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Least squares collocation solution of elliptic problems3

in general regions4

V. Pereyra∗, G. Scherer5

6

Abstract7

We consider the solution of elliptic problems in general regions by embedding and least squares approximation of overdetermined8

collocated tensor product of basis functions. The resulting least squares problem will generally be ill-conditioned or even singular,9

and thus, regularization techniques are required. Large scale problems are solved by either conjugate gradient type methods or by10

a block Gauss–Seidel approach. Numerical results are presented that show the viability of the new method.11

© 2006 Published by Elsevier B.V. on behalf of IMACS.12
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1. Introduction15

In this paper we introduce a new class of methods for elliptic problems in general regions that superficially resemble16

embedding (capacitance), and Galerkin collocation methods, but are quite different in conception and implementation.17

In fact, they are more related to so called meshless methods.18

To start with, we remain with the differential equation form of the problem instead of going to the integral or19

variational formulation, which would also be possible. Second, as we will see, the resulting method is essentially mesh20

free and intrincated regions in any dimension do not require any additional care, which makes it considerably simpler21

to implement than conventional finite differences or finite elements methods.22

We consider general linear elliptic second order operators of the form:23

Lu(x) = f (x), x ∈ Ω,

Bu(x) = g(x), x ∈ ∂Ω,
(1)24

where x ∈ Rn, Ω a multiple connected region of Rn, ∂Ω the boundary of Ω and B is a boundary operator that may25

involve first order derivatives. Since our approach is novel, we will describe and test first the algorithm in two space26

dimensions.27

There are a number of methods similar to the one we are presenting here. To mention a few recent ones: Betcke and28

Trefethen [2] present a new version of the method of particular solutions for eigenvalue problems that uses a collocation29

and least squares approach. Larsson and Fornberg [3] review and extend several Radial Basis methods developed in30

the last 10 years that use collocation. Belytschko et al. [1] discuss extensively meshless methods, including collocation31

by various basis functions.32
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We believe that the main differences with this approach are in our use of least squares collocation with tensor product33

basis functions on a box embedding the irregular region where the problem is set, and the use of regularization to solve34

the potentially singular problems that result.35

2. Discretization36

We embed the region Ω in a rectangle R and consider a tensor product family of basis functions associated with a37

uniform mesh in R. Thus, we make the Ansatz38

u(x, y) =
∑

cijBi(x)Bj(y), i = 1, . . . , Nx; j = 1, . . . , Ny,39

with N = Nx × Ny. Assuming that the basis functions Bi(x), Bj(y) are sufficiently differentiable and replacing in the40

differential equation and boundary conditions we get:41

L
∑

cijBi(x)Bj(y) = f (x), x ∈ Ω,

B
∑

cij(Bi(x)Bj(y)) = g(x), x ∈ ∂Ω.

(2)42

If there are no cross derivatives in the operator L we obtain:43

∑
cij[LBi(x)Bj(y) + Bi(x)LBj(y)] = f (x), x ∈ Ω,

∑
cij[BBi(x)Bj(y) + Bi(x)BBj(y)] = g(x), x ∈ ∂Ω.

(3)44

Now we select collocation points in the interior of the region (xs, ys) ∈ Ω, s = 1, . . . , Mi, and in the boundary (xt, yt) ∈45

∂Ω, t = 1, . . . , Mb. We choose M = Mi + Mb ≫ N. The resulting overdetermined system can be written in matrix46

form as:47

LBC = F, BC = G,48

where,49

LB = LBi(xs)Bj(ys) + Bi(xs)LBj(ys),

B = BBi(xs)Bj(ys) + Bi(xs)BBj(ys),

C = cij,

F = f (xs, ys),

G = g(xt, yt).

(4)50

Observe that we are free to choose the collocation points any way we like. No connectivity information is required51

and the distribution of points can be guided by any additional need that we may consider important, such as representing52

sharp variations of the solution. Arbitrary boundaries and even holes can be handled without any additional effort,53

since the least squares algoithm will use regularization to cope with any singularity or ill-conditioning, as we have54

shown in Refs. [5,6].55

3. Numerical experiments56

3.1. Poisson’s equation in 2D57

We consider now L to be the Laplacian in two dimensions, B the identity, and the region Ω to be the circle:58

