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Abstract8

The training of some types of neural networks leads to separable non-linear least squares problems. These problems may be9

ill-conditioned and require special techniques. A robust algorithm based on the Variable Projections method of Golub and Pereyra10

is designed for a class of feed-forward neural networks and tested on benchmark examples and real data.11

© 2006 Published by Elsevier B.V. on behalf of IMACS.12
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1. Introduction15

Neural networks are non-linear parametric models. Training the network corresponds to fitting the parameters in16

these models in the least squares sense, by using pre-classified data (a training set) and an optimization algorithm. As17

the non-linear least squares problem (NLLSQ) that results is one whose linear and non-linear variables separate, the18

use of the Variable Projection (VP) algorithm is applicable and it will increase both the speed and robustness of the19

training process [21,25,13,14,33,34,36,35].20

In this work we design and test a training algorithm based on Variable Projections. The algorithm is applicable to21

one-hidden layer, fully connected, neural network models using several types of activation functions. A generalization22

of VP developed and implemented by Golub and Leveque [11] (see also [8,10,18]) can be used for the case of multiple23

outputs. A version with separable equality constraints has been presented in [19].24

For a small number of parameters the variable Projection algorithm can be applied directly to the problem as a25

whole. When the number of parameters increases (for instance in VLSI design), the NLLSQ problem can be broken26

up and solved using block techniques combined with separability [28]. This will be the subject of a forthcoming paper.27

In the next section the necessary neural network concepts and notation are given and the specific least squares28

problem for training the network is formulated. Section 3 is an overview of the Variable Projection method, including29

a description of the implementation used (VARPRO). It also contains comments on the literature concerning the30

numerical condition of the problem. The tests results for the algorithm are presented in Section 4.31

Why Variable Projections? Besides the obvious advantage of reducing the number of parameters to be determined32

by eliminating the linear parameters, it has been shown [30,33,22,24] that the resulting reduced problem is better33

conditioned than the original full one, and if the same optimization algorithm is used it always converges in less34
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iterations. Since with a careful implementation, the cost per iteration is about the same, these results and extensive35

applications as reported in [14] (where a wealth of references can be found) indicate that there is a net gain in us-36

ing VP over solving the unreduced problem with a conventional non-linear least squares algorithm. Since usually37

neural networks are trained by using very slow (hundred of thousands of iterations) algorithms, such as back prop-38

agation (gradient method with step control), then the gain as compared to conventional training methods is even39

larger.40

On the negative side (for every algorithm), if there are no good a priori initial values for the non-linear param-41

eters, then these non-linear, non-convex problems will frequently have multiple solutions and therefore some kind42

of global optimization technique needs to be used to escape from undesired local minimae. We show in the applica-43

tion section that a simple Monte Carlo method in which multiple initial values are chosen at random helps with this44

problem.45

Valid concerns of NN practitioners are the design of the network and the so called bias-variance dilemma. Since we46

are considering single hidden layer perceptrons, the only design parameter in this case is the number of nodes in the47

hidden layer, which should be as small as possible, since parsimonius models are to be desired. The second concern48

is related to the fact that training data in real situations will have errors and that the resulting problems are often ill-49

conditioned and therefore there is a real problem in over-fitting the training data. Minimizing the bias (i.e., the sum of50

squares of residuals) and the variance are desirable but conflicting goals. As in any bi-objective optimization problem51

a compromise has to be reached. The procedure described below uses a modern implementation of the Levenberg–52

Marquardt method (cf. [20,5]) which has a built in approach to paliate the above problem if an approximation to the53

variance is available.54

A very thorough discussion of ill-conditioned least squares problems can be found in [15], where many regularization55

techniques are considered. Observe that when used appropriately, the Levenberg–Marquardt method is akin to Tihonov56

regularization.57

2. Neural networks58

Neural networks [2] are a convenient way to represent some non-linear mappings between multidimensional spaces59

given in terms of superposition of non-linear functions, by using so called activation functions and hidden units. We60

discuss in this paper the training of one-hidden layer, feed-forward, fully connected neural networks (NN), although61

the techniques are applicable to more general networks, for instance, those with feedback loops. These NN consist62

of three types of nodes arranged in layers: input, hidden and output layers. Each node can have several inputs and63

outputs.64

Each node acts on the input information in several possible ways, depending on the layer type:65

