential operator to the Ansatz we need 
the second partial derivatives of the Gaussians: 

2
2 2 2*

2 2 [2 ( ) 1], 1,2.l l
l

G c G c x x l
x

∂
= − − =

∂

The linear least square problem takes the form (with appropriate additional equations for 
the boundary collocation points): 

2
2

2 2* *

1 1 1
min 4 ( ; ) ( ) 1 ( ) ,w i i i i k i kl il k

k i l
w c G c c x x g

βκ

= = =

− − − −x x x

while for the non-linear adaptive one the minimisation is on all the parameters [w; c; x*]
When determining the non-linear parameters we will also need the partial derivatives 

of G with respect to them: 

* 2 2 *
*

2 ( ) , 2 ( ), 1, 2 .l l
l

G GcG c G x x l
c

∂ ∂= − − = − =
∂ ∂

x x
x
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3.2 Numerical examples for Poisson’s equation in 2D 

We consider the problem of subsection 3.1 for: 

1 2 1 2( ) 25(sin(5 ) sin(5 )); ( ) sin(5 ) sin(5 ),g x x b x x= − + = +x x

with D being a circle of radius 1 embedded in the unit square. We consider first a uniform 
mesh of 20 × 20 points in the unit square that results in 276 collocation points in the 
circle’s interior. We also take 180 points in the boundary of D, equally spaced at 2°.  
The basis functions centres are the same as the interior collocation points, while the shape 
parameter c = 1.0. 

We use a truncated SVD algorithm to solve the resulting 456 × rank problem.  
This results in an effective regularisation procedure, as we see in Table 1. The value of 
rank ≤ 276 is determined by the threshold used to cut the small singular values that are 
the source of ill-conditioning. 

Table 1 Results for Poisson’s equation and various TSVD thresholds 

Maximum error Estimated error TSVD threshold Rank Condition
0.0001 0.000012 10–12 55 72 × 1010

0.0012 0.00032 10–10 45 88 × 108

0.013 0.017 10–8 32 80 × 106

0.066 0.028 10–6 21 34 × 105

Next, we allow also basis functions in the boundary and finally we choose the interior 
collocation points and the interior basis function centres and shape parameters at random. 
The best results are shown in Table 2. Here, (20 × 20) + 360 : 636, means that 276 points 
were chosen in the interior of D from a uniform (20 × 20) mesh in the unit square and 
360 points were chosen uniformly distributed in the boundary, for a total of 636 points. 
(R) indicates that the points in the interior of the domain were taken at random, while in 
the c column (R) means that the values of c were taken at random in the indicated 
interval. We also include a couple of runs with the node adaptive procedure of Section 4. 

Table 2 Best results for various modalities 

# coll. # basis Max. error Est. error Rank c Time 
400 + 360 : 636 400 + 360 : 636 0.0086 0.011 32 1.0 1.11”
400 + 360 : 636 400 + 360 : 636 0.0030 0.0014 68 2.0 9.44”
301 R + 360 : 661 301 R + 360 : 661 0.00020 0.000026 79 [0.5, 2.0] R 12.52”
225 + 60 : 205 15 : Adaptive 0.0044 0.0023 – – 10.3”
205 30 : Adaptive 0.000047 0.00015 – – 33.8”
205 45 : Adaptive 0.0000016 0.00008 – – 74.6”

The computing times (in seconds) correspond to an Opteron 2.4 GH PC under  
LINUX; the implementation uses FORTRAN 95 with the INTEL ifort compiler.  
The threshold was in all cases 10–8. For the adaptive case we started from ten different 
sets of random initial values for the non-linear parameters (3 × #basis). We report the 
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best results and the average computational time. We show the effects on accuracy and 
computing times due to the increase in the number of basis functions. 

In Figure 1 we see the distribution of collocation and basis centres for the random 
choice above (third test). 