(x − 0.5)2 + (y − 0.5)2 = 0.25.59

vpereyra
Note
algorithm
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We embed this region in the unit square. The source and boundary functions are chosen as:60

f (x, y) = −25(sin 5x + sin 5y),

g(θ) = sin(5[0.5 + 0.5 cos(θ)]) + sin(5[0.5 + 0.5 sin(θ)]),
(5)61

which uses the parametric representation of the circle:62

x = 0.5 + 0.5 cos(θ), y = 0.5 + 0.5 sin(θ), θ ∈ [0, 2π].63

The exact solution is u(x, y) = sin 5x + sin 5y.64

We choose various values for the number of basis functions, for a fixed number of collocation points and thresholds.65

In the tables below M stands for the sum of the interior and boundary collocation points. Interior points are selected66

from an uniform mesh in the unit square, which for Test 1.1 has 20 × 20 points, while for Test 1.2 has 30 × 30 points.67

In both cases there are 180 boundary points spaced every 2◦.68

We use in these tests the Truncated SVD method of Ref. [5] and LSQR, Paige and Saunders [4] conjugate gradient69

least squares solver. The value of the SV truncation threshold is chosen to be thresh = 1.0e−6. For TSVD, irnk stands70

for the calculated rank of the least squares matrix. Observe also that the number of control vertices, nvx × nvy, does not71

include the phantom vertices, so that the total number of unknowns is really (nvx + 2) × (nvy + 2). ration stands for72

the ratio of two consecutive irnk, while ratio err is the (reversed) ratio between two consecutive resmax, the maximum73

absolute error at the collocation points. Finally, rms is the residual mean square error (i.e., an approximation to the74

integral L2 norm). For LSQR we use an estimate of the condition number, CONLIM = 1.0e6.75

Meth. M irnk nvx nvy ration resmax ratio err rms Time (s)

TSVD 456 25 3 3 0.00E+00 0.72E+00 0.00E+00 0.15E+00 0.05
TSVD 456 64 6 6 0.26E+01 0.51E+00 0.14E+01 0.10E+00 0.16
TSVD 456 117 9 9 0.18E+01 0.22E+00 0.24E+01 0.43E−01 0.63
TSVD 456 184 12 12 0.16E+01 0.12E+00 0.18E+01 0.16E−01 2.01
TSVD 456 265 15 15 0.14E+01 0.39E−02 0.30E+02 0.10E−02 4.38
TSVD 456 352 18 18 0.13E+01 0.17E−02 0.23E+01 0.79E−03 8.55

TSVD 828 25 3 3 0.00E+00 0.73E+00 0.00E+00 0.16E+00 0.08
TSVD 828 64 6 6 0.26E+01 0.63E+00 0.12E+01 0.13E+00 0.36
TSVD 828 117 9 9 0.18E+01 0.39E+00 0.17E+01 0.74E−01 1.46
TSVD 828 184 12 12 0.16E+01 0.20E+00 0.18E+01 0.38E−01 4.19
TSVD 828 265 15 15 0.14E+01 0.73E−01 0.29E+01 0.19E−01 8.75
TSVD 828 352 18 18 0.13E+01 0.44E−01 0.13E+01 0.96E−02 16.73

76

Meth. M nvx nvy resmax ratio err rms Time (s)

PS 456 3 3 0.72E+00 0.00E+00 0.15E+00 0.03
PS 456 6 6 0.51E+00 0.14E+01 0.10E+00 0.07
PS 456 9 9 0.22E+00 0.23E+01 0.41E−01 0.13
PS 456 12 12 0.11E+00 0.19E+01 0.16E−01 0.25
PS 456 15 15 0.48E−02 0.26E+02 0.88E−03 0.39
PS 456 18 18 0.32E−01 0.14E+00 0.94E−02 0.40

PS 828 3 3 0.73E+00 0.00E+00 0.16E+00 0.08
PS 828 6 6 0.63E+00 0.12E+01 0.13E+00 0.18
PS 828 9 9 0.37E+00 0.17E+01 0.74E−01 0.37
PS 828 12 12 0.19E+00 0.18E+01 0.36E−01 0.71
PS 828 15 15 0.76E−01 0.29E+01 0.20E−01 1.37
PS 828 18 18 0.43E−01 0.17E+01 0.72E−02 2.03

77

We see from this set of experiments that TSVD and LSQR give essentially the same results, except for Test 1.1 with78

nvx = nvy = 18, where TSVD is significantly more accurate. However, in terms of efficiency, LSQR is considerably79

faster, especially for the larger systems, as we have observed in our previous papers. Also, using more collocation80

points does not seem to be helpful.81
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3.2. Poisson’s equation in 3D82