• Input node: No action.66

• Hidden node: Two possible, sequential actions,67

◦ Weighted sum of its inputs with a possible offset (bias) that can be incorporated as an additional input. If wi are68

the weights, and xi the inputs, i = 0, . . . , d, with x0 corresponding to the bias, i.e., x0 = 1,69

d∑
i=0

wixi ≡ wTx.70

◦ This linear output can be generalized by applying a non-linear function φ(.), called an activation function, so that71

the final output is: φ(wTx). The non-linear activation function will in general depend also on some additional72

parameter vector β.73

• Output node: Can weight and sum inputs only, or additionally also apply an activation function.74

In a feed-forward NN there is information flowing in only one direction. A fully connected NN has every node in75

one layer connected to every node in the next layer and there are no connections between nodes of the same layer.76

To allow for a general mapping one must consider successive transformations, corresponding to several layers of77

adaptive parameters, but as will be seen below, one-hidden layer is enough for the universal approximation property78

to hold.79

vpereyra
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2.1. Perceptrons80

These are networks of threshold or sigmoid activation functions, usually applied to classification problems. The81

most common choice for the activation function is the logistic sigmoid function:82

φ(a) = 1

1 + e−a
. (1)83

Important properties of these functions are that they are continuously differentiable, they are able to approximate84

the hard delimiter step function, and they have a simple derivative form: φ′(a) = φ(a)(1 − φ(a)).85

Since the sigmoid functions are dense in the space of continuous functions, a single hidden layer NN can approximate86

any continuous function at any precision, if enough elements are used (see [6]).87

Sometimes another activation function is used:88

φ(a) = tanh(a) = ea − e−a

ea + e−a
.89

A neural network whose hidden units use the tanh function is equivalent to one using sigmoids but having different90

weights and biases. Empirically, it is often found that tanh functions give rise to faster convergence of training algorithms91

than sigmoid functions.92

2.2. Radial basis functions networks93

This is a neural network model in which the activation of a given hidden unit is determined by the distance between94

the input vector and a prototype vector. Radial basis functions (RBF) were first used as a technique for multidimensional95

interpolation (see [4]). They employ the following functions:96

φ(‖x − µ‖2
2), (2)97

where µ is a center vector and ‖.‖2 is the l2 norm. We will work with the spherical Gaussian function defined by:98

φ(x) = exp

(
−‖x − µ‖2

2

2σ2

)
, (3)99

where σ2
j is the variance if this function is thought as a normal density function.100

The radial functions NN mapping that we will consider is:101

m∑
j=1

wjφj(x) + w0. (4)102

A common approach used to determine the parameters or train a RBF network is the so called unsupervised training,103

in which the linear parameters wj and the non-linear ones µj and σj are computed in two different steps. In a first104

stage, the non-linear parameters µj and σj are calculated using only input data information, specifically the density105

distribution of the input vectors. The resulting problem in the parameters wj is now merely a linear least squares106

problem that can be solved by any standard method. Notice that this parameter separation is not the same as in Variable107

Projections.108

The choices used in unsupervised training mean that the basis function parameters ignore the information in the109

target set. This can have the disadvantage that the optimal choice in terms of density estimation of input need not be110

the optimal choice for the representation of the target or output data.111

The joint determination of the whole set of parameters, both linear and non-linear is known as supervised training.112

This is the natural setup for the use of Variable Projection since the resulting problem is separable. Observe that in the113

original 1973 paper, Golub and Pereyra used combinations of Gaussians as one of the test cases.114

Concerning the representational properties of the radial function NN, the universal approximation property is valid115

for networks with Gaussian basis functions using adjustable width parameters and a single hidden layer, just as in the116

sigmoid perceptron case.
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2.3. Summary of activation functions117

The activation functions described above are: the sigmoid activation function which for the multivariate case is:118

φ(w; x) = 1
1+exp{wTx} , and the radial basis or Gaussian spherical function: φ(µ, σ; x) = exp(

