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Abstract

We use a low-dimensional, agent-based bubble model to study the changes in the global dynamics

of fluidized beds in response to changes in the frequency of the rising bubbles. The computationally

based bifurcation analysis shows that at low frequencies, the global dynamics is attracted towards

a fixed point since the bubbles interact very little with one another. As the frequency of injection

increases, however, the global dynamics undergoes a series of bifurcations to new behaviors that

include highly periodic orbits, chaotic attractors, and intermittent behavior between periodic orbits

and chaotic sets. Using methods from time-series analysis, we are able to approximate nonlinear

models that allow for long-term predictions and the possibility of developing control algorithms.
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Fluidization is the phenomenon in which a bed of solid particles acquires

fluid-like properties due to the interstitial upward flow of a fluid (typically gas)

through the bed. Recent experimental and computational works have revealed

that the hydrodynamics of fluidized beds exhibit many features associated with

low-dimensional deterministic chaos. One particular regime of interest to this

work is the bubbling fluidization regime in which gas is accumulated in pockets

or “bubbles” that rise upward throughout the surrounding solids. In this work,

we employ a previously published low-dimensional bubble model to simulate

under controlled conditions the global behavior of bubbles as they rise through

the bed. One of the control parameters is the injection frequency, and thus

we seek to investigate the underlying bifurcations in the global dynamics in

response to variations in injection frequency. We provide a qualitative and

quantitative description, based on ideas and methods from nonlinear dynamics,

of transitions in these dynamics. We hope this work can initially help improve

the fundamental understanding of fluidized-bed dynamics and possibly later

assist the development of improved control algorithms for fluidized-bed reactors.

I. BACKGROUND

Fluidization is a process in which solid particles are suspended in a fluid-like state by a

carrier medium, typically air [1–4]. This phenomenon occurs when the drag forces on the

particles from the upward fluid flow exceed gravitational and interparticle forces. Fluidized

beds normally consist of a vessel containing the solids with a bottom porous plate through

which the fluidizing medium, usually gas, can be introduced. At low fluid flow rates, the

fluid percolates through the void spaces between the solids, which remains a packed bed;

the forces acting on the bed due to the flow of the fluid is less than the weight of the

bed. When the flow rate is increased over a certain threshold, known as the minimum

fluidization velocity, the solids become levitated due to the interaction between the fluid

and the particles, and the bed behaves like a fluid. Lighter particles float on top of the bed,

the surface of the solids bed stays horizontal when its containment vessel is tilted (like water

in a glass), and the solids can flow through an opening, such as a valve. This state is called
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fluidization.

If the rate of fluid flow is further increased beyond a second velocity threshold, bubble-

shape voids form and rise through the bed with vigorous motion and extensive coalescence

and splitting [5–9]. This state is called the bubbling fluidization regime, and the threshold

velocity at which it first occurs is called the minimum bubbling velocity. The onset of bubble

formation depends on the actual type and size of solid particles and on the particle/fluid

density ratio. In a bed of coarse particles fluidized by a gas, for example, the onset of bubble

formation is approximately the same as the minimum fluidization velocity. But regardless

of when bubbles are formed, their vigorous motion, including coalescence and splitting,

is important because they affect the efficiency of particle mixing. A bed with uniformly

distributed fine bubbles, for instance, will generally lead to a higher chemical conversion

than a bed containing a few large bubbles. If the fluid flow rate is increased beyond the

terminal velocity of the particles, then the solids would be swept out of the container. If this

material is captured and returned to the bed, then the unit is operating in the circulating

fluidization regime.

Fluidized-bed reactors afford excellent gas-solid contacting and particle mixing, facilitate

the control of highly exothermal reactions, and provide good gas-to-particle and bed-to-

wall heat transfer. However, they also have disadvantages, such as a broad residence time

distribution of the gas and particles, gas-bypassing in the form of gas bubbles, jets and

channeling, the erosion of bed internals and the attrition of the bed material. Common

engineering applications of fluidization technology include coal combustion, the production

of polyethylene, and the cracking of hydrocarbons. Fluidization is in many ways related to

the field of granular dynamics but offers a set of unique features and challenges because of

the way the particles are agitated. For more information on the general engineering relevance

of fluidization, please consult Ref. [10].

