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The structure of the unnatural parity states of PsH, LiPs, NaPs and KPs are investigated with
the configuration interaction and stochastic variational methods. The binding energies (in hartree)
are found to be 8.17×10−4, 4.42×10−4, 15.14×10−4 and 21.80×10−4 respectively. These states are
constructed by first coupling the two electrons into a configuration which is predominantly 3Pe, and
then adding a p-wave positron. All the active particles are in states in which the relative angular
momentum between any pair of particles is at least L = 1. The LiPs state is Borromean since
there are no 3-body bound subsystems (of the correct symmetry) of the (Li+, e−, e−, e+) particles
that make up the system. The dominant decay mode of these states will be radiative decay into a
configuration that autoionizes or undergoes positron annihilation.

PACS numbers: 36.10.-k, 36.10.Dr, 34.85.+x

I. INTRODUCTION

The stability of a bound state composed of two elec-
trons and a positron, the positronium negative ion, was
first demonstrated in a seminal calculation by Wheeler
[1]. Shortly after this calculation, the four body systems,
PsH and Ps2 were shown to be stable [2, 3]. Since that
time, only a few other electronically stable states have
been discovered that can be formed from combinations
of p+,e− and e+. These are additional bound states of
Ps2 [4–7], a compound that is best described as e+PsH
[8], and a (p+, 4e−, 2e+) complex [8]. Additionally, a
number of atoms have been identified as being capable
of binding positronium and positrons [9–11]

Just recently, a new class of positronic compounds that
are electronically stable was identified [12]. The new PsH
and NaPs bound states were unnatural parity states with
symmetry conditions that act to prevent decay into the
lowest energy dissociation products. An unnatural parity

state is a state with parity equal to Π = (−1)
L+1

where
L is the orbital angular momentum of the state. These
PsH and NaPs systems have the two valence electrons in
a spin-triplet state, a total orbital angular momentum of
zero, and an odd parity, i.e. LΠ = 0−. In addition, these
states had the unusual feature of decaying very slowly by
2γ or 3γ annihilation.

In this paper, more details about the LΠ = 0− nega-
tive parity states of PsH and NaPs are given. Negative
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parity states of LiPs and KPs are also identified as being
electronically stable. The LiPs state has the additional
distinction of being a Borromean state [13–16] since the
(Li+, e−, e−, e+) system has no stable 3-body state that
can act as a parent for the four body 2,4So state. We
have adopted the definition of Richard: A bound state is
Borromean if there is no path to build it via a series of
stable states by adding the constituents one by one [13].

It should be noted that there are analogs of these states
in the alkaline-earth sequence. Configuration interaction
(CI) approaches has been used to demonstrate the sta-
bility of the Be−, Mg−, Ca− and Sr− np3 4So states
[17, 18]. However, the issue of whether an electron can
be attached to the 3Pe state of H− into an 4So state of
H2− has been the subject of some controversy. A com-
plex rotation method was applied to a large basis CI wave
function and a shape threshold lying about 1.4 eV above
the 3Pe threshold was predicted [19]. However, this was
contradicted by a much more sophisticated hyperspheri-
cal calculation that exhibited no sign of a resonance [20].

II. THEORETICAL OVERVIEW

A. Symmetry conditions for binding

The stability of these systems lies in the symmetry re-
lations between the pairs of particles that make up the
system. The discussion of these conditions will be ad-
dressed specifically to PsH, but these conditions, with
some small modifications, will also apply to the other
systems addressed in this paper.

The electronic stability of PsH can be motivated by
consideration of the H−(2p2 3Pe) bound state [21–23].



2

This state has an energy of −0.12535545 hartree [23] and
is electronically stable due to symmetry conditions. It
cannot decay into the H(1s) + e− channel since the ℓ = 1
partial wave of the electron automatically results in a
state of negative parity. The LΠ = 0− state of PsH is
formed when the positron is trapped into a 2p state of the
H− attractive potential well. The possible decay modes
are constrained by the symmetry conditions. Dissocia-
tion into Ps(1s)+H(1s) is forbidden since Π = (−1)L

where L is the orbital angular momentum between the
Ps(1s) and H(1s) fragments. Similarly, dissociation into
Ps(ns)+H(nℓ) or Ps(nℓ)+H(ns) does not occur since it
is not possible to construct an LΠ = 0− state if one of
the angular momentum is zero. The lowest energy dis-
sociation channel would be into Ps(2p)+H(2p) (with the
two fragments in a p-wave) with an energy threshold of
−0.1875 hartree. Another possible decay would be into
the H−(2p2 3Pe) + e+ channel but the threshold energy
here is −0.12535545 hartree [23].

It is easy to see that there is potentially a large energy
advantage associated with binding the positron to the
negative ion. If the H− state is regarded as a point par-
ticle with an internal energy of ≈ −0.125 hartree, then
a positron in the 2p state will lower the total energy to
−0.250 hartree. In actuality the H−(2p2 3Pe) state is
diffuse [22], but the advantage of attaching the positron
to the negative ion is clear.

