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Abstract

In this paper we consider the problem of generating a well sampled
discrete representation of the Pareto manifold or the Pareto front corre-
sponding to the equilibrium points of a multi-objective optimization prob-
lem. We show how the introduction of simple additional constraints into
a continuation procedure produces equispaced points in either of those
two sets. Moreover, we describe in detail a novel algorithm for global
continuation that requires two orders of magnitude less function evalua-
tions than evolutionary algorithms commonly used to solve this problem.
The performance of the methods is demonstrated on problems from the
current literature.

1 Introduction
Multi-objective optimization is becoming a common tool in Engineering and Sci-
entific applications. Most optimization problems in industry are multi-objective,
non-linear, constrained and multi-modal, i.e., very tough.

Multi-objective optimization has a long history, especially in areas such as
decision and game theory. It is only in the last twenty years that it has become
more popular in Engineering and Scientific applications. Many books describe
a myriad of approaches to the ”solution” of these problems [4, 23, 8, 6, 22, 13].
The quotes are used to emphasize that the most common situations lead to
a continuum of equilibrium points, which in the abscense of additional infor-
mation are all valid ”solutions” to the problem. That is where many of the
different approaches appear, attempting to decide which of these infinity many
possibilities should be chosen. Thus, many methods use additional ”expert” or
subjective information to guide the search towards a particular solution [14, 21].
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In recent times, with the increase in computing power, it has become possible
to attempt to generate a complete discrete approximation to the Pareto manifold
(set of equilibrium points) or its image by the objectives, the Pareto front.
Some of these methods use escalarization as their basic tool, i.e., minimization
of a linear combination of the objectives is employed to generate Pareto points.
However, since the mapping from weight space to input or output space can be
very nonlinear, different strategies need to be devised to obtain a well sampled
set of solutions.

Evolutionary and genetic algorithms (GA) are one class of powerful methods
that has been favoured in recent times for their robustness, specially in the
versions that permit to calculate a discrete representation of the Pareto manifold
[3]. The negative side to these methods is the number of function evaluations
required to obtain a reasonable accuracy, which grows exponentially with the
dimension of the design parameter space. This is totally inadequate for realistic
high fidelity design applications, where function evaluations can be very costly.
They still can be useful if one replaces these expensive evaluations by surrogates.
These methods do not use linear aggregation.

In this paper we show that the Pareto manifold for a convex bi-objective
problem can be approximated by solving numerically a two-point boundary
value problem and from this insight we mimic technics for the solution of such
problems to obtain a continuation method that updates a whole discrete repre-
sentation of the Pareto manifold while maintaining and even spacing between
solutions. As an additional bonus this procedure is easily parallelizable. We
also consider for comparison a simple continuation procedure and an enhanced
version that includes a equispacing constraint. We will see that this last method
is capable of obtaining equispaced points in the non-convex parts of the Pareto
front and it is also useful to initialize the global method when this fails to con-
verge from poor initial guesses, specially for highly curved Pareto fronts. The
simple implementations we have devised to produce the results of this paper are
not production codes but give us a quick way to show that this approach works
in some test cases taken from the literature.

In [2], a method that is not based on GA is presented. This method is most
akin to ours in terms of economy of function evaluations. It is pointed out in
that paper that it is very difficult to guarantee an uniform spread of points
in the Pareto manifold or in the Pareto front when using the popular method
of solving many single optimization problem for convex combinations of the
objectives. We will show that the methods of this paper do just that without
any guessing and in a manner as economical as the method proposed in that
reference, but with a simpler algorithm.

The full front continuation described in this paper does not suffer from the
disadvantages pointed out in [2], with regards to usual initial value continuation,
such as that of [18].

We discuss in this paper the unconstrained case to understand the geometry
of the problem and that of the optimality conditions. In a companion paper we
will extend these ideas to the constrained case. The methods extend naturally
to problems with more than two objectives.
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2 Optimality Conditions
The multiobjective optimization problem is defined as:

minx∈D F(x), (1)

where x ∈ Rn, F ≡ {f1(x), ..., fk(x)} ∈ Rk and D ⊂ Rn is defined by a set of
constraints.

One of the main features that distinguishes multi-objective from single-
objective optimization is that it is very unlikely that there will be an x∗ that is
a minimizer for each and every objective. In fact, these problems are character-
ized for the requirement of a subjective trade-off between conflicting objectives.
The optimality concept here is known as Pareto (or Nash, Edgeworth) equilib-
rium, which in words establishes that x∗ is a global Pareto equilibrium point if
there is no other point that is dominated by x∗.