In the last decade, studies by Skrzycke et al. [11], Daw et al. [12, 13], Daw and

Halow [14, 15], Schouten et al. [16–18], and vander Stappen et al. [19–21] have shown that

the hydrodynamics of fluidized beds exhibit many features associated with low-dimensional

deterministic chaos [22–24]. Then, in principle, one should be able to control the hydrody-

namics of fluidization behavior by exploiting the sensitivity of the system to small pertur-

bations. But the lack of realistic low-dimensional models for bubbling behavior has limited

the progress of chaos-based control strategies.
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Early attempts to develop such low-dimensional bubble models for fluidized beds were

made first by Clift and Grace [6] and later by Halow and Daw [14]. These models focus on

describing the wake interactions and coalescence processes among rising bubbles based on

potential flow theory and empirical observations of bubble behavior in gas-liquid systems

and bubbling fluidized beds. Later, Kaart et al. [25] and De Korte et al. [26] used such

models to show how controlled gas injection into fluidized beds at precise times and loca-

tions can be used to modify the effectiveness of gas-solids contacting. Thus, in principle,

they demonstrated that knowledge of the bubble dynamics can be exploited to improve the

efficiency of fluidized-bed chemical reactors with nonlinear feedback.

More recently, Pannala et al. [27] have used this same type of model to study the collective

interactions of large numbers of rising bubbles. We now recognize that this bubble model is

actually a specific realization of a more general class of models referred to as self-propelled

particle systems [28]. Such studies are needed in order to better understand how inherently

high-dimensional systems consisting of large numbers of coupled components or “agents”

are able to produce the low-dimensional dynamics (e.g., <6) seen in many experiments.

For example, Pannala et al. were able to show that the Halow and Daw bubble model can

reproduce collective swarming and avalanching processes that lead to large-scale intermittent

collapses of bubble gas toward the center of the flow. These features now seem remarkably

similar in a generic sense to that reported for locusts by Buhl et al. [28]. Bokkers et al. [29]

have further improved the bubble models for fluidized beds to include the convection of the

suspended solids (emulsion phase) as a continuity constraint so that the emulsion moves

down as the bubbles move up. We anticipate that improvements of this kind will allow

increasingly sophisticated studies of how real fluidized beds function and might be controlled.

In this work, we describe additional studies with the bubble model used by Pannala et

al. [6] to understand the nature of the dynamics as they would be seen by an observer

positioned at one location along a fluidized bed axis. We take this point of view because it is

generally consistent with typical experimental observations and also dynamic measurements

available in practical industrial situations. Key issues we seek to understand are:

a) What is the detailed nature of the local bifurcations produced as the rate of bubble

injection is increased over a large range?

b) What is the effective dimensionality in the local dynamics as they would be seen by a
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typical observer?

c) What level of predictability should be expected based just on the local measurements

as described above?

Our intention here is not to focus directly on the issue of fluidized-bed control (as did

Kaart et al. [25] and De Korte et al. [26]) but rather to better understand the expected nature

of the dynamical information that should be available to a typical experimental observer (at

least what is predicted by this type of model). Of course such studies are relevant to control,

but they also relate to more fundamental questions about the generation and transmission

of information and self-organization in spatio-temporal systems.

Our simulated experimental measurement is a hypothetical laser detector that records

the crossing time intervals of rising bubbles passing through the observing window. Previ-

ous experimental studies of bubble-train dynamics (e.g., the studies by Nguyen et al. [30]

and Tufaile and Sartorelli [31, 32]) have successfully used this same type of measurement.

Although the complete dynamical state space for a group of rising bubbles would have to

account for each bubble’s location and speed, experiments indicate that useful dynamical

maps can be constructed from time-delayed versions of this simple type of localized mea-

surement for bubble trains. Thus we adopt this same type of measurement to see what it

reveals about the model.

The paper is organized as follows. In Section II we review the basic structure of the low-

dimensional bubble model most relevant to this work. A complete description of the model

can be found in [27]. In Section III we present numerical results of the observed bifurcations.

Then we use time-series methods to reconstruct a discrete map that can characterize the

complexity of the crossing-time measurements, in particular the underlying attractor of the

global dynamics for various injection points.

