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ABSTRACT OF THE THESIS 

Properties of Relativistic, Compact Stars 
by 

Alexander W Ho 
Master of Science in Physics 

San Diego State University, 2006 

 Compact stars are extremely dense objects with very interesting properties.  Not only 
are they of great interest to astrophysicists, but their dense nature provides an excellent 
testing area for a variety of phenomena and exotic particles that may prove significant to 
many different areas of physics as well.  One particular subject is that of strangeness and 
strange quark stars.  This paper investigates such stars as well as their nuclear counterparts, 
neutron stars.  The properties of relativistic neutron stars are examined as well as the impact 
of strangeness on compact astronomical objects.   
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CHAPTER 1 

INTRODUCTION 

  Stellar objects have fascinated people since the beginning of mankind.  Consequently, 

research has been conducted for centuries trying to discover the true nature of these items.  

As technology has grown, so has man’s understanding of the cosmos, bringing us to the 

present time where we are optically able to resolve images from across the universe and can 

put objects into orbit about planets throughout our solar system.  An area of particular 

interest is stars; their composition, properties, interactions, etc.  One specific class of stars, 

namely, compact stars (white dwarfs, “neutron stars”, and black holes), is of great interest 

and importance to astrophysicists, as well as nuclear and particle physicists alike.     

 Neutron stars are extremely dense and massive objects with very interesting 

properties.  They also host a variety of fascinating properties due to their dense nature.  These 

stars are neutron-rich, and typically only have a radius of ~ 10 km, though their mass is 

approximately the same as our sun (Msol ≈ 2 x 1030 kg).  Since these stars are so dense, up to 

10-20 times the density of atomic nuclei (ρ0 = 2.5 x 1014 g/cm3), the core is given the 

opportunity to be host to a variety of exotic particles/phases (such as hyperons, quarks, and 

bosons), and processes [1,2,3].  One class of these particles that has gained an increased 

interest is strange quarks and strange quark matter.  Strange quark matter may be more stable 

than atomic nuclei, and could even explain the problem of “missing matter” (dark matter).   If 

it were more stable than atomic nuclei, this would imply that all neutron stars have a 

potential for possessing a strange quark core, covered in a nuclear crust layer [4].  Even more 

remarkable is the fact that neutrons within such a crust exceeding the neutron drip density 
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would detach from the crust into a superconducting gap and be transformed into strange 

quark matter themselves.  Although this idea of strange stars [5,6,7] is not new, it is of great 

interest to astrophysicists and physicists in general since these stars could offer insight into a 

wide range of exciting astrophysical phenomena.  In this paper I will investigate properties of 

standard “neutron” stars, as well as those of strange quark stars.   
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CHAPTER 2 

COMPACT STARS IN GENERAL RELATIVITY 

 Due to the fact that neutron stars are extremely dense (typically 10-20 times ρ0), 

calculations must be treated within the framework of Einstein’s theory of general relativity.  

However, there are many components that must be considered when applying relativistic 

concepts.  It is imperative that relativity be considered since many aspects of these stars are 

directly affected and altered due to Einstein’s equations, showing non-Newtonian behavior, 

such as frame-dragging (Lense-Thirring effect), general relativistic mass shedding, and 

limiting masses, which will all be investigated in later sections.  

EINSTEIN’S EQUATION 
 In order to begin looking at relativistic compact stars we must first establish the 

basics of relativity.  Relativity comes in two forms, special relativity and general relativity.  

For compact stars, general relativistic effects must be examined due to the stars’ enormous 

densities.  The equations used are results of Einstein’s field equation, which will be derived 

below.  To obtain Einstein’s field equation, several elements are needed.  First, since 

curvature of space-time is the primary factor of general relativity, Ricci curvature is the 

starting point.   The Ricci Tensor is defined as 

Rμν = Γσμσ,ν  - Γσμν,σ – ΓσκνΓκμσ - ΓσκσΓκμν ,                                              (1) 

where a comma followed by a Greek letter represents a derivative with respect to space-time 

coordinates, for example ,σ = ∂/∂xσ = ∂σ.  The Christoffel symbol Γ is defined as 