A point x is dominated by a point y iff fi(y) ≤ fi(x), with strict inequality
for at least one of the objectives. Thus, a global Pareto equilibrium point is
such that no improvement for all objectives can be achieved by moving
to any other feasible point. A local version of this concept is obtained if we
limit the mouvement to an open neighborhood around the optimal point.

For differentiable convex objectives we can use the usual geometrical con-
cepts of single objective optimization to arrive to an analytical characterization
of the local Pareto points. This is easily seen first for the unconstrained case of
two objectives and two independent variables. Let x∗1, x∗2 be local minimae of
f1 and f2 respectively. Then a segment of the Pareto manifold is a curve that
joins these two points and is defined as the parametric set of solutions x∗(λ) of
the first order necessary optimality condition:

G(x(λ); λ) = (1− λ)∇f1(x) + λ∇f2(x) = 0, 0 ≤ λ ≤ 1. (2)

Geometrically, (2) says that a point is Pareto optimal if the contours of the
two objectives are tangent at it, with gradients pointing in opposite directions;
i.e., the two functionals have no descent directions in common (see Figure 1 for
a cartoon description). The image by F of the Pareto manifold is called the
Pareto front.

3 A Differential Equations Approach to Finding
a Discrete Representation of the Pareto Man-
ifold

By differentiating G with respect to λ we obtain:

xλ = −H−1(x) Gλ(x), subject to x(0) = x∗1, x(1) = x∗2. (3)

3



Figure 1: Geometrical Description of the Pareto Manifold for a Bi-objective
Problem with Two Independent Variables.

This is a two-point boundary value problem for a set of n first order ordinary
differential equations in the independent variable λ. Here
Gλ = ∇f2(x)−∇f1(x), H(x) = Gx = (1− λ) H1(x) + λ H2(x), with Hi the
Hessian matrix of fi. In order for this global result to hold we must have of
course that H(x(λ)) is nonsingular along the Pareto manifold. For the
non-convex case, segments of the Pareto manifold will join each pair of
minimae of the functionals fi.

In order to obtain a discrete representation of a segment of the Pareto manifold
we can solve problem (3) numerically. Since we also want an uniform sampling of
this manifold segment, we can require a mesh refinement equidistribution of the
arc length as additional constraints. An initial approximation to the trajectory
can be obtained by the straight line joining the two minimae:

x(0)
i = x(0)(λi) = (1− λi) x∗1 + λi x∗2, λi = i ∗ δλ, i = 0, ..., l + 1. (4)

Unfortunately we will need still another derivative to apply Newton’s method
to solve the resulting nonlinear system of algebraic equations that arises when
using global discretization methods to solve this 2PBVP.

Although this is an elegant approach that sheds some light on the potential
structure of the Pareto manifold, it may not be too practical, since it requires
third order derivatives, so we go back to (2) and consider standard continuation
[19], combined with a direct application of Newton’s method, in case we have
the required differentiability.

Starting from x∗1, i.e., λ = 0, we solve successively G(x(λi); λi) = 0, with λi

defined as above, although an adaptive algorithm is also possible and probably
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wise (see for instance [7]). Newton’s method applied to the above equation for
a given λi can be written as:

x(j+1) = x(j) −G−1
x (x(j)(λi)) G(x(j)(λi)), j = 0, ...

Of course, we write the above iterative step as a system of linear equations
with matrix Gx. Singularity of Gx indicates possible bifurcation of the solu-
tion path. Another potential problem, turning points, should not affect this
parametrization (arc length). If x∗(λi) is the approximate solution of the above
equation, then we use it as initial value for the next one: x(0)(λi+1) = x∗(λi).

For bi-objective problems one can also use a general continuation code for
solving systems of nonlinear equations, such as [19], or one that applies directly
to the optimization problem [18], although we have preferred to use a simple
implementation of Newton’s method with constant step continuation, just for
the sake of a rapid comparison.

4 Parallel Pareto Manifold Calculation
Although the reduction to a TPBVP is not an attractive proposition, applying
ideas from the numerical solution of such problems by finite differences [15, 12],
we can develop a novel continuation approach for convex problems that will de-
form an initial discrete guess of a convex Pareto manifold into its actual target,
maintaining an equidistant discretization. One of the most attractive features
of such an approach is parallelization, which is not possible with regular con-
tinuation from one initial solution, an essentially sequential process. A different
approach with apparently similar amount of work can be found in [2].