We consider now �u = −(sin x + sin y + sin z) on the sphere Ω with center at (0.5, 0.5, 0.5) and radius 0.5. An83

uniform mesh with 20 × 20 × 20 points results in 3544 collocation points in Ω and we also take 400 points in the84

boundary. The spline basis is defined on a regular mesh with 8 × 8 × 8 points in the unit cube. LSQR with CONLIM85

1010 gives a solution with:86

L∞ error = 0.027; rms = 0.006; time = 124 s.87

3.3. Laplace’s equation in 2D with a singularity88

We consider Laplace’s equation in a quarter circle centered at the origin and with radius 1. The solution is u(x, y) =89

0.5/π log r. We use 432 interior and 36 boundary collocation points, isolating the singularity at the origin with a90

circle of radius 10−2. We use 12 × 12 basis functions in the unit square and CONLIM = 106. LSQR produces in 57691

iterations and 264 s of CPU time:92

• At collocation points: L∞ error = 0.30; rms = 0.06.93

• On a radius at 18◦ with 20 points: L∞ error = 0.08; rms = 0.017.94

• On a quarter circle of radius 0.2 with 45 points: L∞ error = 0.025; rms = 0.01.95

3.4. Problems with discontinuities96

It is of interest to consider problems with piece-wise smooth solutions. In order to explore the possibilities of97

extending the method to such problems we consider first a one-dimensional example:98

y′′ = 0,

y(0) = 0,

y(2) = 100,

y(1−) − y(1+) + 50 = 0,

y′(1−) − y′(1+) = 0,

(6)99

where y(1−) and (1+) stand for the left and right limits of the functions. Thus, the problem’s solution has a jump of 50100

at x = 1 but a continuous derivative. The solution is a piece-wise linear function that rises from 0 to 25 in [0, 1] and101

from 75 to 100 in [1, 2].102

The two subdomains denoted by domain 1:[0, 1] and domain 2:[1, 2], respectively, are each covered with a node103

mesh with four basis functions and a uniform mesh of 10 collocation points. The results using a TSVD algorithm are:104

For domain 1: ‖rel.error‖∞ = 0.23e−6, rms = 1.89e−7.105

For domain 2: ‖rel.error‖∞ = 0.12e−6, rms = 5.65e−8.106

Next, we consider as a simple 2D example, a Poisson equation on the rectangle [0, 2] × [0, 2] with Dirichlet boundary107

conditions on all external boundaries. There is a discontinuity line at x = 1 with the jump conditions: u(1−, y) =108

u(1+, y) − 10; and ∂u(1−, y)/∂x = ∂u(1+, y)/∂x.109

The two subdomains, domain 1:[0, 1] × [0, 2] and domain 2:[1, 2] × [0, 2], respectively, are covered with a nodal110

mesh and a uniform mesh of collocation points. For domain 1, the boundary function is g1(x, y) = 0, and for domain111

2 is g2(x, y) = 10.112

The solution of the problem is: u1(x, y) = 0 and u2(x, y) = 10.113

Next are some of the test results, using a LSQR based algorithm with different number of collocation points and114

nodes.115
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Coll.mesh Nodemesh Iter ‖rel.error‖∞ rms Time (s)

Test 1 189 33
Domain 1 10 × 10 5 × 5 0.27e−2 1.04e−3
Domain 2 10 × 10 5 × 5 0.50e−3 1.44e−3

Test 2 393 43
Domain 1 12 × 12 8 × 8 0.28e−1 9.20e−3
Domain 2 12 × 12 8 × 8 0.33e−2 9.70e−3

116

4. Conclusions117

We have shown in a number of different examples how the proposed method works. These exemplify the ability of118

the method to handle general regions in two and three dimensions, singularities and discontinuities. Although we have119

not attempted to produce general implementations, the work to program these tests was fairly small as compared to120

mesh or element based methods for general regions.121

We do not have a clear idea of the interplay between number of collocation points and accuracy. Incrementing the122

number of basis functions produces more accurate results and in general useful engineering accuracy is obtained with123

a very modest investment in computer time and storage.124

The approach is much more general than this limited application to elliptic problems and also could benefit from125

the use of other basis functions besides cubic B-splines.126
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