Γσμν = ½ gσλ (gμλ,ν + gνλ,μ – gμν,λ).                                     (2)                         

So the Einstein equation can be stated by combining the Ricci Tensor and the energy-

momentum tensor, 
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Rμν – ½ gμνR = 8πTμν
                     (3) 

where the values of c and G have been set equal to 1.  It is then often useful to define the 

Einstein curvature tensor Gαβ as 

Gμν ≡ Rμν – ½ gμνR            (4) 

with the value R being the Ricci Scalar [8].  Finally, a relation between the Einstein curvature 

tensor and the energy-momentum tensor can be established, giving rise to Einstein’s field 

equation: 

Gμν ≡ Rμν – ½ gμνR = 8πTμν (ε,P(ε)).          (5) 

It is very common to treat neutron star matter as a perfect fluid since many studies propose 

that they display such characteristics.  The energy-momentum tensor of a perfect fluid is 

       Tμν = (dxμ/dτ)(dxν/dτ)(ε + P) + gμνP.        (6) 

As usual, pressure P is a function of energy-density, and τ represents the proper time.  The 

energy-momentum tensor, regardless of whether specific for a perfect fluid or not, contains 

information about the model of the star, namely, the equation of state P(ε).  It is with this 

information in combination with Einstein’s equations that the properties of compact stars can 

be determined relativistically.   

SPHERICAL STARS 
For stars which are spherically symmetric and non-rotating, the metric is given by 

ds2 = -e2Φ(r)dt2 + e2Λ(r)dr2 +r2dθ2 +r2sin2θdφ2        (7) 

where Λ(r) and Φ(r) are metric functions which are radially dependent.  It is then 

straightforward to obtain the covariant components of the metric tensor,  

gtt = -e2Φ(r), grr = e2Λ(r), gθθ = r2, gφφ = r2sin2θ,      (8) 
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which then yields after some mathematical manipulation the only non-vanishing Christoffel 

symbols,  

Γr
tt = e2Φ(r)-2Λ(r) Φ’(r), Γt

tr = Φ’(r), Γr
rr = Λ’(r), Γθrθ = r-1, Γφrφ = r-1, Γr

θθ = -re-2Λ(r),  (9) 

Γφθφ = cosθ/sinθ, Γr
φφ = -rsin2θe-2Λ(r), Γθφφ = -sinθcosθ 

where primed values indicate a differentiation with respect to the radial coordinate, e.g. φ’ = 

∂φ/∂r .  Upon substituting (6) and (7) into Einstein’s field equation (5), one is left with the 

general relativistic equations of hydrostatic equilibrium for spherically symmetric stars, first 

proposed by Tolman [9] and Oppenheimer-Volkoff [10],  

3

2

4pr P(r)1 + 
m(r)dP(r) (r)m(r) P(r) = - 1 + 

2m(r)dr r (r) 1 - 
r

ε
ε

⎛ ⎞
⎜ ⎟⎛ ⎞⎛ ⎞ ⎝

⎜ ⎟⎜ ⎟ ⎛ ⎞⎝ ⎠⎝ ⎠ ⎜ ⎟
⎝ ⎠

⎠      (10) 

Note that the velocity of light and Gravitational constant use units making c = G = 1, giving 

the mass of our sun Msol = 1.475 km.  It is with this equation that properties for spherically 

symmetric stars were found by means of numerous calculations.              

ROTATING STARS 
The equations for compact rotating stars are much more complicated than those of 

non-rotating stars for several reasons [8].  Since the massive stars are rotating, they flatten at 

their poles, becoming oblate.  This causes the metric for such a system to have a dependence 

on the polar coordinate θ.  Also, the star does not depend solely on hydrostatic equilibrium to 

keep from pulling apart anymore.  Gravity will be counteracted by the centrifugal force now 

being exerted on the star due to its rotation.  Consequently, the star can now be more massive 

than if it were not rotating.  However, this in turn means that space-time’s geometry around 

the star is also affected.  For a rotating star, the covariant components of the metric tensor are 

expressed by [8,11] 
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gtt = -e2ν + e2ψω2, gtφ = -e2ψω, grr = e2λ, gθθ = e2μ, gφφ = e2ψ                    (11) 

which therefore leads to the line element 

ds2 = gμνdxμdxν = -e2νdt2 + e2ψ(dφ – ωdt)2 + e2μdθ2 + e2λdr2.      (12) 