Going back to problem (1) and the resulting system of optimality conditions
(2), we consider the initial mesh of approximate solutions x(0)

i (λi) defined in (4).
Instead of the standard sequential continuation approach mentioned above we
consider now deforming the whole set of solutions until it matches the Pareto
manifold with enough accuracy.

One desirable feature, emphasized in algorithms such as those of [3, 2], is to
have an equidistant representation of the Pareto manifold. Observe that we start
with such a mesh, but in order to guarantee that we end with an approximately
uniform representation we will also solve for the parametrization λi, insisting
that the spacing (essentially arc length along the manifold) stays uniform, by
imposing the additional conditions:

Li(x, λ) = ||xi − xi−1||22 − P/(l + 1) = 0,

where P =
∑

||xj − xj−1||22. Some authors do not this kind of approach into
the linear aggregation methods, meaning simply that the parameter λi is not
prescribed but is calculated along with the solution xi.

Although this global approach seems to lead to a formidable system of non-
linear equations, it is a very structured one and careful crafting of the solution
algorithm results in a reasonable floating point count.
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Applying Newton’s linearization to the system (2-4) we obtain,

E
[

∆x
∆λ

]
=





−G1

−G2

.

.

−Gn

−δx0 + P
(l+1)2

−δxl−1 + P
(l+1)2





, (5)

where δxi = ||xi − xi−1||22, and

E =





Gx1 0 0 Gλ1 0 0
0 Gx2 0 0 Gλ2 0 0

0 Gxl Gλl

L1x1 L1xl 0 0

Llx1 Llxl 0 0





.

Or in block matrix form:

[
A B
C 0

] [
∆x
∆λ

]
=

[
a
b

]
,

where A = diag(Gxi), B = diag(Gλi), and a, b are the corresponding right
hand side vectors from (5).

This 2 × 2 block system has a special structure that we will exploit. The
lower block is full and of size l×n.l. The upper blocks are diagonal with a total
of l× l blocks each. The first one has blocks of size n× n, while the second one
has blocks of size n×1, for a whole matrix of size (n+1)l× (n+1)l. The partial
Frechet derivatives corresponding to the L−equations are:

∂Lm

∂xi
=




2(xi − xi−1) + ηi, i = m

−2(xi − xi−1) + ηi, i = m− 1
ηi, all other i′s



 ,

where ηi = − 2
l+1 (2xi − xi−1 − xi+1).
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We use block Gaussian elimination to solve this 2× 2 block system.
We first eliminate C by multiplying the first row by C diag(G−1

xi
) = C G−1

x ,
and replacing the second row by its difference with the modified first row, thus
obtaining a 0 matrix in the low left corner and the Schur complement in the
right one:

D∗ = CG−1
x Gλ,

b∗ = −CG−1
x G− b.

Then back-substituting:

∆λ = D∗−1b∗,

and finally:

∆xi = −G−1
xi

Gλ∆λi −G−1
xi

Gi.

Since all these last systems are independent, they can be solved in parallel.
In fact, for each i we factorize Gxi and then solve the two systems:

Gxici = Gi, Gxidi = Gλi ,

to obtain:

∆xi = −di∆λi + ci.

With these corrections we step the solutions:

x(j+1)
i = x(j)

i + ∆xi,

λ(j+1)
i = λ(j)

i + ∆λi.

It is wise to control the Newton step to increase its convergence region. In
particular we should insist in the monotonicity of the parameters λi, which can
also be enforced by controlling the length of the Newton step.

We observe that Gaussian elimination applied directly to the full system,
ignoring its structure, would require (n+1)3l3/3 operations, while the proposed
algorithm has complexity (2l + 1)n3/3 + l3/3,which is substantially simpler for
large l (the number of Pareto points). The parallel algorithm also speeds up
with increasing l.
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MOP DE/Continuation Dimension
x Input variables State variables n
λ Pareto manifold parameters Independent variables l

Table 1: Duality between Multi-Objective Problem (MOP) and Differential Equation
(DE) (or continuation) formulation of the optimality conditions

An uniform discrete representation of the Pareto
front
In the previous section we showed how to obtain a uniform discrete represen-
tation of the Pareto manifold, i.e., a set of equally spaced Pareto equilibrium
points in design parameter space. However, it is usually simpler to inspect and
make decisions by looking at the Pareto front, which is the image of the Pareto
manifold in objective space. Unfortunately, equal spacing in design space does
not guarantee equal spacing in objective space. If that is the goal, then it needs
to be stated explicitly by replacing conditions (4) by:

Li = ||F(xi)− F(xi−1)||22 −

l+1∑

k=1

||F(xk)− F(xk−1)||22

(l + 1)
= 0, i = 1, ..., l.