B. Symmetry conditions for annihilation

The dominant electron-positron annihilation processes
are the 2γ and 3γ processes. The 2γ annihilation rate
for bound systems is proportional to the probability of
finding an electron and a positron at the same position
in a spin-singlet state according to

Γ = 4πr2
ec〈Ψ|

∑

i

OS
ipδ(ri − rp)|Ψ〉

= 2.018788 × 1011
∑

i

〈δ(ri − rp)〉S , (1)

[24–26], where the sum is over the electron coordinates,
the δ-function expectation is evaluated in a3

0, and Γ is
given numerically in s−1. The operator OS

ip is a spin pro-
jection operator to select spin-singlet states for the i, p
electron-positron pairs in the wave-function Ψ which is
anti-symmetrized in the electron coordinates. The rate
constant for the Ps ground state is about 8 × 109 s−1.
Equation (1) involves a contact interaction which means
that the relative angular momentum of the annihilating
pair (Lrel) must be zero [24]. However, electron-positron
annihilation is possible even for when the relative an-
gular momentum of the annihilating pair is greater than
zero. For example the Ps(2p) levels can undergo 2γ anni-
hilation at rates proportional to α5 and α6 respectively
[27, 28]. The rates for the different Ps(2p) levels have
been calculated to be approximately 104 s−1 [27, 28].

Similarly, the 3γ process, which happens when the anni-
hilating pair are in a spin-triplet state, can also occur at
a rate proportional to α6 when the pair have a relative
angular momentum of 1. The discussions below about
the symmetry conditions for positron annihilation con-
cern the fast 2γ and 3γ processes for pairs in relative
s-states.

Consider the electron-positron annihilation of a PsH
state of 2So symmetry. The relative angular momentum
of the annihilating pair (Lrel) must be zero. This means
the total angular momentum of the state will come from
the center-of-mass motion of the annihilating pair (Lcm),
and from the angular momentum of the spectator elec-
tron (Lspectator). The total parity of the state is deter-
mined by the parity of the individual constituents, i.e.
Π = (−1)Lspectator+Lcm+Lrel . It is simply not possible to
form an odd parity state with a total angular momen-
tum of zero if any one of the angular momenta is zero.
Consequently, a two electron/one positron state of 2So

symmetry cannot decay by the fast 2γ process.
These arguments also apply to the 3γ annihilation pro-

cess. The 3γ process occurs for electron-positron pairs in
a spin-triplet state with a relative angular momentum of
zero. Once again, it is simply impossible to form a state
of 2So (or 4So) symmetry if the relative angular momen-
tum of the annihilating pair is zero. So it is reasonable
to conclude that the lowest order 3γ decay is not possible
from a 2,4So state.

III. CALCULATION METHODS

A. The configuration interaction method

A majority of the calculations in the present pa-
per were performed with a configuration interaction ap-
proach [29–31]. The CI basis was constructed by letting
the two electrons (particles 1 and 2) and the positron
(particle 0) form all the possible total angular momen-
tum LT = 0 configurations, with the two electrons in a
spin-triplet state, subject to the selection rules,

max(ℓ0, ℓ1, ℓ2) ≤ J , (2)

min(ℓ1, ℓ2) ≤ Lint , (3)

(−1)(ℓ0+ℓ1+ℓ2) = −1 . (4)

In these rules ℓ0, ℓ1 and ℓ2 are respectively the orbital
angular momenta of the positron and the two electrons.
We define 〈E〉J to be the energy of the calculation with
a maximum orbital angular momentum of J . The sin-
gle particle orbitals were Laguerre Type Orbitals (LTOs)
with a common exponent chosen for all the orbitals of a
common ℓ [29–31]. The orbital basis sets for the positron
and electrons were identical.

A major technical problem afflicting CI calculations of
positron-atom interactions is the slow convergence of the
energy with J [10, 31]. The J → ∞ energy, 〈E〉∞, is
determined by the use of an asymptotic analysis. The



3

successive increments, ∆EJ = 〈E〉J − 〈E〉J−1, to the
energy can be written as an inverse power series [31–35],
viz

∆EJ ≈
AE

(J + 1
2
)6

+
BE

(J + 1
2
)7

+
CE

(J + 1
2
)8

+
DE

(J + 1
2
)9

+. . . .

(5)
The first term in the series starts with a power of 6 since
all the possible couplings of any two of the particles result
in unnatural parity states [36].