Figure 1 Distribution of randomly chosen points 

The second example is from Driscoll and Heryudono (2006). It is also Poisson’s 
equation, now in the square [–1, 1]2, with 

2 2
1 2 1 2 1 2( , ) 40(10( ) 1) ( , ),g x x x x R x x= + −

2 2
1 110( )

1 2 1 2 1 2( , ) ( , ), ( , ) .x xb x x R x x R x x e− += =  (5) 

The solution is R(xi, x2) and therefore the problem is trivial for collocation with 
Gaussians, if we assume the correct shape parameter c2 = 10. In fact, for a very small 
3 × 3 nodal set, with a basis function at (0, 0) we get very good accuracy as expected.  
The weight for the central basis function is 1 and those for the boundary ones are 
essentially zero. Accuracy is very good for various numbers of uniformly placed nodes. 
Also, if we set the shape parameter to other values we can still get some reasonable 
results, until we get too far from the correct value. A summary of results is shown in 
Table 3 and more on this problem using an adaptive procedure can be found in Section 5. 

Table 3 Results for example 2 

Ncoll. Nbas. Thresh Max. error Est. error Rank c2 Time 
64 + 20 9 10–10 8.3 × 10–11 4.5 × l0–13 9 10 0.012”

25 + 40 25 + 40 10–10 1.2 × 10–10 2.9 × l0–11 49 10 0.016”

400 + 160 400 + 160 10–10 7.8 × 10–8 1.4 × 10–6 293 10 4.93”

100 + 40 100 + 40 10–10 0.0082 0.12 104 8 0.08”
400 + 80 400 + 80 10–10 8.1 × 10–7 1.7 × 10–5 246 8 5.06”

400 + 80 400 + 80 10–10 1.2 × 10–4 6.4 × 10–5 171 5 2.95’
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Driscoll and Heryudono report a maximum error of 4.54 × 10–5, using 260  
multi-quadrics, 2 2 2

1 2 1 2( , ) 1 ( )x x x xφ = + +ε  and a node adaptation algorithm that took 
four iterations to settle down. 

4 Direct node adaptation 

The conventional approach to nodal adaptation (see Section 3 and Babuska (1976), 
Behrens et al. (2001), Behrens (2005), Pereyra and Sewell (1975) Mu oz-Gomez et al.n
(2006a) and Hon and Wu (2005)) relies on a multi-pass approach. An initial nodal set for 
the basis functions is chosen, the collocation problem is solved, some kind of (usually 
local) error estimation is obtained from the initial approximate solution and a refinement 
or relocation of the nodes is effected. This procedure can then be re-iterated. 

We propose to explore a variation on this approach in which, instead of using an 
arbitrary initial set of nodes, we solve the collocation equations, possibly on a coarse set, 
both for the weights w and for the location x* and shape parameters c of the basis 
functions. The collocation equations become then a separable non-linear least squares 
problem that is amenable to solution by the Variable Projection method (Golub and 
Pereyra, 1973, 2003). 

We can combine both approaches by using the global estimation of Section 3  
in order to introduce further basis functions where the errors are not approximately 
equidistributed or if the desired accuracy has not been reached. 

As an illustration we consider the collocation procedure for Poisson’s equation, 
discussed in Section 3.1. The least squares problem 3.1 is now non-linear and separable. 
If we write it in matrix form: 

2*
2, , *

min || ( , ) || ,φΓ −
w c x

c x w

where φ represents the right hand side, then, for each set of fixed values of c, x*, the 
linear parameters w can be eliminated by solving (analytically) the corresponding linear 
least squares problem as: 

,φ+= Γw

where Γ+ is the pseudoinverse of the matrix Γ. Replacing this expression we obtain the 
reduced Variable Projection functional, with minimisation now only required on the 
nonlinear parameters: 

2
2*

min || ( ( , *) ( , *) ) || .I φ+Γ Γ −
c,x

c x c x

This problem can be solved by using VARPRO, the algorithm developed in Golub and 
Pereyra (1973). A good modern public implementation can be found in Gay (2002). 