−‖x−µ‖2
2

2σ2 ).119

To complete the catalogue of activation functions we consider exponential functions φ(ω; x) = exp{ωTx}, which120

are important to model phenomena characterized by systems of linear ordinary differential equations with constant121

coefficients, or in the complex case, to model spectra and also plane wave propagation of multiple signals. The real122

part of complex exponentials φ(ω; x) = a exp{ωTx}(cos dTx − b/a sin dTx) is useful to approximate real oscillatory123

data, and we include also these functions in our tool box.124

Also, in order to take into account the anisotropic case, we generalize the radial spherical functions to the ellipsoidal125

case: φ(µ, σ; x) = e−
∑d

i=1
((xi−µi)/σi)2

.126

2.4. Separable non-linear least squares formulation127

In what follows we will consider a simplified three-layer NN: input, hidden layer with n nodes, and output layer128

with only one node to which no activation function is applied. The weight parameters involved are the weights at each129

hidden node j : whj , and the weights for the output node: wo. In this case the final approximating function reduces to130

a weighted combination of any of the aforementioned activation functions:131

n∑
j=1

wojφj(βj; wT
hjxi).132

The training of a neural network consists of considering known input–output pairs (the training data), in order to133

find the NN parameters that best reproduce this data. A frequently used measure of performance is the sum of squares134

of the residuals between the NN output and that of the training set, defined by (xi, ti), i = 1, . . . , m. Assuming that the135

outputs are independent,1 the parameters involved: weight parameters wo and whj and activation function additional136

parameters βj are to be determined so that the sum of squares error function (SSE) is minimized137

SSE = min
wo,β,wh

1

2

m∑
i=1

⎛⎝ n∑
j=1

wojφj(βj; wT
hjxi) − ti

⎞⎠2

.138

3. Numerical solution of separable non-linear least squares problems139

Recasting somewhat the notation so that the connection with the formulation in the Golub–Pereyra paper [13] is140

clearer, the above problem reduces to the use of the approximating function:141

η(a, α; x) =
n∑

j=0

ajφj(αj; x),142

and the resulting separable non-linear least squares problem is:143

min
a,α

r(a, α; x) = min
a,α

‖t − η(a, α; x)‖2
2 = min

a,α

m∑
i=1

(ti − η(a, α; xi))
2 = min

a,α
‖(t − �(α)a)‖2

2. (5)144

Observe that in the formula of SSE above we have replaced woj by aj and both, the whj and the βj by αj .145

To summarize, the size of the training set is m, the number of hidden nodes is n, the output-node weights are the (linear146

parameters) aj , while the αj are the non-linear parameters, among others, the weights inside the activation function147

1 In the case when there is a correlation between the outputs or the errors have different sizes [24] suggests a more appropiate formulation involving
the output error correlation matrix, giving rise to a Generalized Least Squares problem [3]. See also [2] Chapter 6.
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associated with the hidden node j. The bias is introduced at the first layer through x0 = 1, and in the hidden layer through148

φ0 = 1. We assume that the vectors αj have k elements, (i.e., there are k − 1 inputs) and that m ≥ n × k. In addition,149

we call �(α) = [φ0(α), φ1(α), . . . , φn(α)] the (m × n) matrix function whose elements are �i,j(α) = φj(αj; xi).150

This type of non-linear least squares problem is frequently ill-conditioned.151

3.1. Variable Projection algorithm152

The Variable Projection algorithm [13] takes advantage of the separability of the parameters α and a to reduce153

the original minimization problem to a smaller (albeit possibly more complex) non-linear one, involving only the154

parameters α, and a linear one in the parameters a, which is solved in a post-processing step, after the non-linear155

parameters have been calculated.156

Basically, in a first step the linear parameters are eliminated using the explicit solution to the linear problem in terms157

of the pseudo-inverse of �(α) (for any fixed α). Then the reduced non-linear problem is solved and finally the linear158

parameters are obtained. In more detail, the steps are:159

• For any fixed α, the problem mina,α‖t − �(α)a‖2
2 is linear with minimal solution: a = �+(α)t, where �+(α) is the160