The J → ∞ limit, has been determined by fitting sets
of 〈E〉J values to asymptotic series with either 1, 2, 3 or
4 terms. The coefficients, AE , BE , CE and DE for the
4-term expansion are determined at a particular J from
5 successive energies (〈E〉J−4, 〈E〉J−3, 〈E〉J−2, 〈E〉J−1

and 〈E〉J ). Once the coefficients have been determined it
is easy to sum the series to ∞ and obtain the variational
limit. Application of asymptotic series analysis to helium
has resulted in CI calculations reproducing the ground
state energy to an accuracy of ≈10−8 hartree [35, 37].

The treatment of the alkalis Li, Na and K requires the
use of a frozen core approximation. The details of this
approximation have been discussed in great detail else-
where [29–31], so only the briefest description is given
here. The model Hamiltonian is initially based on a
hartree-Fock (HF) wave function for the neutral atom
ground state. The core orbitals are then frozen. The di-
rect part of the core potential is attractive for electrons
and repulsive for the positron. The impact of the direct
and exchange part of the HF core interactions on the ac-
tive particles are computed without approximation. One-
and two-body semi-empirical polarization potentials are
then added to the potential. The adjustable parameters
of the core-polarization potential are defined by reference
to the spectrum of neutral atom [30, 38].

B. The stochastic variational method (SVM)

In the stochastic variational approach an explicitly cor-
related gaussian (ECG) is constructed by placing the
particles (electrons and positrons) into Gaussian single
particle orbitals

rl
iYlm(r̂i)exp{−βir

2
i } = Ylm(ri)exp{−βir

2
i } , (6)

and using a

exp{−αij(ri − rj)
2} , (7)

Gaussian correlation function between the ith and jth
particles. The N -particle trial function is then

ΨLS(r) = A{
[[

[Yl1Yl2 ]l12 Yl3

]

. . .
]

LML

χSMS

×

N
∏

i=1

exp{−βir
2
i }

∏

i<j

exp{−αij(rj − ri)
2}}(8)

where A is an antisymmetrizer and χSMS
is the spin func-

tion of the particles. The nonlinear variational parame-
ters βi and αij are selected by an iterative trial and error

procedure. Full details are given in Ref. [39, 40]. The
orbital angular momentum quantum numbers li are re-
stricted to occupy the lowest possible values consistent
with the overall symmetry of the state. The spherical
part of the ECG basis functions effectively allows inter-
nal angular momentum to be distributed between the
different parts of the systems. Accordingly, eq. (8) im-
plicitly includes all possible internal symmetries that can
make a contribution to the energy. This has been verified
with test calculations.

IV. RESULTS OF CALCULATIONS

A. The A−(np2 3Pe) states

TABLE I: The energies of various parent states relevant to the
structure and energy threshold for the APs unnatural parity
states. The polarizability only allows for np → kd excitations
since np → ks excitations cannot occur in the 3Pe channel.
The energy for the H−(np2 3Pe) state was taken from Bylicki
and Bednarz [23], while those for the alkali systems were from
the present CI calculations.

A(np) A(np2 3Pe) A(np) + Ps(2p) αd (a3
0)

H −0.12500 −0.12535545 −0.1875 173.3

Li −0.13023850 Unbound −0.19273850 142.7

Na −0.11156287 −0.11382478 −0.17406287 302.0

K −0.10018265 −0.10450418 −0.16268271 557.6

Table I gives the energies of the various parent states of
the APs systems. These are relevant to the determination
of the energy thresholds. The energies for the A−(np2

3Pe) states were taken from CI calculations which used
an exact subset of the basis used for the calculations upon
the APs system. The energy for the H−(np2 3Pe) state
was taken from a large CI-Hylleraas calculation [23] that
was converged to eleven significant digits. The results of
an SVM calculation of this state are detailed in Table II.

The dipole polarizabilities listed in Table I show an
interesting correlation between the polarizability of the
A(np) state and the electron affinity in the A−(np2 3Pe)
channel. The larger the polarizability, the larger the
binding energy. The Li(2p) level has the smallest polar-
izability, and is the one atom that is unable to support a
negative ion in the 3Pe channel.

This behaviour is reminiscent of the electron affinity
systematics of the alkaline-earths in the 2Po channel. The
ground states of Be and Mg do not have an electron affin-
ity while those of Ca, Sr and Ba have electron affinities
that become larger as the atom, and its polarizability, be-
come larger [41]. The critical polarizability for the alkali
sequence is somewhere between 142 and 173 a3

0. The po-
larizability of calcium, which just binds an electron with
an electron affinity of ≈ 7×10−4 hartree [42–44], is about
160 a3

0 [38, 45].
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TABLE II: Properties of the H−(3Pe), PsH(2,4So) and
LiPs(2,4So) ground states. Data are given assuming an in-
finite nuclear mass (n). All quantities are given in atomic
units. The magnitude of the binding energy against dissocia-
tion into the lowest energy fragmentation channels is given by
ε while T+ and T− represent the positron and electron kinetic
energy operators.