5 Numerical examples of node adaptation 

We revisit Poisson’s equation (5) from Driscoll and Heryudono (2006), but now  
we allow the parameters of the Gaussians to vary, starting from ten random initial values 
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and using VARPRO to solve the resulting separable non-linear least squares problem.  
We take 8 × 8 points in the interior and 20 collocation points in the boundary of the 
domain. The maximum error is reported on an uniform 11 × 11 mesh. The calculation 
was performed in double precision. Only three of the ten trials were successful, returning 
(√l0, 0, 0) to full double precision accuracy, with the error estimation and VARPRO 
termination flags giving a clear indication of failure or success. Thus, a first lesson 
learned is that when this non-linear multi-modal estimation problem is solved with a 
locally convergent algorithm, such as VARPRO, it is necessary to add some kind of 
global optimisation approach in order to better explore the input space for appropriate 
solutions, as we have done by trying multiple initial values. 

Now we consider a more complicated domain, limited by the astroid curve: 
2 2 3 2 2
1 2 1 2( 1) 27 0.x x x x+ − + ≤

We use a 20 × 20 uniform mesh in the unit square and select the 108 points that fall in the 
interior of the domain. We also take 40 points on the boundary at equally spaced angles, 
using the parametric form of the astroid (see Figure 2): 

3
1 cos ,x θ=

3
2 sin .x θ=

We consider three Gaussians and determine their parameters from randomly generated 
initial values. Invariably, the algorithm picks the correct Gaussian and generates linear 
weights that are essentially (√l0, 0, 0). The accuracy is full double precision, of course, 
and the error estimator is very accurate. 

Figure 2 Poisson’s equation inside an astroid collocation points 

For the next problem we consider an L-shaped membrane with the same equation, 
number of basis functions and collocation points as in the previous problem. The results 
are entirely similar. 
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We finally consider another problem from Driscoll and Heryudono (2006).  
The domain is the same L-shape as above, but now we use the forcing function 

2 2
1 210( 0.1) ( 0.1)( ) 10 x xg e− − + −= −x

and 0 boundary conditions, resulting in a problem with no analytic solution and a  
re-entrant corner singularity. We use a 30 × 30 uniform mesh in the interior, 120 
collocation points on the boundary and ten basis functions chosen at random in 
[0, 0.2] × [0, 0.2], with the shape parameters in the interval [3,3,3] (see Figure 4).  
After ten trials the best results have a maximum estimated error of 0.00068.  
The VARPRO results for that best run show a residual of 0.093 with a maximum gradient 
component of 2.2 × 10–7. The average time per run was 11.3”. 

One question to ask would be: is it necessary to make multiple runs? Besides 
avoiding the possibility of failure, we can report that the best run (from random initial 
values) was not the first one, which had an estimated error of 0.001; so the added 
expenditure of running ten times improves the reliability and the accuracy by a 
significant factor. 

Subsequently, after each trial and by using the global error estimation as a monitor 
function, we approximately equidistribute the error by introducing k new nodes where  
the error is k times larger than the average. We limit the refinement to adding at most 
50% more nodes at a time. In one first pass, which brings the number of basis functions 
to 15, we obtain a maximum estimated error of 0.00018, for an almost fourfold accuracy 
improvement. We observe that these nodes are further relocated by the VARPRO 
procedure. The whole calculation takes 33” in a high end PC. The solution and error are 
displayed in Figure 3. A more inexpensive alternative would be to use the linear 
procedure of Section 3.1. 

Figure 3 (a) L-shape problem: solution and (b) L-shape problem: error 

 (a) (b)

Driscoll and Heryudono report good results for their iterative adaptation method that ends 
with 2100 basis functions concentrated near the singularity and comment that this is 
probably not an ideal method for this kind of problem. No report on the accuracy or cost 
of the calculation is offered. 
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Figure 4 Collocation points for L-shaped membrane 
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