II. THE LOW-DIMENSIONAL BUBBLE MODEL

The low-dimensional model, also known as the Dynamic Interacting Bubble Simulation

(DIBS) model, was derived by Pannala et al. [27] under the simple assumption that each

individual bubble can be treated as a dynamical “agent”. Each bubble then rises according

to its size and local conditions and coalesces when it comes in contact with neighboring
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bubbles. As each bubble rises and interacts, it also exchanges gas with the surrounding

emulsion phase gas-solid mixture where most of the reactions proceed. All of the observed

gas-solids mixing and reaction thus result from the collective effects of gas flowing smoothly

upward through the emulsion phase and bubble gas flowing upward. In the remainder of

this section, we summarize the basic principles of the DIBS model most relevant to this

manuscript. For further details we refer interested readers to Pannala et al. [27].

The rise velocity of each bubble is based on an empirical correlation derived from capac-

itance imaging experiments [33]. The form of this correlation is based on earlier theoretical

work by Davidson and Harrison [34] in which the motion of bubbles was modeled with poten-

tial flow analysis. The empirical correlation accounts for deviations from the rise behavior

of single bubbles due to pairwise interactions between leading and trailing bubbles and wall

effects. Each bubble’s trajectory is described by integrating a first-order, nonlinear ordinary

differential equation through time. Thus, if there are N bubbles in the bed, we use N equa-

tions to describe their motion. Bubbles are dynamically coupled through the dependence

of each rise velocity on the distance to its closest leading neighbor, i.e., the nearest bubble

above. This coupled system of equations for N bubbles can be written as:

d||Xi||

dt
= ||Vi|| =

√

√

√

√

√

g li

2 +

(

A∗
i

1 − A∗
i

)2

[

1 + 3

(

DLj

Xi−j

)3
]

. (1)

Referring to the i th bubble in the bed, Vi is its rise velocity, li is its length, A∗
i is the

ratio of its cross-sectional area to that of the bed, DLj is the diameter of the bubble leading

it, and Xi−j is the distance between bubble i and the bubble j leading it. The direction of

Xi is taken to be along a line connecting the center of bubble i with the center of the bubble

j that is leading it. If there is no leading bubble, the term DLi/Xi−j is zero. A second key

rule is that when bubbles touch, they coalesce to form a single bubble of equal total volume.

Because of coalescence, the number of bubbles and thus the number of equations varies with

time. In addition, bubbles entering and leaving the domain changes the number of equations

in the system. While this constant shifting in the number of equations creates an unusual

mathematical system with varying dimensionality, it is easy to handle numerically. Some of

the key model assumptions that are most relevant to this work include:

i. The emulsion gas velocity actually exceeds the minimum fluidization velocity based
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on the experiments of Hilligardt and Werther [10]; this is a modified two-phase as-

sumption.

ii. Bubbles are spherical if their diameters are less than or equal to 85% of the bed

diameter. Larger bubbles are cylindrically shaped with hemispherical-end caps with

diameters equal to 85% of the bed diameter.

iii. A bubble is a “trailing” bubble if it lies within the projected horizontal area defined

by twice the diameter of its closest higher neighbor.

iv. Bubbles are formed at the distributor by accumulating gas in excess of the emulsion

phase gas flow. The initial bubble diameter is calculated from an appropriate correla-

tion for the type of distributor orifice or porous plate using the correlation [35], or it

can be independently specified, e.g., according to a specified size distribution.

v. To simulate beds with porous-plate grids, the bubbles are placed at random locations

on the grid. For grids with well-defined tuyeres or bubble caps, bubbles may be released

randomly from these orifices or with specified frequencies.

vi. Bubbles exit the bed when their centers reach the bed surface.

vii. The bubble rise velocity is relative to the solids flow. Thus, the net solids downflow

or upflow can be specified for standpipes and moving beds.

viii. Mass transfer is calculated based on the correlations developed by Kunii and Leven-

spiel [10]. More details are available in Pannala et al. [36].

Detailed comparison and validation of the DIBS model with experimental works can be

found elsewhere [36].

III. ANALYSIS

A. Computational Bifurcation Diagrams

In this work, we use the DIBS model to investigate the underlying bifurcations that gov-

ern the transitions in the global dynamics of the rising bubbles in response to the injection

frequency (denoted by f). Our assumed fluidized-bed configuration is illustrated in Fig. 1.
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Both the central gas bubble injection and controlled injection rate are idealizations (com-

pared to most practical fluidized beds) in order to simplify the problem. By controlling

the bubble injection frequency explicitly (instead of allowing the bubbles to enter sponta-

neously), we can focus specifically on the dynamics of the bubbles once they have entered

the bed itself. In future work, however, we will consider other injection scenarios such as

multiple injection points with controlled injection frequency as well as spontaneous injection.