Property PsH H− LiPs

N 400 400 1000

〈V 〉/〈T 〉 + 2 5.1 × 10−8 4.4 × 10−9 5.6 × 10−5

E −0.188317 −0.12535545 −7.472871

ε 0.000817 0.00035545 0.000215

〈T−〉 0.156579554 0.125355451

〈T+〉 0.031737544

〈rne−〉 8.867 11.657619 4.3177

〈rne+〉 14.243 12.991

〈re−e−〉 14.001 19.58289 7.6429

〈re+e−〉 12.722 12.531

〈1/rne−〉 0.174397 0.160521 1.4358

〈1/rne+〉 0.084716 0.089443

〈1/re−e−〉 0.089023 0.0700331 0.40130

〈1/re+e−〉 0.101789 0.096298

〈r2

ne−
〉 121.185 271.2046 45.959

〈r2

ne+〉 247.910 192.691

〈r2

e−e−
〉 245.959 556.893 92.533

〈r2

e+e−
〉 202.204 182.800

B. PsH

1. The configuration interaction method

The Hamiltonian was diagonalized in a basis con-
structed from a large number of single particle orbitals,
including orbitals up to ℓ = 10. There were 20 radial
basis functions for each ℓ. Note, the symmetry of the
state prevented the electrons or positrons from occupy-
ing ℓ = 0 orbitals. The largest calculation was performed
with J = 10 and Lint = 3 and gave a CI basis dimen-
sion of 369200. The parameter Lint does not have to
be particularly large since it is mainly concerned with
electron-electron correlations [30]. The resulting Hamil-
tonian matrix was diagonalized with the Davidson algo-
rithm [46], and a total of 300 iterations were required for
the largest calculation. The present calculation is very
slightly different from that reported in [12]. One of the
ℓ = 10 Laguerre functions in [12] was input with the
incorrect n. The inclusion of the correct Laguerre func-
tion resulted in the final binding energy reported in [12]
changing by about 1%.

The energy of the PsH 2,4So state as a function of J
is given in Table III. The calculations only give an en-
ergy lower than the H(2p) + Ps(2p) threshold of −0.1875
hartree for J ≥ 9. Figure 1 shows the estimates of 〈E〉∞

-1.5

-0.5

0.5

6 8 10

ε 
(u

ni
ts

 o
f 

m
ha

rt
re

e)

εJ

ε∞ 1-term

ε∞ 2-term

ε∞ 3-term
ε∞ 4-term SVM

PsH 2So

J

FIG. 1: The binding energy, ε = −(〈E〉 + 0.1875), of the
2,4So state of PsH as a function of J . The directly calculated
energy is shown as the solid line while the J → ∞ limits using
eq. (5) with 1, 2, 3 or 4 terms are shown as the dashed lines.
The binding energy of the SVM wave function is also shown.
The H(2p) + Ps(2p) dissociation threshold is shown as the
horizontal solid line. .

as a function of J . A quick visual examination suggests
that the extrapolations are converging to a common en-
ergy which attests to the reliability of the extrapolations
in J . The impact of the extrapolations is significant since
they more than double the binding energy. The best CI
estimate of the binding energy is the four-term extrapo-
lation at J = 10 listed in Table III, namely 7.10 × 10−4

hartree. The main area where improvement could be
made is in the dimension of the radial basis. A precur-
sor to the present CI calculation with 15 LTOs gave an
extrapolated binding energy of 6.06 × 10−4 hartree.

The extrapolations of the other expectation values in
Table III were done using eq. (5). It should be noted that
there is no formal justification for the use of eq. (5) for
expectation values other than the energy, so there is an
additional degree of uncertainty for these extrapolations.
In practice, this extra uncertainty is not that significant
since the finite dimension of the radial basis represents a
larger source of error.

2. The stochastic variational method

For the PsH calculation, the two electrons have been
placed in l1 = l2 = 1 orbitals and coupled to an L = 1
state with a total spin of S = 1. The positron is then
placed into an l0 = 1 orbital and the whole composite
is coupled to L = 0. The largest calculation had a to-
tal of 400 ECGs. A summary of the energy and other
expectation values is given in Table II.

The energy of the best SVM wave function was
−0.188317, yielding a binding energy of 8.17 × 10−4
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TABLE III: The energy of the 2,4So state of PsH as a function of J and with Lint = 3. The threshold for binding is −0.1875
hartree. The column n gives the total number of occupied electron orbitals (the number of positron orbitals was the same)
while NCI gives the total number of configurations. The radial expectation values for the electron, 〈re〉, and the positron, 〈rp〉
are given in a0. The results of the J → ∞ extrapolations using eq. (5) at J = 10 are given.