The change in the line element comes directly from the oblateness of the star caused by 

rotation, making the metric two-dimensional.  In this line element, the angular velocities ω of 

the local inertial frames and the functions μ,ν,λ,ψ all depend on the polar angle θ and the 

radial component r, (there is also the implicit dependence on the star’s angular velocity, Ω).   

 Another interesting point to mention here is the effect of frame-dragging (Lense-

Thirring effect).  Since space-time around the star is being deformed due to its rotation, the 

local inertial frames around the star are not at rest with respect to distant stars and get 

dragged along with the rotating “perfect fluid” inside of the star.  The frame-dragging 

frequency, w, is defined as  

w(r, θ, Ω) = Ω – ω(r, θ, Ω).     (13) 

This frequency is important when dealing with rotating stars because it is often necessary to 

consider the rotation of the interior fluid of the star.  As stated earlier, the centrifugal force of 

the rotating star plays a very important role, and its magnitude is regulated by the rotation 

rate of the interior fluid with respect to the local inertial frames (inside and out) [12].  

However, since we are working with general relativity, these local inertial frames are not at 

rest with respect to an observer at infinity.  They are in fact dragged by the fluid which is 

rotating inside of the star.   

We are also interested in the moment of inertia for compact stars.  Only uniformly 

rotating stars are considered in this paper which are symmetric about their axis of rotation.  

To begin, we will start with the expression  
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I HA, WL ∫
1
W

 ‡
A
drdqdf Tf

t Hr, q, f, WL è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
-g Hr, q, f, WL

                (14) 

where A signifies an axially symmetric region within the star where matter is rotating with 

the angular velocity Ω.  The relevant portion of the energy-momentum tensor is given by 

Tf
t = He + PL uf ut

     (15)  

With some manipulation and derivation, we are left with the moment of inertia for a compact 

rotating star, 

I HWL = 2 p‡
0

p
dq‡

0

R Hq L
drel+m+n +Y

¶+ P H¶L
e2 n -2 y – w - W 2  

W -

H L
w

W                       (16) 

The relativistic change from the Newtonian expression for the moment of inertia (I=2MR2/5) 

comes from the curvature of space-time and the effect of local frames being dragged.  
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CHAPTER 3 

EQUATION OF STATE 

 The most important piece of information necessary when calculating properties of 

compact stars is their equation of state.  The equation of state relates the star’s energy-

density, ε, to the star’s pressure, P(ε), a function of the energy-density.  For theoretical 

models of compact stars, different aspects are taken into consideration when the equation of 

state is created which will be discussed below.  For example, the equation of state ehv (see 

Table 2) contains nucleons, hyperons, and leptons, but ehvpn only contains nucleons.  

Strange quark stars, on the other hand, are actually much simpler in general to design 

equations of state for.  However, many models show quark stars having a nuclear crust, and 

this crust must be taken into account when calculating properties for these stars.   

CONVENTIONAL NEUTRON-STAR MATTER 
 For conventional “neutron” stars that contain only nuclear matter, there are 12 

equations of state discussed in this paper.  Neutron stars begin as the remnants of supernovas, 

and over time this collection of debris collapses under the force of gravity to a condensed 

form.  These stars are more massive than our sun, but less than 2-3 times Msol (typically 1.4 

Msol).  They also only have a radius of approximately 10 km (our sun’s radius is 

approximately 700,000 km), although their density is 10-20 times nuclear density.  At the 

center of the star, the mass-density is on the order of 2.5 x 1014 g/cm3  (this value is greater 

when considering exotic particles) [13,14,8] and its temperature is roughly 1011 K (~100 

MeV) [27].  Also, the baryon number is approximately 1057!  To put this in perspective, one 

liter of matter from the core of a neutron star would weigh approximately 2.45 x 1011 tons.  