FIG. 1: Schematic of the fluidization-bed configuration assumed for our numerical experiment.

Minimum fluidizing gas is injected through a porous distributor to levitate the solids, but the

bubbles are produced by injecting pulses of additional gas through a central nozzle at a specified

frequency. Bubbles passing an observation point above the distributor are detected by crossing a

virtual laser beam.

To carry out the simulation, we have modified the DIBS flow chart (see Fig. 2) to make a

virtual measurement of the intervening time interval between successive passages of bubbles

as they pass through the observation point. Our objective is to capture the interaction

between leading and traling bubbles through a low-dimensional discrete map. Details are

provided later in Section IIIB. From a computational perspective, a significant change to
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the original flow chart is the utilization of an adaptive integration time, dt. Since injection

frequency f is a linear product of the inverse product of number of bubbles, N , injected

per integration time, i.e., f = 1/(N × dt), using an adaptive integration times allows us to

conduct simulations over a refined grid of frequency values, even if the frequencies are not

commensurate with the number of bubbles injected. In this way, the bifurcation diagram that

we generate can exhibit the fine details of the global dynamics. Although the observation

point is fixed for an individual simulation, we also investigate the effects of changing its

location on the bifurcation diagram. The bed height is also assumed to be fixed at 40 cm.

The modified DIBS code also accounts for changes in bubble injection frequencies, between

the limit of almost zero up to 10 bubbles injected per second (we denote this injection

frequency in Hz). In order to get insight into the underlying bifurcations, we consider only

the case of a single central nozzle injector; the case of multiple injectors is deferred for future

work.

We start the computer simulations with an observation point positioned at h = 20 cm,

which is right in the middle height of the bed, and then measure the delay times, ∆tn,

between successive bubbles crossing the observation point. To generate a well-defined bifur-

cation diagram, we use a 2000-grid over a frequency range (0, 10]Hz. The original time-step

size is set to 0.001 s. For each individual frequency, we let the program run for a minimum

of 700 seconds, and in some cases up to 24000 seconds, in order to capture the long-term

behavior. These computationally intensive jobs demand the use of High Performance Com-

puting. Thus we have carried out all simulations at the TeraGrid machine at the San Diego

Supercomputer Center, which provides a cluster of 102 teraflops of computing capability.

Four computer nodes, IA-64 1.5 GHz per node, were used to run the simulations in parallel.

Since each simulation (for a given frequency) is independent from the others, multiple batch

jobs of bubbles simulation for different frequencies were launched by a Perl script, which is

submitted four times into the four computer nodes. The computation time, for instance,

for the 2000-grid on the zoomed-in frequency interval [4, 6] is, approximately, 2.5 hours in

each TeraGrid node. The exact number of bubbles that are being followed at a typical

time varies with the injection frequency — about five bubbles for low frequencies and up to

twenty bubbles for higher frequencies.

Fig. 3 depicts the resulting bifurcation diagram for this configuration with injection fre-

quency varying from close to zero up to 10 Hz. At low injection frequencies, bubbles entering
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FIG. 2: Modified flow chart of the Dynamic Interacting Bubble Simulation model. The new model

can now measure the passage times of bubbles through a predefined observation point in addition to

simulating bubble interactions. Injection frequency is user-defined in the panel labeled “simulation

parameters”.

the bed are significantly separated and therefore their interaction is minimal, consequently

they rise “almost” independently of each other. Thus, the global dynamics is attracted to a

fixed point, as expected. As the injection frequency increases beyond f = 4Hz, the global

dynamics rapidly changes, however, from a fixed point to a region of quasi-periodic behavior
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that eventually becomes chaotic, then back to a more organized region of period-4 oscilla-

tions. Although it is hard to visualize under the scale of the graph, none of the crossing

times is zero. The period-4 region bifurcates, at approximately f = 4.7Hz, into a region

of intermittent behavior that involves four disjoint chaotic attractors. Near f = 5Hz, the

chaotic attractors collide into a period-3 orbit that eventually changes into a period-2 orbit.

A period-doubling bifurcation then leads to a period-4 orbit.

FIG. 3: Computational bifurcation diagram of time delay ∆tn between successive crossing bubbles

as a function of injection frequency in a simulated fluidized bed with central nozzle injection. Bed

height is h = 40 cm and observation point is set up at h = 20 cm. (Top) Injection frequencies in

the range (0, 10] Hz. (Bottom) A close-up of injection frequencies in the range [4, 6] Hz.