Moore–Penrose generalized inverse of the rectangular matrix �(α) [12].161

• Replacing this value of a into the original problem we obtain the reduced non-linear functional:162

r2(α) = ‖t − �(α)�+(α)t‖2
2 = ‖P⊥

�(α)t‖2
2. (6)163

For each fixed α, the linear operator:164

P⊥
�(α) = (I − �(α)�+(α)),165

is the projector on the orthogonal complement of the column space of �(α). Thus the name Variable Projection given166

to this reduction procedure, since the solution of the above non-linear least squares problem requires an iterative167

process in which α will change from an initial guess α0 to a converged minimizer.168

In Fig. 1 we show a cartoon of the VP in action. We depict �(α) (for fixed α) as a linear mapping from Rn into Rm.169

That is, the range of �(α) is a linear sub-space of dimension n (or less, if the matrix is rank deficient). When α varies170

during the VP iteration this subspace pivots around the origin. For each α the residual is equal to the L2 distance from171

the data vector t to the corresponding subspace. Thus we see in this cartoon that using a linear perceptron (regression172

with fixed α0, i.e., non-adaptive sigmoids), cannot in general be as good as the final converged non-linear adaptive173

perceptron.174

• Once a minimizer α̂ for the above problem is obtained, it is substituted into the linear one, which is solved for â and175

the final minimizer for the original problem (â, α̂) is obtained.176

There are several important points proved in [13,33] and [30] respectively, that make the algorithm not only177

viable, but also more efficient and specially much better conditioned:178

• The stationary point set of the original and the reduced functionals coincide and the algorithm is valid also in the179

rank deficient case.180

• The reduced non-linear functional, although it looks more complex and therefore costly to evaluate, gives raise to181

a better conditioned problem, which always takes less iterations to converge than the full problem [30]. By careful182

implementation of the linear algebra involved and by use of a simplification due to Kaufman [17], it turns out that183

the cost per iteration for the reduced functional is similar to that for the full functional, with little or no increase in184

the number of iterations.185

• The elimination reduces the dimensionality of the problem and as a consequence fewer initial parameters need to186

be guessed.187

3.2. VARPRO program188

One of the Variable Projection implementations we use is based on the original program written by Pereyra [13] as189

modified by J. Bolstad (1977) [16]. The minimization method used is a modification of Osborne of the Levenberg–190



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

MATCOM 2676 1–13

6 S. Pereyra et al. / Mathematics and Computers in Simulation xxx (2006) xxx–xxx

Fig. 1. Variable projection in action.

Marquardt (L–M) algorithm, and it also includes the Kaufman simplification.2 Careful implementation of the lin-191

ear algebra involved in the differentiation of the Variable Projector and the L–M algorithm produces an efficient192

algorithm.193

The information provided by the program allows for a statistical analysis, including for example, uncertainty bounds194

in the parameter estimations (for a brief overview see [31]).195

3.3. Numerical condition and regularization196

Analysis and experimental results in [32] for fully connected NN using sigmoid activation functions (which have197

limited discrimination capabilities) suggest that many network training problems are ill-conditioned. One can show that198

columns of the Jacobian can easily be nearly linearly dependent. As proven in [33], the use of the Variable Projection199

method improves the condition of the problem.200

The interesting analysis in [7] might be useful to design an even more robust algorithm, which would not only201

be applicable to the original NN problem but to non-linear separable problems in general. In fact the authors show202

theoretically and practically that regularizing the NN non-linear problem directly (using the Tikhonov approach to203

compensate for ill-conditioning), and then linearizing using Gauss–Newton, gives a problem with smaller condition204

number than the usual approach for a non-linear problem, namely to linearize and then to regularize (Levenberg–205

Marquardt).206

4. Numerical tests207

We start first with a set of synthetic tests to make sure that the implementation is correct and also to gain insight on208

the particularities of the different activation functions and implementations. For each class of activation function and209

program we run the same tests. Four basis functions are considered (i.e., four nodes in the hidden layer of the network)210

and a set of 11 × 11 uniformly distributed input values in [−1, 1] × [−1, 1] are taken.211

Then, non-linear parameters are selected at random, while the linear parameters are set to the value j, j = 1, . . . , 4.212