As one would conclude from the classical misnomer “neutron” star, the number of neutrons 
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is extremely high, but these stars also contain a small number of protons and also leptons (for 

charge neutrality).  From chemical equilibrium, the lepton number is regulated, and allowed 

electrons are highly relativistic (extremely low mass).  Consequently, we have the following 

interaction occurring,  

n → p + e- + ν,               (17) 

from beta decay, although most of the anti-neutrinos are emitted into space early on, causing 

the star to cool rapidly.   

 Nuclear matter density will increase from the surface towards the center of the star 

until it reaches the “neutron drip” density, which is approximately 4.3x1011 g/cm3 [4].  At 

this particular density the neutrons are able to leave their nuclei with ease and move freely 

about, the importance of which will be related to strange quark matter stars in the next 

section.  Properties up to drip density are relatively well known.  Even properties between 

drip density and saturation density are understood to a very good confidence (saturation 

density represents the density at which nucleon boundaries touch, ~ 1.5 ρ0), but it is the 

region from saturation density to the center of the star that is highly uncertain.  Therefore, 

equations of state are designed to explain what kind of particles and interactions may be 

taking place in this unknown area.    

As mentioned earlier, it is easier to consider compact neutron stars as being perfect 

fluids (see equation 6).  The equation of state for compact stars must then obey the boundary 

conditions P(r = 0) = Pc = P(εc), where εc represents the energy-density at the center of the 

star’s core, and the pressure is computed out to P(r = R) = 0, signifying that the outer edge of 

the star has been reached, with the pressure dropping to zero at that limit.  The equations of 

state for neutron star models used in this paper are displayed in Table 1, indicating which 
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many-body approximation was used for each model.  In this table, RH stands for the 

Relativistic Hartree model, and MIT represents the MIT bag model [15,16,17] (which takes 

into account quarks).  All equations of state were designed with relativistic field theoretical 

treatments which take into account quantum effects.   

 
Table 1. Summary of Neutron Star Matter Equations of State.  Additional  
Properties Displayed in Tables 2 and 3 

EOS Label   Many-body approximation  Reference 

 e2pi       RH     [29] 
 e300        RH     [30] 
 e3pi         RH     [30] 
 eg300b180      RH + MIT    [8] 
 ehv       RH     [31] 
 ehvpn       RH     [31] 
 eg240m78      RH     [13] 
 eg240b180       RH + MIT    [13] 
 ewal-cfl-mixed     RH + MIT    [32] 
 NJLEOSNM  RH + MIT    [33] 
 NMtoNQMEOSM RH + MIT    [33] 
 NMtoSQMEOSM RH + MIT    [33] 
 

As mentioned before, the composition of each star in question determines the design of the 

equation of state.  In Table 2, the composition and interaction for each neutron star model 

used in this paper is shown.  It should be mentioned here that NJLEOSNM, 

NMtoNQMEOSM, and NMtoSQMEOSM are new equations of state from Jefferson 

Laboratory that correspond to Nambu-Jona-Lasinio (NJL) models which represents a four 

fermion interaction. 
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Table 2. Properties of Equations of State Listed in Table 1 

 EOS Label  Composition         Interaction 

 e2pi       N, H, L + π         σ, ω, ρ meson exchange 
 e300        N, H, L          is the same for all EOSs 
 e3pi         N, H, L + π 
 eg300b180      H, H, L + u, d, s quark matter 
 ehv       N, H, L 
 ehvpn       N 
 eg240m78      N, H, L 
 eg240b180       N, H, L + u, d, s quark matter 
 ewal-cfl-mixed     N, H, L + u, d, s quark matter 
 NJLEOSNM  N, H, L 
 NMtoNQMEOSM N, H, L + u, d, s quark matter 
 NMtoSQMEOSM N, H, L + u, d, s quark matter (2SC) 
 
 

In this table (Table 2), N stands for nucleons, H for hyperons, and L for leptons.  π  

represents pion condensate.  In Table 3, the discussed equations of state are shown with some 

of their corresponding properties which have affected their design directly.     