Beyond f = 5.55Hz, the system displays intermittent behavior in which the underlying
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dynamics randomly changes between a high-period orbit, approximately period-6, and a

chaotic attractor as is shown in Fig. 4. This region of intermittent behavior persists until

the injection frequency is large enough, at about f = 9.25Hz, for the flow of bubbles to form

an almost constant stream with little time to interact with one another so that the global

dynamics is again attracted to a fixed point.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

0.2

0.4

0.6

0.8

1

n

∆ 
t n

FIG. 4: 50000 iterations of the DIBS bubble model with bubble injection frequency of f = 5.6 Hz.

At this frequency, the system displays intermittent behavior, in which the dynamics randomly

changes between a period-6 orbit and a chaotic set.

B. Model Fitting

As noted in the Background section, the full state space for the DIBS bubble model

would theoretically require sufficient dimensions to specify all of the positions and velocities

of each bubble currently in the system. In the cases studied here, up to 20 bubbles were

present in the bed at any one time, so the entire dynamical system would be represented by

a 40-dimensional phase space (two ordinary differential equations for each bubble). (Note

the number of equations actually shifts over time as bubbles leave the system or coalesce,

presenting an interesting discontinuity.) However, we actually expect from the DIBS model

that the local dynamics will be dominated by pairwise interactions between leading and

trailing bubbles and also that the bubble stream will tend to collapse toward the bed center

13



as the bubbles rise. This should tend to reduce the effective local dynamical dimension

considerably.

Based on the above, it is reasonable to assume that the crossing times at the hypothetical

laser detector are governed by the interactions between the crossing bubble at any given

instant of time and the bubbles immediately above and below it. We would then expect the

crossing dynamics to be described by a map of the form ∆tn+1 = G(∆tn, ∆tn−1), where ∆tn

is the time interval between the n th and (n + 1) st crossing bubbles. That is, we expect the

embedding dimension required to resolve the local dynamics to be close to a value of d = 3.

To check this expectation we used time-delay embedding of the observed crossing-interval

time series to reconstruct the local attractor in the space (∆tn, ∆tn−1, . . . , ∆tn−(d−1)) at

various inlet bubble injection frequencies. We then estimated the minimal embedding di-

mension d through the method of false nearest neighbors [37], which yields the percentage

of neighboring phase- space points that move apart as the embedding dimension increases.

A minimal change in this percentage is indicative of a “good” estimate. Fig. 5 shows the

result of applying the false nearest neighbors algorithm to the time-series data produced

by the DIBS model with injection frequency 4.2Hz. The percentage of nearest neighbors

decreases monotonically as the embedding dimension increases, and the change is less than

0.1% when d changes from d = 3 to d = 4. It is then reasonable to assume that the required

embedding dimension is d = 3. Similar results estimate the embedding dimension to be

d = 3 for various values of injection frequency.

We note here that an embedding dimension of 3 appears to be within the range of

experimental correlation-dimension values reported in the literature for bubbling fluidized

beds, but it perhaps is somewhat on the low side of what might be expected. We speculate

that this may be an indication that the model used here is missing some important dynamical

components which might contribute to a higher effective dimensionality. If nothing else, the

limitation of having only a single bubble injection location might be expected to reduce the

resulting dimensionality.

Proceeding with an assumed embedding dimension of d = 3, we can write the time-delay

vectors as ∆Tn = (∆tn, ∆tn−1, ∆tn−2). In order to model the deterministic evolution of the

time series data, we need a nonlinear map F of the form

∆Tn+1 = F (∆Tn). (2)
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FIG. 5: Fraction of false nearest neighbors as a function of the embedding dimension for simulations

of the DIBS bubble model with injection frequency of 4.2 Hz.

Since the observations ∆tn and ∆tn−1 are common to both delay vectors ∆Tn+1 and ∆Tn,

we only need to find a map f for the last component of ∆Tn+1. That is, ∆tn+1 = f(∆Tn).

The simplest case is to approximate f by a linear function of the form f(∆Tn) = ~an ·∆Tn+bn.