These parameters are considered the target values and they are used to generate output values (corresponding to the213

121 input values) for training. Two kind of tests are performed.214

Basically, after “forgetting” the target values, 100 sets of initial values are chosen for the non-linear parameters and215

VARPRO is run. For the first nine sets we select initial values which are increasingly farther from the target values, by216

2 Where a term in the Frechet derivative is neglected.

vpereyra
Note
Projection
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Table 1
Program NSF (Gay-Kaufman)

Basis Last of 9 Iters. Res. Iters. best Res. Best Total time (s)

Exp. 9 111 1.9 (-14) 61 7.6 (-15) 23.58
Gauss 6 74 7.8 (-15) 94 6.1 (-15) 36.08
Ellipt. 2 150 5.8 (-13) – – 100.35
Sigmoid 0 – – 126 2.6 (-12) 56.71

Table 2
Program NSG (Gay-Kaufman)

Basis Last of 9 Iters. Res. Iters. best Res. Best Total time (s)

Exp. 9 75 8.9 (-15) 67 4.7 (-15) 10.8
Gauss 6 51 5.7 (-13) 165 5.8 (-15) 17.43
Ellipt. 2 136 3.8 (-15) 121 5.8 (-06) 27.05
Sigmoid 1 182 1.1 (-11) – – 22.48

multiplying those target values by (1 − irun × 0.1), irun = 1, . . . , 9. We stop at 9 since for run 10 all the non-linear217

initial parameters would be set to zero, which would create problems with some of the activation functions.218

For the next 91 runs we select the initial values at random, since that will be how the actual Montecarlo global219

optimization algorithm that we use later will operate. For each run the termination values are recorded.220

Thus we test both how far one can move from the exact solution and still get convergence, and also the characteristics221

of a simple global optimization Monte Carlo approach combined with a local optimization iteration.222

4.1. Codes tested223

We test three different implementations of Variable Projections: the original VARPRO due to Pereyra and modified224

by Bolstad, and two codes from the PORT library implemented by Gay and Kaufman: NSF and NSG [9]. The difference225

between the two PORT codes is that NSF does not require derivatives since it approximates them by finite differences,226

while NSG uses derivatives, just as VARPRO. All the codes are implementations of the Marquardt algorithm for227

non-linear least squares, taking into account separability and using the Kaufman simplification. The PORT codes use228

more modern technology, including a trust method for step control. NSF also uses graph coloring technology to save229

on fuction evaluations when approximating the sparse Jacobian [1,5].230

The codes report the total number of iterations to reach convergence (which we have chosen to declare when the231

residual norm is below 10−16), or an error condition if there is abnormal termination. The most common errors are232

faillure for ill-conditioning or excess of iterations (the maximum number of iterations is set to 200 unless noted).233

In Tables 1–3 we show a summary of the results. For all types of basis functions ill-conditioning is a problem.234

Also, starting without good a priori information leads to a slow search for the convergence basin and in many cases to235

divergence for excess of iterations.236

These tests were performed on a dual processor Pentium III 800 MHz computer, under the LINUX operating system,237

with the programs implemented in FORTRAN 90 using the INTEL Fortran compiler ifc.238

There are several considerations regarding pre-processing of the training set and initialization of the parameters239

that are specific to neural network problems. The most common form of pre-processing consists of a linear rescaling240

of the input data so that they have similar values. We have implemented this scaling following the recommendations241

Table 3
Program VARPRO (Pereyra–Bolstad)

Basis Last of 9 Iters. Res. Iters. best Res. Best Total time (s)

Exp. 2 72 2.5 (-16) 72 1.8 (-16) 19.6
Gauss 4 106 5.3 (-16) 29 2.3 (-16) 5.37
Ellipt. 2 227 3.1 (-16) 300 7.0 (-06) 11.19
Sigmoid 2 198 2.9 (-16) 200 9.5 (-09) 35.41

vpereyra
Note
function
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in [2], by re-scaling the input variables independently, using the mean and variance for each variable. So for each242

input variable xi, i = 1, . . . , d, the mean xi and variance σ2
i are determined and the new variables are defined as:243

x̃i
n = xn

i
−xi

σi
. This set has now mean zero and variance one. In the case of radial function networks, it is particularly244

important to normalize the input data so that they span similar ranges, because the activation of the basis functions are245

triggered by the distances to the function centers, measured in the l2 norm.246

Some of the headings in the tables are self explanatory, but we spell them out for clarity.247