J n NCI 〈E〉J ε 〈re〉 〈rp〉

1 20 4200 −0.16755818 −0.01994182 7.08076 13.10807

2 40 16400 −0.17938458 −0.00811542 6.95155 11.88797

3 60 45000 −0.18327391 −0.00422609 7.08870 11.66425

4 80 85000 −0.18510516 −0.00239484 7.23884 11.70642

5 100 129200 −0.18612684 −0.00137316 7.37821 11.82951

6 120 177200 −0.18675237 −0.00074763 7.50464 11.97767

7 140 225200 −0.18715897 −0.00034103 7.61882 12.13043

8 160 273200 −0.18743569 −0.00006431 7.72208 12.27939

9 180 321200 −0.18763074 0.00013074 7.81562 12.42101

10 200 369200 −0.18777213 0.00027213 7.90047 12.55387

J → ∞ extrapolations

1-term eq. (5) −0.18800504 0.00050504 8.04024 12.77272

2-term eq. (5) −0.18811689 0.00061689 8.14930 12.95211

3-term eq. (5) −0.18817637 0.00067637 8.23457 13.09609

4-term eq. (5) −0.18821031 0.00071031 8.30116 13.21039

hartree. The deviation of the wave function from the
exact virial theorem expectation, (〈V 〉/〈T 〉 + 2), was
5.1 × 10−8. A many body system interacting by purely
coulombic interactions is known to satisfy (〈V 〉/〈T 〉 =
−2) [39]. The SVM binding energy is just over 10%
larger than the CI energy and should be closer to the
variational limit.

One interesting aspect of the 4So state is that it is more
tightly bound than its H(2p2) parent. Its binding energy
is more that twice as large as the H(2p2) binding energy
of 3.55× 10−4 hartree [23]. It is also more compact. The
mean electron distance from the nucleus of 〈re〉 = 8.86
a0 is smaller than that for H(2p2), namely 〈re〉 = 11.66
a0. In short, the addition of the positron has resulted
in a complex that has a larger binding energy than its
3-body parent.

The SVM radial expectation for the positron, 〈rp〉 was
14.24 a0, somewhat larger than the extrapolated CI value
of 13.67 a0. In the CI calculation the positron is localized
closer to the nucleus even though the CI wave function is
less tightly bound. This is a purely computation limita-
tion, due to the nature of LTO basis which is relatively
compact. Improving the radial expectation for the CI
wave function would require an increase in the number
of radial functions per ℓ.

The inter-particle correlation function, C(r), is de-
fined as the probability of finding any pair of parti-
cles a certain distance apart. The correlation func-
tions shown in Figures 2 and Figures 3 are consistent
with a structure consisting of a Ps(2p) complex weakly
bound to the H(2p) state. Consider an idealized struc-
ture consisting of a product wave function of the form
Ψ = Φ(Ps[2p])Φ(H[2p])ΦPs(R) where ΦPs(R) is the wave

function describing the motion of the Ps(2p) center of
mass. The (p, e−) and (p, e+) correlation functions aris-
ing from the Ps(2p) cluster should be the same. There-
fore, adding the (p, e+) correlation function to the (p, e−)
C(r) of H(2p) state should give a correlation function
that is the same as the actual (p, e−) correlation Figure
2 shows a strong degree of resemblance between the ac-
tual (p, e−) correlation function and that obtained from a
Φ(Ps[2p])Φ(H[2p])ΦPs(R). Similarly, adding the (e−, e−)
correlation function to the (e+, e−) C(r) of Ps(2p) state
should give a correlation function that is the same as the
actual (e−, e−) correlation function. Once again, the two
curves shown in Figure 3 a degree of similarity.

The energies of the finite mass variants of PsH have
also been determined. The energies of Ps1H, Ps2H,
and Ps3H are −0.1882398, −0.1882784 and −0.1882913
hartree respectively. The binding energies are 8.078 ×
10−4, 8.124 × 10−4, 8.140 × 10−4, hartree respectively.

C. LiPs

The 2So state of LiPs is a very unusual state in that
it is a Borromean state [13–16]. This is because all the
possible 3-body parent states, namely the 3Pe states of
Li−, e+Li or Ps−, are themselves unstable.

The Ps− ion has been thoroughly investigated and does
not possess a stable 3Pe state [47, 48].

Similarly, the Li− ion is believed not to have a stable
3Pe state [49, 50]. We have also performed some very
large CI calculations upon the Li− ion and these calcu-
lations gave no indication of a bound state in the 3Pe

symmetry.
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H(2p) + p-e+ 

FIG. 2: The correlation functions for the (p, e−) and (p, e+)
particles of PsH. Also shown is a correlation function obtained
by adding the (p, e+) correlation function to the (p, e−) cor-
relation function of the H(2p) state.
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e--e+

Ps(2p) + e--e- 

FIG. 3: The correlation functions for the (e−, e−) and (e−, e+)
particles of PsH. Also shown is a correlation function obtained
by adding the (e−, e−) correlation function to the (e−, e+)
correlation function of the Ps(2p) state.