This of course, requires a re-calculation of the Jacobian of the resulting
system (albeit, only its lower block):

∂Lm

∂xi
=




−
2[f1(xi)− f1(xi−1)]∇f1(xi) + 2[f2(xi)− f2(xi−1)]∇f2(x) + ηi, i = m
2[f1(xi+1)− f1(xi)]∇f1(xi)− 2[f2(xi+1)− f2(xi)]∇f2(x) + ηi, i = m

ηi all other i′s
− 1




 ,

where ηi = − 2
(l+1) [2f1(xi)−f1(xi−1)−f1(xi+1)]∇f1(xi)+ [2f2(xi)−f2(xi−1)−

2(xi+1)]∇f2(xi).
Finally,

bm = −Lm.

5 The general case
We like to point out to the dual aspect of the differential equation (1), and
similarly to the continuation system of the previous section, with regards to the
original problem.

From Table 1 one can see that the complexity of calculating the Pareto mani-
fold as the number of input or design variables increases implies more differential
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(or algebraic) equations, while an increase in the number of objectives beyond
2 leads to partial differential equations (or continuation with multiple param-
eters) in spaces of increased dimensionality. Observe that for the bi-objective
problem the Pareto manifold is always a curve in the space of input variables
parameterized by λ.

The continuation method can be extended to the more than 2 objectives
case although, as mentioned, it will have increased complexity (see [20]). An
alternative method is presented in [2].

Our approach can also be extended at the price of introducing more con-
straints, in order to define an uniformly spaced mesh of solutions in the k −
1−dimensional Pareto manifold or in the Pareto front. For instance, for 3 ob-
jectives and a l× l mesh of Pareto points, we would have to solve the following
set of equations:

G(x(λ),λ) = λ1∇f1 + λ2∇f2 + λ3∇f3, λ1 + λ2 + λ3 = 1,

||xi,j − xi−1,j||22 −
1

(l + 1)2

l∑

s=0

l∑

t=0

||xs,t − xs−1,t||22 + ||xs,t − xs,t−1||22 = 0,

i = 0, ..., l, j = 0, ..., l,

with similar equations in the jth direction and the distances to points outside
the mesh equated to zero.

For the algorithm to obtain an equispaced representation of the Pareto front,
the distance constraints should be imposed in objective space.

The method also extends to problems with constraints, by using the complete
Lagrangian. It is probably wiser to use well proven nonlinear programming
codes to solve each of the individual constrained optimization problems, after
effecting the first step of eliminating the λ′s. The equidistance constraints can
then be naturally included in the nonlinear program. Parallelization can be
achieved by decoupling the problems for different points and keeping a data
base of current values of the solutions that is updated asynchronically by each
optimization process. One then uses whatever values are present in the data
base to calculate the couplings between equations. This will lead to a linearly
convergent algorithm which will be protected from individual processor faillures
(see [16]).

Quasi-Newton approximations can be used if derivative information is not
readily available. Direct search methods are also plausible, although we will
again be moving in the undesirable direction of large number of evaluations.

In Das and Dennis [2] it is shown the equivalence between their method and
those that minimize linear combinations of the objectives, such as the meth-
ods that we are presenting here. Thus, a fortiori, we can say with Das and
Dennis that these methods are independent of scalings of the objectives, which
essentially amount to a change in the parametrization of the Pareto set.
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Examples
We will compare four different methods:

1. Global front continuation with equispacing constraints on the Pareto man-
ifold.

2. Global front continuation with equispacing constraints on the Pareto front.

3. Simple Newton continuation.

4. Newton continuation with equispacing constraints.

Method 1 was explained in detail in Section 4. Method 2, a modification of the
distance constraints of Method 1 was explained in Section 4.
Method 3 was explained briefily in Section 3. It is used with constant step in
λ. It should be able to obtain convex segments of the Pareto manifold, but we
do not expect it to sample it uniformly.
Method 4 combines Newton continuation with the front equispacing constraints
to calculate simultaneously (x, λ), so that ||F (xi)− F (xi−1)||22 = cte. The cte.
should be the quotient of the length of the Pareto front divided by the number
of points. Since we do not know the length of the Pareto front a priori, we
guess it to be somewhat larger than the distance between the two end points,
attempting to account for the curvature of the front and the parameterization
mapping.