The vector ~an and the scalar bn are then found by minimizing the norm below

M
∑

i=1

||∆ti+1 − ~an · ∆ti + bn||
2,

with respect to ~an and bn, M is the total number of time delay vectors. We have solved

the minimization problem above with the aid of the TISEAN software package [38]. The

linear fitting works very well for a wide range of frequencies up to f = 4.55Hz. Fig. 6 shows

(in green) the resulting time-delay representation of 1200 iterations of the DIBS model, at

two representative values of injection frequencies: 4.2Hz and 4.8Hz. In black, we show

iterations from the local linear model. Beyond f = 5.55Hz, where the system exhibits

intermittency between periodic orbits and chaotic attractors, both approximations, local

linear fitting and global nonlinear multivariate polynomial fitting, fail to produce adequate

long-term predictions.
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FIG. 6: (Color online) Time-delay representations of 1200 iterations of (green) the DIBS bubble

model and of (black) a local linear predictor, for two representative values of injection frequency.

Next we quantify the rates at which neighboring orbits on each individual attractor, for

each injection frequency, diverge (or converge) as the time-passage dynamics evolves in time

through the following equation:

λ ≈
1

n
ln

∣

∣

∣

∣

F n(∆T0 + ε0) − F n(∆T0)

ε0

∣

∣

∣

∣

(3)

where ε0 is an arbitrary small perturbation of the bubble dynamics. Equation (3) is an

estimate of the largest Lyapunov exponent; it represents the rate of growth or decay of

small perturbations along the principal axes of the system’s state space. In practice, we

apply (3) to an ensemble of orbits and then we average them to obtain a more statistically

meaningful measure of Lyapunov exponents. Figure 7 shows the estimated Lyapunov expo-

nents for a wide range of injection frequencies. Observe that the sign of the exponent agrees

with the attractor depicted by the bifurcation diagram. That is, for low frequencies, the

largest exponent is negative, indicating convergence towards the fixed point, as is normally

observed in laboratory experiments as well as in our simulations of the DIBS model. For

intermediate frequencies, between f = 4 and f = 5.55Hz, the sign of the largest exponents

randomly changes from negative to positive. A positive Lyapunov exponent is indicative of

deterministic chaotic behavior in the passage-time dynamics because the time-series mea-

surements of crossing times are bounded by the maximum passing time of a bubble rising all

the way from the injection point to the top of the bed. More precisely, an upper bound of
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crossing times is Hmax/||Vi||min +1/f , where Hmax is the height of the bed, f is the injection

frequency, and ||Vi||min is the minimum rising velocity given by

||Vi||min =

√

√

√

√

g li

2 +
(

A∗

i

1−A∗

i

)2 .

For frequencies larger than f = 5.55Hz, the sign of the largest exponent is mainly pos-

itive. In this region, however, the time-passage dynamics is not only chaotic but rather

intermittent, randomly switching between chaotic attractors and high-period orbits. Ob-

serve also that the largest Lyapunov exponent is zero at the points of bifurcation where the

system dynamics changes behavior.
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FIG. 7: Largest Lyapunov exponent of time-series bubble dynamics for various values of injection

frequencies. A positive exponent is indicative of chaotic behavior in the system’s dynamics.

The presence of the intermittency in the bifurcation sequence is likely to be difficult

to ever see experimentally because of the presence of parametric noise (e.g., from gas-flow

turbulence or granular particle flow). Such noise would be expected to continually stimulate

intermittent jumps in these areas of the bifurcation sequence, thus causing the periodic

features to be blurred into an apparent broad band of chaos. This suggests that future

bifurcation studies of such bubble models should also consider the impact of realistic levels

of parametric noise to the system.
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IV. SUMMARY

We have used a low-dimensional, multi-agent model of bubbles in gas-fluidized beds to

investigate the bifurcations that underlie their global dynamics in response to changes in

the frequency at which they rise and interact with one another. This study was aimed at

the relatively simple case of bubble injection through a central nozzle. As a measurement

variable we employ the time of passage of successive bubbles through an observation point

located at a predefined height within the fluidized bed.

The resulting bifurcation diagrams show that at low frequencies, the global dynamics is

attracted towards a fixed point since the bubbles interact very little with one another, so

passage times remain fairly constant. As the frequency of injection increases, however, the

passage-time dynamics undergo a series of bifurcations to new behavior that include highly

periodic orbits, chaotic attractors, and intermittent behavior between periodic orbits and

chaotic sets. Except for the intermittent regime, we were able to approximate nonlinear

models that allow for long-term predictions and the possibility of developing future control

algorithms. The occurrence of this intermittent regime suggests that there are certain flow

conditions for which control may be extremely difficult. Changing the observation point

leads to qualitatively similar results, though with lower observation points we find a greater

tendency of the global dynamics towards orbits of higher period, as is shown in Fig. 8.