Finally, the e+Li system is also not stable in the 3Pe

channel. Once again a very large CI calculation has been
performed and once again there was no indication of a
bound state. Further, some calculations of e+-Li scat-
tering in the 3Pe channel also gave no sign of a bound
state. The polarizabilities given in Table I also indicate
that it should be easier to bind a positron to the H(2p)
state than the Li(2p). The SVM was also used to check
whether the e+H state is stable in the 3Pe channel, and
once again there was no indication of a bound state.

The calculations upon LiPs were very similar in scope
and scale to those carried out upon PsH although the
calculations were taken to J = 11 in order to have an

explicit calculation that gave binding. The sequence of
CI energies and other expectation values as a function of
J are given in Table IV. The binding energy εJ is defined
as εJ = −(〈E〉 + 0.19273850).

Figure 4 depicts the binding energy and extrapolations
as a function of J . Only for the J = 11 basis has 〈ε〉J
crossed the threshold for binding.

The most reliable estimates of the energy is that given
after the 4-term extrapolation is used to determine the
J → ∞ limit of the binding energy. The different curves
in Figure 4 tend to be closer together as the number of
terms in the extrapolation increase. The binding energy
of 4.42 × 10−4 hartree is just over half that of the PsH
state.
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FIG. 4: The binding energy of the 2,4So state of LiPs as a
function of J . The directly calculated binding energy is shown
as the solid line while the J → ∞ limits using eq. (5) are
shown as the dashed lines. The Li(2p) + Ps(2p) dissociation
threshold is shown as the horizontal solid line. lines.

The positron can annihilate with the core electrons
via the 2γ process since the symmetry considerations are
irrelevant here. However, the annihilation rate of Γcore ≈
4 × 104 s−1 is small because the positron cannot occupy
a ℓ = 0 orbital.

The mean positron-nucleus distance of 〈rp〉 = 13.5 a0

for the CI wave function was almost the same as the
CI wave function estimate for PsH despite the smaller
binding energy. Part of the reason for this lies in the
LTO basis sets which were almost identical for the two
atoms. The finite range of the LTO basis could be acting
to artificially confine the positron. However, it must be
remembered that the asymptotic Ps(2p) cluster will also
be confined by the L = 1 centrifugal barrier.

1. The stochastic variational method

For the SVM, in the LiPs case, the first two electrons
are placed in the l1 = l2 = 0 orbits and their spins
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TABLE IV: Results of CI calculations for the 1So state of LiPs for a series of J , with fixed Lint = 3. The 3-body energy of the
system, relative to the energy of the Li+ core, is denoted by E (in hartree). The threshold for binding is -0.19273850 hartree,
and ε gives the binding energy (in hartree) against dissociation into Ps(2p) + Li(2p). The core annihilation rate in units of
s−1 is given in the Γc column. The numbers in square brackets indicate powers of 10. Other aspects of the table design are
identical to those of III.

J n NCI E ε 〈re〉 〈rp〉 Γc

1 20 4200 −0.17291946 −0.01981904 6.86606 12.84274 4.5441[4]

2 40 16400 −0.18449498 −0.00824351 6.75226 11.69309 6.5727[4]

3 60 45000 −0.18828973 −0.00444877 6.89326 11.50143 6.5611[4]

4 80 85000 −0.19007657 −0.00266192 7.04675 11.56062 6.1767[4]

5 100 129200 −0.19107655 −0.00166195 7.18989 11.69580 5.7955[4]

6 120 177200 −0.19169133 −0.00104717 7.32070 11.85451 5.4761[4]

7 140 225200 −0.19209300 −0.00064550 7.43986 12.01755 5.2173[4]

8 160 273200 −0.19236789 −0.00037061 7.54860 12.17700 5.0080[4]

9 180 321200 −0.19256282 −0.00017568 7.64806 12.32954 4.8376[4]

10 200 369200 −0.19270505 −0.00003345 7.73914 12.47367 4.6972[4]

11 220 417200 −0.19281127 0.00007278 7.82273 12.60906 4.5806[4]

J → ∞ extrapolations

1-term eq. (5) −0.19300706 0.000268567 7.97681 12.85861 4.3656[4]

2-term eq. (5) −0.19310120 0.000362688 8.09858 13.06361 4.2226[4]

3-term eq. (5) −0.19315143 0.000412934 8.19533 13.23002 4.1331[4]

4-term eq. (5) −0.19318032 0.000441825 8.27254 13.36466 4.0698[4]

are coupled to zero, the next two electrons are in the
l3 = l4 = 1 orbits (with the total angular momentum
coupled to 1) and their spins are coupled to 1. Finally,
the positron is placed in an l0 = 1 orbit and the total
orbital angular momentum is coupled to 1.