We consider the first test problem (SCH) in [3].

f1(x) = x2,

f2(x) = (x− 2)2.

This problem is obviously trivial. The unique minimae of the goal functionals
are: x∗1 = 0, x∗2 = 2, and the Pareto manifold is the whole interval [0, 2]. Thus
the problem we need to solve (2-4), has 2 ∗ l equations and 2 ∗ l unknowns, in
order to generate l points equally spaced in the Pareto manifold. We stop when
the RMS is less than 10−6/

√
(2 ∗ l). Also, the mapping from λ to x(λ) is trivial

and preserves equidistance: i.e., a uniform mesh in λ will results on a uniform
spacing both on input and goal space, so all methods work well, as we will see
below.

Since taking the initial values (4) would lead in this case to the solution of
the problem, we perturb them so that x and λ are chosen at random within 0.5
of those values.

For most problems, Newton’s method takes a maximum of four iterations
to reduce RMS below 10−6. Since each iteration requires one evaluation of the
vector goal functional and its first and second derivatives (all trivial in this

10
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f1

0

1

2

3

4

f2

Pareto front

Pareto front for problem SCH
150 points

Results for problem SCH of Deb et al [3]. Simple continuation with
equispacing in the Pareto set.

problem), we can say in the language of evolution algorithms that the method
requires 4 generations of a population with l points, to converge to high preci-
sion, in contrast with evolutionary algorithms that usually require hundreds of
generations to converge to the Pareto front (see [3]).

Observe that, as expected and anticipated, for the method described in Sec-
tion 4, the points in the Pareto front are not equispaced, although they are
equispaced in the Pareto set. However, in this simple problem the Pareto front
sampling is quite satisfactory. The following Figure shows the results with the
equispaced constraints on the Pareto front (30 points), which of course are per-
fectly spaced by construction.

It is interesting to contrast these results on a trivial problem with the evolu-
tionary methods of [3] as shown below. We see that the evolutionary methods,
specially the most recent algorithm NSGA-II, which are extremely costly in
terms of function evaluations, do a good job in sampling the front, although
they are not perfectly evenly spaced as we saw above and leave a number of
gaps in the coverage, besides of requiring several orders of magnitude more
functional evaluations.
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Problem SCH: point distances on front
Global continuation, equispaced fron

Figure 2: Problem SCH with global continuation

According to [3], the results for NSGA-II in Figure 3 were obtained using a
population of 100 points and a maximum of 250 generations, or 25,000 function
evaluations! They are compared with an earlier method (PAES) to show its
improved sampling capability.

It turns out that Method 4, although based on linear aggregates of the
objectives, is capable of obtaining points in the non-convex part of the Pareto
front, as we see in the next non-convex example (FON), also from [3]:

f1(x) = 1− e

−

3∑

i=1

(xi − 1/
√

3)2

,

f2(x) = 1− e

−

3∑

i=1

(xi + 1/
√

3)2

.

Observe that the simple continuation not only produces irregularly spaced
Pareto points, but also only covers a small part of the initial convex segment
(beware of the different scales in the two graphs!), while Method 4 has been
able to continue through the inflection point and into the concave part of the
front, besides of producing a nicely equispaced sample. This seems to contradict
the results of [11], and therefore it requires a closer inspection. We are missing
one point at the end since we did not estimate the length of the Pareto front
accurately enough.

A more challenging problem is POL, also from [3], since it is non-convex and
disconnected:

f1(x) = 1 + (A1 −B1)2 + (A2 −B2)2,

12



Figure 3: Results for SCH from [3]
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Figure 4: Problem FON. Boths methods used 30 points.
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f2(x) = (x1 + 3)2 + (x2 + 1)2,

where,

A1 = 0.5sin1− 2cos1 + 2sin2− 1.5cos2,

A2 = 1.5sin1− cos1 + 2sin2− 0.5cos2,

B1 = 0.5sinx1 − 2cosx1 + sinx2 − 1.5cosx2,

B2 = 1.5sinx1 − cosx1 + 2sinx2 − 0.5cosx2.