• Basis: Type of activation function;248

• Last of 9: Last run converged of the first 9; it measures how far away from the solution we can start.249

• Iters.: number of iterations that run took to converge;250

• Iter. Best: Number of iterations for the best converged run (i.e., that run with the minimum residual that converges251

to the target or some reasonable permutation of it) for the 91 random initial values runs;252

• Res.: Residual for that run;253

• Total time: For the 100 runs, in seconds.254

Fig. 2. Results for building ‘a’ perceptron training with five sigmoids.
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Fig. 3. A typical frame unit of the building.

4.2. Initialization of the parameters for radial basis networks255

In the case of unsupervised training, prior to the solution of the (linear) least squares problem itself, the non-linear256

center and width parameters are determined from the input data set.257

The choice of the centers µj usually will depend on the density distribution of the input vectors from the training258

set: they are in a way prototype input vectors. The width parameters σj may vary for each basis function. It is a good259

idea to have some overlap of the basis functions. One possibility is to use a multiple of the average distance between260

the centers. Another possibility would be to determine the average distance of each center to its nearest neighbours.261

The strategy we used is the following. First, the number of basis functions and the centers were determined from262

a clustering of the input data. The width parameters were then chosen all equal for simplicity, defined as the average263

value of the distances between the centers.264

In the supervised case, these same non-linear parameters can be used as initial values for the non-linear least squares265

approximation.266

4.3. Benchmark tests267

We consider a test problem from a public benchmark, about the prediction of hourly electrical energy consumption268

in a building, based on the date, time of day, outside temperature, outside air humidity, solar radiation, and wind speed.269

Fig. 4. Load-response characteristics.



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

MATCOM 2676 1–13

10 S. Pereyra et al. / Mathematics and Computers in Simulation xxx (2006) xxx–xxx

Table 4
Dataset used in example

x1 x2 x3 y

90 20 10 −0.71
308 20 80 −0.82
824 20 150 −0.58

1125 20 200 −0.52
1607 20 300 −0.57

90 25 10 −1.42
308 25 20 −0.46
824 25 100 −0.67

1125 25 150 −0.72
1607 25 250 −0.93

90 30 10 −2.67
308 30 20 −0.79
824 30 100 −1.3

1125 30 150 −1.46
1607 30 200 −1.21

90 20 20 −1.94
308 20 100 −3.36
824 20 300 −4.32

1125 20 400 −3.51
1607 20 600 −4.79

90 25 20 −5.92
306 25 40 −0.98
824 25 200 −3.38

1125 25 300 −4.57
1807 25 450 −5.56

90 30 20 −13.73
308 30 40 −1.96
824 30 I −3.6

1125 30 250 −7.12
1607 30 350 −6.11

90 20 30 −6.5
306 20 140 −17.05
824 20 400 −20.57

1125 20 550 −19.73
1507 20 800 −24.52

90 25 30 −18.54
308 25 100 −16.25
824 25 300 −23.31

1125 25 400 −20.05
1607 25 600 −25.38

90 30 30 −26.61
308 30 60 −19.03
824 30 250 −30.86

1125 30 300 −17.78
1807 30 450 −22.15

90 20 50 −23.59
308 20 180 −33.97
824 20 500 −41.02

1125 20 685 −40.6
1607 20 928 −41.09

90 25 40 −26.62
308 25 160 −45.4
824 25 400 −49.3

1125 25 550 −49.85
1607 25 710 −53.26

90 30 40 −33.77
308 30 120 −44.38
824 30 350 −59.24

1125 30 500 −63.97
1607 30 685 −67.05
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Table 5
Results for progressive collapse example

# Sigm. Min. rms Iters. Total CPU time (100 runs) No. of non-linear parameters

2 0.3693 52 2.39” 8
4 0.1128 167 18.71” 16
6 0.089 214 53.91” 24
8 0.0551 262 102.48” 32