 
Table 3. Properties of Nuclear Matter at Saturation Density of Equations of State from 
Table 1.  The Quantities in this Table are: Energy per Baryon E/A, Compression 
Modulus K (Defines Curvature of EOS at ρ0), Effective Nucleon Mass M* (≡ m*N/mN), 
and Symmetry Energy asym 
EOS Label   E/A       ρ0          K        M*          asym  

   (MeV)    (fm-3)            (MeV)      (MeV)        (MeV) 
e2pi         -15.95  0.145          200   0.8          36.8 
e300   -16.3  0.153          300   0.78          32.5 
e3pi   -16.3  0.153          200   0.8          36.8 
eg300b180  -16.3  0.153          300   0.70          32.5 
ehv   -15.98  0.145          285   0.77          36.8 
ehvpn   -15.98  0.145          285   0.77          36.8 
eg240m78  -16.3  0.153          240   0.78          32.5 
eg240b180  -16.3  0.153          240   0.78          32.5 
ewal-cfl-mixed -16.0  0.160          245   0.74          34.0   
NJLEOSNM  -15.0  0.160          250   0.75          32.0 
NMtoNQMEOSM -15.0  0.160          250   0.75          32.0 
NMtoSQMEOSM -15.0  0.160          250   0.75          32.0 
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The equation of state ewal-cfl-mixed represents a model that is composed of color 

superconducting quark matter.  Quarks are described by three colors: red, green, and blue, 

and come in six flavors: up, down, strange, charmed, top and bottom [18,19,20,21].  The 

colors represent the charges that are associated with the strong nuclear force, and each flavor 

has a different mass and charge (two charge possibilities).  Since the stars are so dense, the 

interaction between quarks and gluons is weak, and therefore the quarks experience 

asymptotic freedom.  Even though the quarks are charged (+2/3 or -1/3), bulk quark matter 

must be color neutral and charge neutral.  Furthermore, up and down quarks have mass of 

just a few MeV, and strange quarks typically have mass around 150-300 MeV. Recently it 

was shown (28) that cold quark matter forms a color superconductor, which will be either in 

the color-flavor locked (CFL) phase where we assume that strange quark mass ≈ u,d quark 

mass ≈ 0, or in the two-flavor (2SC) superconducting phase where strange quark mass is 

large enough to not be considered, allowing up and down quarks to pair.  The ewal-cfl-mixed 

model has a superfluid gap of ~ 100 MeV, however there is only a gap on the magnitude of 

KeV to a few MeV for the 2SC phase.  Eg240b180 and eg300b180 also account for up, 

down, and strange quarks.   

STRANGE MATTER 
 Another theorized class of compact stars is strange quark matter stars.  Such stars 

would consist of absolutely stable deconfined up, down, and strange quarks, and possibly 

other exotic particles.  These stars could be bare, and also may have a nuclear (hadronic) 

crust.  The properties of these crusted stars in particular are very fascinating to 

astrophysicists.   
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Strange quarks are believed by many to be the absolute ground state of the strong 

nuclear force, i.e. the building blocks of nuclear matter [1,2].  It is known that nucleons are 

composed of up and down quarks (with protons having two up quarks and one down quark, 

and neutrons having one up quark and two down quarks), but hyperons contain strange 

quarks, and the energy/baryon value is claimed to be less than 930 MeV (E/A of stable 

nuclear matter), making hyperons more stable.  This will be shown for the strange quark 

EOS.  A simple model for strange matter is the MIT bag model [15,16,17], which can be 

thought of as a spherical “bag” full of free quarks.  For strange quark matter stars, the 

equation of state is actually very simple, 

P = (ε – 4B)/3              (18) 

where P represents pressure, ε represents energy-density, and B is the bag constant which is a 

function of density.  For strange quark matter, B1/4 varies from 145 MeV to 160 MeV [7].  