Here we see that the methods correctly stop when reaching the end of the
left segment and again, plain Newton does a poor job with the spacing while
Method 4 gives a nicely sampled front segment.

Now we consider a simplified version of Example 1 of [20]:

f1(x) = (x2 − 1)2 + (x3 − 1)2 + (x1 − 1)4,

f2(x) = (x1 + 1)2 + (x3 + 1)2 + (x2 + 1)4.

This is a convex problem, but as we see below, the Pareto front has high
curvature, thus the global continuation procedure equispaced in input space
(Pareto manifold) does not produce an equispaced Pareto front, while the shoot-
ing method with equispacing condition on the front does. However, we still have
a problem in getting the last points in the front, although we have tried to adjust
the step.

Unfortunately, Method 2 that would be the solution to these two difficulties,
does not seem to work for this problem, when starting from the simple guess of
equispaced points on the straight line joining the minimae of the two objectives.
However, if we use as initial guess the values obtained by the marching contin-
uation (Method 4), we can successfully calculate an equispaced representation
of the Pareto front.

Finally we consider a problem with 10 input variables to see what is the
impact on performance. We chose initially problem ZDT4 from [3], but this
problem is non-convex and f1(x) = x1 has a minimum at −∞. The problem
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Figure 5: Results for problem POL (30 points)
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Figure 6: Results for problem SCHUTZE1 (30 points)
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(a) (b)

Figure 7: Results for modified ZDT4 problem

specifies x1 in [0, 1], which makes it essentially a bound constrained problem,
which is outside the scope of this paper. Thus we changed f1 to f1(x) = x2

1,
making the problem convex and with a minimum at x = 0. To complete the
specification of the problem:

f2(x) = g(x)[1−
√

x1/g(x)], g(x) = 1+10(n−1)+
n∑

i=2

[x2
i − 10cos(4πxi)], n = 10.

In Figure 7 we see the results for simple continuation and for continuation
with equispaced front constraints and in Table 2 we see that there is no sig-
nificant impact by the increase in dimensionality. Again, simple continuation
does not do a good job, but continuation with equispaced constraints produces
an excellent representation of the Pareto front in about 120 function evalua-
tions (for 30 points in the front). The RMS upon convergence is never greater
than 10−12 (this combines the norm of the gradient with the residual of the
equispacing constraints). Although they are not directly comparable, Deb et
al take 30,000 function evaluations for a fairly poor approximation to the front
in the unmodified problem ZDT4, while needing 50,000 evaluations to obtain a
reasonable approximation.

In terms of performance we offer some timings in Table 2. For these simple
problems the times are essentially negligible. We emphasize that since they
are all based on Newton’s method they use very few function evaluations as
compared to evolutionary algorithms. This will be a distinct advantage when
applying these methods to problems with expensive function evaluations, pro-
vided the necessary derivatives are available, hardly the case in problems where
large scale modeling is required to evaluate the goals and constraints, but it
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Method\Problem SCH SCHUTZE1 FON POL ZDT4 (mod.)
1 2 23 - - -
2 6 10 - - -
3 4 - 4 39 8
4 6 7 15 8 20

Table 2: Performance on an Intel dual Xeon 3.2 GH machine (LINUX). Time
in msec.

might be useful if those are replaced by differentiable surrogates. The time for
Method 2 in problem SCHUTZE1 includes the initialization time by Method 4.

6 Conclusions
We have discussed in detail the problem of finding well sampled representations
of the Pareto manifold or of its image by the objectives, the Pareto front, in
a unconstrained multi-objective optimization problem. Explicit algorithms for
bi-objective problems were described in detail, implemented and demonstrated
on problems taken from the recent literature. Extensions to more objectives
and constrained problems were indicated.

We showed that by adding simple equispacing constraints it was possible
to have both simple homotopic continuation of scalarized problems or a novel
global ”bending” method to produce perfectly evenly spaced representations of
either the Pareto manifold or the Pareto front.

The algorithms, based on the solution of the KKT first order optimality
conditions by Newton’s method were shown to use two orders of magnitude less
objective evaluations than commonly used evolutionary algorithms. Although
we agree with the fact that evolutionary algorithms are applicable to a wider
class of problems, we like to emphasize that for problems that are common in
Engineering and Scientific applications involving expensive simulations in order
to evaluate the objectives and constraints, the proposed methods could be a
useful alternative.
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