10 0.0175 300 156.42 40
12 0.0053 287 205.09” 48
14 6.25 (-13) 185 251.77” 56
16 1.23 (-12) 72 240.4” 64

The data can be found in [29]. Complete hourly data for four consecutive months is provided for training, and output270

data for the next two months should be predicted.271

The purpose of this test is to show the performance of the training algorithm and not to design the “optimal” network.272

The combination of a small network, a large number of data points, and the regularization provided by the combination273

of the Variable Projection and Marquardt algorithms hopefully guarantees that there will be no over-fitting of the274

training data (see [2] Chapter 9 for a more complete discussion of these issues).275

We use a single hidden layer network with five sigmoids and a constant bias. Since the extrapolation that is required276

will not overlap in the time of the year with the training data we ignore the year and month and use only an hour count,277

and hour of the day count and a day of the week count as time input variables. We also include the output data of the278

three previous hours as memory (previous hour, first and second differences), and thus we have 10 input variables and279

1 output variable. This is then a feedback network. All the variables are normalized to mean 0 and variance 1.280

The resulting model when compared with the normalized training data has a residual mean error of 0.17. In Fig.281

4.3 we see some detailed results of the training step, including a comparison of calculated against training output, the282

absolute error at the training points as a function of the hour counter, a zoomed view of the training data compared283

to the output of the trained network for 240 h in the middle of the training data set, and finally a scatter plot of those284

quantities over the whole range.285

The main observation is that the global fit of this extensive and oscillatory data set with just five sigmoids (i.e.,286

55 non-linear and 6 linear parameters) is remarkably good and the training time per run is till only 24.2′′ in average287

(Figs. 2 and 3).288

Fig. 5. Results for protective design.
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4.4. Real data test289

This real data test is taken from a finite-element simulation database developed by Weidlinger Associates Inc. to290

evaluate the progressive collapse potential of reinforced-concrete and steel frame buildings. The independent variables291

correspond to the configuration parameters of the structure (such as bay size, beam type, etc.) and the load applied to292

the structure. The dependent variable is the response of the structure (e.g., deflection) to such load. Hence, the dataset293

defines the load-response characteristics of the structure for particular structural configurations, as illustrated in Fig. 4.294

One of the datasets taken from the database and used for illustration herein is given in Table 4. The independent295

variables (x1, x2, x3) correspond to the beam type, the bay size and the applied load, respectively. The dependent296

variable, y1, corresponds to the deflection response. Many other response quantities of interest, such as rotation, thrust297

and moment, are included in the database, but have been left out of the sample dataset for the sake of clarity.298

We have used program NSG and different number of nodes with sigmoid activation functions, in a sigle hidden299

layer fully connected perceptron, with three input and one output node. In Table 5 and Fig. 5 we summarize the results300

on a 800 MHz Celeron PC, running under the Solaris x86 operating system.301

5. Conclusions302

We have presented a Variable Projection method for the fast training of certain kinds of Neural Networks. The303

method was implemented and tested first on synthetic examples using four different types of activation functions and304

three different implementations of the Variable Projection algorithm. The results indicate that all the codes perform305

reasonably well, with NSG having an edge on speed, although VARPRO seems more reliable, especially for sigmoid306

activation functions. In general NSF would not be required for this type of activation functions since derivatives are307

easily available.308

For the benchmark test we considered a problem that has been extensively used in the literature to test and compare309

new Neural Net programs, buildinga from PROBEN [29].310

Finally we have considered a real data set example, where the main purpose of the Neural Net is to build a surrogate311

response surface from a data base of very expensive finite element calculations. For this purpose we used NSG with312

different numbers of sigmoid activation functions. We saw in the results a systematic decrease in the fitting error as the313

number of sigmoids increased, until the number of non-linear parameters is close or above the number of data points314

(60), at which stage the accuracy jumps to full interpolation. We also observe, up to that point a steady increase in the315

computing time required, as is to be expected. Since we run 100 training iterations starting from random initial points,316

we can see that even for a large number of parameters the performance is very fast.317
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