Using the equation E/A = 4π2B/μ3, it is straightforward to show that for bag constant B1/4 = 

145 MeV, the corresponding E/A value is 829 MeV, and for B1/4 = 160, E/A = 915 MeV.  

Both of these values are indeed smaller than stable nuclear matter, and therefore, 145 MeV ≤ 

B1/4≤ 160 MeV represents the viable range for absolutely stable strange quark matter.   

Strange quark mass is greater than the both up and down quark masses, and 

consequently from chemical equilibrium and charge neutrality (necessary precision ~10-37 net 

charge/baryon) [4], the strange core for the 2SC phase contains a determinable number of 

highly relativistic electrons.  From these electrons, the core creates an electric dipole layer on 

its surface with field strength ~ 1017-1019 V/cm.  If we consider a strange star that has a 

nuclear crust enveloping its rotating core, this electric dipole layer is strong enough to 

displace the charge of the crust layer and suspend the crust above the core, even allowing the 
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core and crust to rotate at different frequencies (differential rotation).  As mentioned in the 

last section, the maximum crust density is limited by the neutron drip density (4.3 x 1011 

g/cm3), since all free neutrons will be transformed to strange quark matter upon contact.  This 

neutron drip density is less than the least massive neutron star by several orders of magnitude 

[27], so we can conclude that the minimum strange star mass with a crust of densitymax = 

densitydrip is less than a neutron star of minimum mass.  It is straightforward to show that if 

we keep the inner crust density maximized at the “drip density”, then as the mass of strange 

core increases, the thickness of the crust decreases, and vice versa.   
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CHAPTER 4 

RESULTS 

 This study of compact stars is based on a broad collection of equations of state.  One 

aim is to offer a correction to the many-body technique used to solve the nuclear many-body 

problem (1057 interacting particles) by replacing the static quantum potential with another 

that accounts for meson exchange in order to explain exotic phenomena for these stars.  

When examining the properties of relativistic compact stars, it is often easiest to display the 

properties in graphical form.  The usual properties of interest are: mass, radius, Ωkepler, 

moment of inertia, etc.  As will be seen in the next section, these properties offer an immense 

amount of information in relatively straightforward plots.    

One particular interest examined in this paper is the surface gravity of compact stars.  

This has been looked at for both neutron and strange stars.  The surface gravity (gs) for 

relativistic compact stars is an important constraint when considering different models since 

a higher value would indicate more exotic phases due to higher densities.  This value is also 

important for stellar cooling and the infall velocity for accretion in binary systems.  The 

surface gravity for typical neutron stars is approximately 108 times stronger than that of the 

sun due to its extremely dense nature, and is even greater for strange stars.  Since gs is 

calculated, it is determined by the equation of state because the properties of the stars are also 

dependent on the EOS.  To calculate gs, we use the equation  

gs = GM/[R2(1 – 2GM/Rc2)1/2]          (19) 

where G is the gravitational constant, M is the star’s mass, R the star’s radius, and c is the 

speed of light.  Because the values of gs are very high (typically ~1014 g/cm2), it is more 
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convenient to use the notation gs,14 = gs/1014.  After being aware of this notation, a simpler 

equation for calculating gs is 

gs,14 = (15.21 g/cm2)(x2/(1-x)1/2)(M/Msol)       (20) 

where we have designated x = 2GM/Rc2.  Surface gravity will be examined further in this 

section.  

NEUTRON STARS 
 As mentioned throughout the paper, the mass and radii of stars are very important 

properties.  Astronomers and astrophysicists use both properties not only alone, but also in 

determining other properties of the stars.  Shown in Figure 1 is a mass versus radius plot of 

all nuclear matter models used in this paper (rotating and non-rotating).  This plot is very 

common when studying compact stars, and it is obvious that as the radius increases, the mass 

decreases (after the limiting mass), as mentioned earlier.  The knowledge of limiting masses 

is of key importance to determine the number of black holes in any given galaxy.  Stars to the 

left of the mass peak of each stellar sequence are unstable against radial oscillations and will 

collapse to black holes.  The Schwarzschild limit indicates the definitive point of no return to 

black holes for compact stars.  Mass-radius plots for strange quark stars are quite different, 

which will be discussed in the next section.  Note that the mass for the models from Jefferson 