The threshold for binding is the Li(2p) (E =
−7.4101565 hartree [51]) plus the Ps(2p) energy. So the
energy threshold for an absolute variational proof of bind-
ing is at −7.4726565 hartree. The energy and expectation
values of the SVM LiPs wave functions are listed in Table
II. The best variational energy was −7.472871 hartree,
equivalent to a binding energy of 2.15 × 10−4 hartree.
The energy optimization was not fully completed and the
binding energy of the CI calculation is probably more re-
liable. The primary purpose of the SVM calculation was
to give an absolute proof that the unnatural parity state
of LiPs was electronically stable.

D. NaPs

The calculations upon NaPs were very similar in scope
and scale to those carried out upon LiPs. About the only
difference was that an extra ℓ = 1 orbital was added to
the electron basis.

The energies of the Na(3s) and Na(3p) states in
the model potential were −0.18885491 and −0.11156287
hartree. The experimental binding energies are
−0.188858 and −0.111547 hartree respectively [52].
Electronic stability requires a total 3-body energy of

−0.17406287 hartree and the binding energy εJ is de-
fined as εJ = −(〈E〉 + 0.17406287). The energy of the
3Pe excited state of Na− is −0.11342529 hartree, i.e the
Na(3p) has an electron affinity of 0.002262 hartree with
respect to attaching an electron to the 3Pe state. This is
reasonably close to the original value of Norcross, 0.00228
hartree [49].
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FIG. 5: The binding energy of the 2,4So state of NaPs as a
function of J . The directly calculated binding energy is shown
as the solid line while the J → ∞ limits using eq. (5) with
1, 2 or 3 terms are shown as the dashed lines. The Na(3p) +
Ps(2p) dissociation threshold is shown as the horizontal solid
line.
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TABLE V: The energy of the 2,4So state of NaPs as a function of J . Energies are given relative to that of the Na+ core while
the threshold for binding is −0.17406287 hartree. The column n− gives the total number of occupied electron orbitals, while
n+ gives the number of positron orbitals. Other aspects of the table design are identical to those of IV.

J n− n+ NCI E ε 〈re〉 〈rp〉 Γc

1 21 20 4620 −0.15378569 −0.02027718 7.74287 13.88608 1.4441[5]

2 41 40 17220 −0.16614255 −0.00792032 7.58513 12.48950 2.2339[5]

3 61 60 46220 −0.17033251 −0.00373035 7.71039 12.16854 2.2948[5]

4 81 80 86620 −0.17231600 −0.00174687 7.85240 12.16161 2.1849[5]

5 101 100 131220 −0.17341763 −0.00064523 7.98365 12.25289 2.0625[5]

6 121 120 179620 −0.17408661 0.00002375 8.10085 12.37548 1.9577[5]

7 141 140 228020 −0.17451658 0.00045371 8.20440 12.50450 1.8733[5]

8 161 160 276420 −0.17480552 0.00074266 8.29583 12.62983 1.8060[5]

9 181 180 324820 −0.17500636 0.00094349 8.37645 12.74713 1.7523[5]

10 201 200 373220 −0.17514972 0.00108685 8.44734 12.85449 1.7093[5]

J → ∞ extrapolations

1-term eq. (5) −0.17538587 0.00132300 8.56412 13.03133 1.63839[5]

2-term eq. (5) −0.17549381 0.00143094 8.65082 13.17118 1.59424[5]

3-term eq. (5) −0.17554787 0.00148500 8.71500 13.27807 1.56638[5]

4-term eq. (5) −0.17557663 0.00151376 8.76225 13.35833 1.54841[5]

Table V gives the energies and radial expectation val-
ues as a function of J while figure 5 shows the variation
of ε∞ as a function of J . Once again the three and four
term extrapolations seem to be converging to a common
energy. In this case the J → ∞ correction increases the
binding energy by about 40 % from 10.87× 10−4 hartree
to 15.14×10−4 hartree. The binding energy of the NaPs
unnatural parity state is about twice as large as that of
PsH.

The annihilation rate with the core electrons was
Γcore ≈ 1.5 × 105 s−1 is small. Although this is 3 times
larger than Γcore for LiPs, in absolute terms the annihi-
lation rate is still small.

E. KPs

The calculations upon KPs were very similar in scope
and scale to those carried out upon LiPs. About the only
difference was that an extra ℓ = 1 orbital was added to
the electron basis.

The energies of the K(4s) and K(4p) states in
the model potential were −0.159520 and −0.10018265
hartree. The experimental binding energies are
−0.159516 and −0.100176 hartree respectively [52].
Electronic stability requires a total 3-body energy of
−0.16268265 hartree and the binding energy εJ is defined
as εJ = −(〈E〉+ 0.16268265). The energy of the 3Pe ex-
cited state of K− is −0.104498 hartree, i.e the K(4p) has
an electron affinity of 0.004322 hartree with respect to
attaching an electron to the 3Pe state. This is close to
the original value of Norcross, 0.00437 hartree [49].