We also wish to emphasize that the use of High Performance Computing at the San

Diego Supercomputer Center was instrumental to help us carry out the computationally

intensive simulations of the DIBS model and to help us achieve bifurcation diagrams with

very high resolution. Work in progress includes an extension of the current analysis to

the more realistic scenario of multiple injection points with simultaneous, random injection

times, and parametric noise. For such work, we are considering parallelization of the bubble

simulation code through the TeraGrid facilities.
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(a)Observation point h = 30 cm

(b)Observation point h = 10 cm

FIG. 8: Bifurcation diagrams generated at two other observation points, h = 10 cm and h = 30

cm. As the observation point decreases the global dynamics exhibits greater tendency towards

orbits of higher period.
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NOMENCLATURE

g Acceleration of gravity

h Instantaneous bed height

li Length of the i th bubble

t Time

∆tn Time between successive bubble crossings of the observation point

d Emedding dimension

f Frequency of bubble injection

A∗
i =(Di/Dt)

2 = (cross-sectional area of i th bubble/cross-sectional area of bed)

Abed Area of bed

Ar Cross-sectional area of the bubble stream (area based on radius of gyration)

A∗
r Normalized cross-sectional area of the bubble stream (Ar/Abed)

D Diameter of the bubble

Di Diameter of the i th bubble

Dt Diameter of fluidized bed

DLi Diameter of bubble leading i th bubble in bed

Hbed Fixed bed height of the bed

Hmax Maximum height of the bed

N Number of bubbles in the bed at time t

Vi Velocity of the i th bubble

Xi Position of center of the i th bubble

Xi−j Distance between the center of the i th bubble and the bubble leading it, Li

dt Time step for integration
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27, 1985.

[7] D. Gera and M. Gautam. Variation of throughflow velocity in a 2-D rising bubble. Powder

Tech., 79(3):257–263, 1994.

[8] D. Gera and M. Gautam. Bubble rise velocity in two-dimensional fluidized beds. Powder

Tech., 84(3):283–285, 1995.

[9] F.A. Zenz. Bubble formation and grid design. Instn. Chem. Engng. Symp. Ser., 30:136–139,

1968.

[10] D. Kunii and O. Levenspiel. Fluidization Engineering, 2nd ed., Butterworth-Heinemann,

Boston 1991.

[11] D.P. Skrzycke, K. Nguyen, and C.S. Daw. Characterization of the fluidization behavior of

different solid types based on chaotic time series analysis of pressure signals. In Proceedings of

the 12th International Conference on Fluidized Bed Combustion, pages 155–156, San Diego,

California, 1993.

[12] C.S. Daw, C.E.A. Finney, M. Vasudevan, N.A. van Goor, K. Nguyen, D.D. Bruns,

E.J. Kostelich, C. Grebogi, E. Ott, and J.A. Yorke. Self-organization and chaos in a flu-

idized bed. Phys. Rev. L, 75:2308–2311, 1995.

[13] C.S. Daw, W.F. Lawkins, D.J. Downing, and N.E. Clapp Jr. Chaotic characteristics of a

complex gas-solids flow. Phys. Rev. A, 41:1179–1181, 1990.

[14] C.S. Daw and J.S. Halow. Modeling deterministic chaos in gas-fluidized beds. AIChE Sympo-

21



sium Series Fluidized Processes: Theory and Practice, A. Weimer, ed., 88(289), 61-69 (1992).

[15] C.S. Daw and J.S. Halow. Evaluation and control of fluidization quality through chaotic time

series analysis of pressure-drop measurements. AIChE Symposium Series, 1993.

[16] J.C. Schouten and C.M. van den Bleek. Chaotic hydrodynamics of fluidization: consequences

for scaling and modeling of fluidized bed reactors. AIChE Symposium Series, 1992.

[17] J.C. Schouten, M.L.M. van der Stappen, and C.M. van den Bleek. Deterministic chaos

analysis of gas-solids fluidization. In O.E. Potter and D.J. Nicklin, editors, Fluidization VII,

pages 103–111, New York, 1992. Engineering Foundation.

[18] C.M. van den Bleek and J.C. Schouten. Deterministic chaos: A new tool in fluidized bed

design and operation. In Chemical Engineering Journal and Biochemical Engineering, 53(1),

75-87 (1993).