Lab drop off much more quickly.  Also, it is evident that the rotating models are more 

massive than their non-rotating counterparts.  As mentioned earlier, this is caused by the 

centrifugal force from rotation which pulls on the star and allows it to hold more mass as it 

counteracts the force of gravity.  A recently measured neutron star mass in a radio pulsar was 

(1.35 +/- 0.04) Msol [25], which agrees with Figure 1.  Similarly, the candidates for heavy 

neutron stars in Table 4 also agree. 
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Table 4. Candidates for Heavy Neutron Stars   

 Star Candidate  Mass (units of Msol)  Reference 

 Cyg X-2  1.78 +/- 0.23   [35] 
Vela X-1  1.88 +/- 0.13   [36]  
J0751 + 1807  2.1 +/- 0.4/-0.5  [37] 

  4U 1820 – 30  2.2 – 2.3 +/- 0.1  [38] 
 

Figure 1. Comparison of mass (in solar masses) versus radius (km) for this serious of 
compact stars.  This figure compares these properties for both rotating and spherically 
symmetric versions of these stars.   
 
 In section 3 it was stated that the equation of state describes all aspects of the model 

for each star, so that all properties can be determined by it.  Each EOS contains pressure 

values as a function of energy-density.  This is shown in Figure 2 for the whole sequence of 

models used, including those from the Jefferson Laboratory.  In Figure 2, the line P = ε 
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represents the limiting EOS, where pressure is equal to the corresponding energy-density.  If 

an EOS were designed that crossed this boundary, it would not be physically acceptable since 

it would violate the condition of causality, i.e. pressure must increase monotonically.  In 

essence,  

vs/c = (∂P/∂ε)1/2          (21) 

with vs representing the sound velocity, and c the speed of light.  If ∂P/∂ε  > 1, then vs would 

be greater than c, which is not possible.  Also, a curve representing a pure neutron gas is 

shown indicating the lower limit for stars.  Note that NJLeosNM is the stiffest model since it 

does not account for any quark matter in the star. As the number of degrees of freedom 

increase in an EOS, the softer the EOS becomes.  NJLeosNM also has a greater pressure than 

the other models, although the values of mass and radius are very near each other, as can be 

seen in Figure 1 (note: the abrupt change in pressure for the NMtoSQMeosM curve may 

represent a phase transition.  This has been investigated more thoroughly in a recent 

Jefferson Lab paper.  Such a phase transition may imply that there is no mixed phase of 

deconfined quark matter and hadrons within the star).   It should also be noted that the EOSs 

from Jefferson Lab have pressures P(ε) that extend to much higher values, but typically 

neutron stars do not have pressure greater than 2000 MeV/fm3, so those additional points 

have been discarded prior to calculations.      
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Figure 2. Comparison of pressure versus energy-density for compact star equations of 
state.  The uppermost line represents the limit EOS, where pressure equals energy-
density.  Any EOS past it would violate causality. 

 Another question that astrophysicists have is, how dense can “neutron” stars actually 

be?  Density can be indicative of pressure, particle number, and a variety of other properties, 

so such a relation is of great interest.  Also, if the maximum “neutron” star density can be 

determined, then scientists will be able to truly establish which compact stellar objects are 

“neutron” stars, and which may even need their own new class.  The mass-density (central 

density) plots for non-rotating (Figure 3) and rotating (Figure 4) stars are very interesting as 

they show the range of densities for different masses.  As expected, the rotating series can 

sustain greater masses, and the curves are also shifted slightly to the left from loss of pressure 

arising in rotating.  This range of possible densities can be more easily seen in Figures 5, 6, 

and 7.  The more massive the star is, the less likely the existence of exotic matter (lower 

density), however, some of these models can sustain great masses as well extremely high 
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densities which may indicate heavy “neutron” stars with possible mixed cores, another  

subject of very great significance.   

 

Figure 3. Mass versus energy-density for sequence of non-rotating neutron stars.   

 

Figure 4. Mass versus energy-density for sequence of rotating neutron stars.   
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Figure 5. Mass versus the range of possible densities for the sequence of non-rotating 
neutron stars.   