Table VI gives the energies and radial expectation val-
ues as a function of J while figure 6 shows the variation of
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FIG. 6: The binding energy of the 2,4So state of KPs as a
function of J . The directly calculated binding energy is shown
as the solid line while the J → ∞ limits using eq. (5) are
shown as the dashed lines. The K(4p) + Ps(2p) dissociation
threshold is shown as the horizontal solid line. lines.

ε∞ as a function of J . The three and four term extrapola-
tions seem to be converging to a common energy. In this
case the J → ∞ corrections increase the binding energy
by about 20% from 17.36× 10−4 hartree to 21.80× 10−4

hartree. The KPs system has the largest binding energy
of all the systems considered in this paper.
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TABLE VI: The energy of the 2,4So states of KPs as a function of J . The threshold for binding is −0.16268265 hartree and
and the energies are given relative to that of the K+ core. Other aspects of the table design are identical to those of Table V.

J n− n+ NCI E ε 〈re〉 〈rp〉 Γc

1 21 20 4620 -0.14168301 -0.02099965 8.49503 14.71924 3.4488[5]

2 41 40 17220 -0.15457885 -0.00810380 8.29108 13.13410 5.4508[5]

3 61 60 46220 -0.15914469 -0.00353796 8.39896 12.70578 5.7120[5]

4 81 80 86620 -0.16132591 -0.00135675 8.53370 12.64979 5.4824[5]

5 101 100 131220 -0.16253700 -0.00014566 8.66023 12.71399 5.1917[5]

6 121 120 179620 -0.16326995 0.00058729 8.77291 12.81839 4.9358[5]

7 141 140 228020 -0.16373804 0.00105538 8.87154 12.93315 4.7280[5]

8 161 160 276420 -0.16405038 0.00136772 8.95749 13.04566 4.5629[5]

9 181 180 324820 -0.16426580 0.00158314 9.03227 13.15085 4.4319[5]

10 201 200 373220 -0.16441830 0.00173564 9.09676 13.24589 4.3282[5]

J → ∞ extrapolations

1-term eq. (5) −0.16466950 0.00198684 9.20300 13.40245 4.1575[5]

2-term eq. (5) −0.16478114 0.00209848 9.27933 13.52387 4.0541[5]

3-term eq. (5) −0.16483516 0.00215250 9.33339 13.61318 3.9924[5]

4-term eq. (5) −0.16486273 0.00218008 9.37076 13.67636 3.9562[5]

V. SUMMARY

A number of PsX systems (X = H, Li, Na and K) are
seen to have electronically stable 2,4So complexes that
are stable against auto-ionization, and in addition these
states only decay slowly by positron annihilation. All the
particles in these effectively four-body complexes are in
a relative P -state with respect to each other. The most
unusual of the systems is LiPs since the 2,4So states are
of Borromean type. The sequence of calculations suggest
that there would also exist unnatural parity 2,4So com-
plexes of RbPs and CsPs; and most likely they would
have binding energies larger than KPs.

Due to their low binding energies, these systems can
be expected to have a structure composed of an Ps(2p)
cluster loosely bound to an atomic X(np) excited state.
This has been confirmed by the correlation functions for
PsH which were computed using the SVM.

Although these complexes are electronically stable and
decay very slowly by electron-positron annihilation there
are other decay processes that act to shorten the lifetime.
These complexes can emit a photon, decaying to a state
of 2,4Pe symmetry. For example, a Ps(np) fragment in
the complex can emit a photon decaying to a Ps(1s) type
fragment. The Ps(1s) fragment could then annihilate by
the 2γ or 3γ process. In addition, the resulting 2,4Pe

state could also decay by auto-ionization. The lifetime
of these states can be expected to be comparable to the
lifetime of the fragments against single photon decay, e.g.
X(2p) → X(1s). So the overall lifetimes of the states can
be expected to be of order 10−8 - 10−9 seconds.

It is unlikely that any of these complexes will be iden-
tified in the laboratory in the near future. The formation
of positronic compounds is known to be notoriously dif-
ficult [53]. That these states are unnatural parity states
compounds the difficulty since such states are not readily
formed in normal collision systems. For example, the 3Pe

ion states [21–23, 49] that could serve as suitable parents
have never been identified in the laboratory.

Besides the PsH and APs systems, there are other re-
lated physical systems that could have unnatural parity
bound states. For example, there is the possible exis-
tence of a new bi-exciton excited state [54]. While the
Ps− ion might not have a stable 3Pe state, it is known
that the (M+, e−, e−) ion is stable for M+/me < 0.4047
and M+/me > 16.8 [47, 48]. It could be expected that
a bi-exciton state, (e−,e−,h, h), with 1,3,5So symmetry
would be electronically stable when the mass ratios make
the 3Pe state of the charged exciton (e−,e−,h) stable.
The system might also exhibit Borromean binding, there
might be a bound bi-exciton state even though neither
of the 3Pe (e−,e−,h) or (e−,h,h) states was stable.
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