[19] M.L.M. van der Stappen, C. Schouten, and C.M. van den Bleek. Application of deterministic

chaos theory in understanding the fluid dynamic behavior of gas-solids fluidization. AIChE

Symposium Series, 1993.

[20] M.L.M. van der Stappen, C. Schouten, and C.M. van den Bleek. The gas-solids fluidized bed

as a spatio-temporal chaotic system. AIChE Symposium Series, 1994.

[21] M.L.M. van der Stappen, C. Schouten, and C.M. van den Bleek. Chaotic hydrodynamics

and scale-up of gas-solids fluidized beds: using the Kolmogorov entropy for quantification. In

Fluidization VIII. Engineering Foundation, 1995.

[22] R. Bakker, R.J. de Korte, J.C. Schouten, F. Takens, and C.M. van den Bleek. Neural networks

for prediction and control of chaotic fluidized bed hydrodynamics: a first step. Fractals, 1997.

[23] R. Bakker, J.C. Schouten, M.O. Coppens, F. Takens, and C.M. van den Bleek. Robust learning

of chaotic attractors. In S.A. Solla, T.K. Leen, and K.R. Miller, editors, Advances in Neural

Information Processing Systems, volume 12, pages 879–885, Cambridge, 2000. MIT Press.

[24] R. Bakker, J.C. Schouten, C.L. Giles, F. Takens, and C.M. van den Bleek. Learning chaotic

attractors by neural networks. Neural Computation, 2000.

[25] S. Kaart, J.C. Schouten, and C.M. van den Bleek. Improving conversion and selectivity of

catalytic reactions in bubbling gas-solid fluidized bed reactors by control of the nonlinear

bubble dynamics. Catalysis Today, 48, 185–194 (1999).

[26] R.J. de Korte, J.C. Schouten, C.M. van den Bleek. Controlling bubble coalescence in a mech-

anistic fluidized bed model using bubble injection. AIChE J., 47, No. 5, 851–860 (2001).

22



[27] S. Pannala, C.S. Daw, and J.S. Halow. Dynamic interacting bubble simulation (DIBS): An

agent-based bubble model for reacting fluidized beds. Chaos, Focus Issue, 14, No. 2., 487-498

(2004).

[28] J. Buhl, D.J.T. Sumpter, I.D. Couzin, J.J. Hale, E. Despland, E.R. Miller, S.J. Simpson. From

Disorder to Order in Marching Locusts. Science, 312, 1402–1406 (2006).

[29] G.A. Bokkers, J.A. Laverman, M. van Sint Annaland, and J.A.M. Kuipers. Modelling of

large-scale dense gas-solid bubbling fluidised beds using a novel discrete bubble model. Chem.

Eng. Sci., 61:5590-5602, 2006.

[30] K. Nguyen, P. Chakka, M. Cheng, C.E.A. Finney, D.D. Bruns, and C.S. Daw, and M.B. Ken-

nel. Spatio-temporal dynamics in a train of rising bubbles. Chemical Engineering Journal,

64, No. 1, 191–197 (1996).

[31] A. Tufaile and J.C. Sartorelli. Chaotic behavior in bubble formation dynamics. Physica A,

275 No. 3–4, 336–346 (2000).

[32] A. Tufaile and J.C. Sartorelli. Henon-like attractor in air bubble formation. Physics Letters

A, 275, 211-217 (2000).

[33] J.S. Halow, G.E. Fasching, and P. Nicoletti. Observations of a fluidized bed using capacitance

imaging. Chem. Eng. Sci. 48, 643 (1992).

[34] J. Davidson and D. Harrison. Fluidized Patterns, Cambridge University Press, Cambridge

1963.

[35] S. Mori and C.Y. Wen. Estimation of bubbles diameter in gaseous fluidized beds. AIChE J.

21, 109 (1975).

[36] S. Pannala, C.S. Daw, and J.S. Halow. Simulation of reacting fluidized beds using an agent-

based bubble model. Int. J. Chem. Reactor Eng., 1 A20 (2003).

[37] M.B. Kennel, R. Brown, and H. Abarbanel. Determining embedding dimension for phase-space

reconstruction using a geometrical construction. Phys. Rev. A 45, 3403 (1992).

[38] R. Hegger and H. Kantz. Practical implementation of nonlinear time series methods: The

TISEAN package. Chaos, 9, no. 2., 413-435 (1999).

23