 

Figure 6.  Mass versus the range of possible densities for the sequence of rotating 
neutron stars.   
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Figure 7. Comparison of mass versus range of possible densities for this sequence of 
rotating and non-rotating stars.   
 

Recall that the moment of inertia for a rotationally deformed star is given by 

I HWL = 2 p‡
0

p
dq‡

0

R Hq L
drel+m+n +Y

¶+ P H¶L
e2 n -2 y – Hw - WL2

 
W - w

W  (16) since it is treated within the framework of 

Einstein’s equations.  This is caused by the deviation in the star’s frequency and the 

frequency of local inertial frames about the star {1> (Ω-ω)/Ω}.  As a result, there is a drastic 

change in moment of inertia when compared to the classical treatment.  The moment of 

inertia increases with the mass of the stars (Figure 8) until the limiting mass is reached, as it 

does in the classical case, however, the rate of increase is much more prominent. 
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Figure 8. Moment of Inertia for compact stars versus their mass (in solar masses).  The 
classical moment of inertia for EOS ehv has also been shown for comparison.  Note the 
substantial change when relativistic effects are taken into account. 
 
 The surface gravity for these stars was first plotted with the corresponding masses 

(Figure 9), but a mass of 1.3 Msol was selected to compare them on the same scale.  The 

points shown are not precisely 1.3 Msol, but were chosen for being the closest to that value in 

the calculated data.  Calculations were later redone to produce Figure 10 which shows 

surface gravity for exact masses of 1.3, 1.35, and 1.4 Msol.  There is a striking difference 

between ewal-cfl-mixed and the other EOSs.  As stated earlier, this equation of state 

represents a model that is color superconducting quark matter, and is approximately 25 times 

as dense as atomic nuclei.  The values of gs,14 for masses 1.35 and 1.4 Msol were actually too 
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great to incorporate on this plot.  There are some neutron star models which have even 

greater values for gs,14 (as large as gs,14 ~ 6 cm/s2) [26], but are not examined in this paper.   

 Calculations were also made to determine these stars’ limiting masses, the greatest 

mass that they can have without becoming unstable and falling apart.  Figure 11 shows the 

limiting masses versus their corresponding surface gravities (gs,14).  Although ewal-cfl-mixed 

has a large value for its surface gravity, it also has the smallest limiting mass.  This is from 

the quark matter contained in this model and its extremely high density.  Figure 12 then 

shows the full range for these models.  Surface gravity for strange quark matter stars will be 

discussed in the next section.   

 
Figure 9.  Mass (in solar masses) versus surface gravity in units of 1014 cm/s2 for star 
masses near 1.3 solar masses.   
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Figure 10. Mass (in solar masses) versus surface gravity in units of 1014 cm/s2 for exact 
masses of 1.3, 1.35, and 1.4 Msol.  Ewal-cfl-mixed points for 1.35 and 1.4 Msol have 
values greater than allowed on this plot.    
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Figure 11. Shown here are the limiting masses and corresponding surface gravities (in 
units of 1014 g/cm2) for this sequence of compact stars.   

 

Figure 12. Surface gravity versus mass for neutron stars.  Full range is shown.   
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 It is known that compact stars can spin very rapidly, even up to 716 Hz (J1748-

2446ad, R < 16 km), which makes them extremely relativistic (716 Hz for a star with radius 

16 km yields a rotational surface velocity of 7.71980 x 107 m/s, ~ 0.26c).  However, there is 

an absolute limit to how large the rotational frequency of the star can be, and that is referred 

to as the Kepler frequency (Ωkepler) (also known as the mass-shedding frequency/mass-

shedding angular velocity).  A star exceeding its Kepler frequency would eject matter into 

space.  This is simple to show classically.  Since we are trying to find the maximal angular 

frequency, we equate the gravitational force to the centrifugal force,  

mΩ2R = mM/R2            (22) 

solving for Ω, we are left with 

Ω = (M/R3)1/2            (23) 

This is the classical value of the Kepler frequency for a rotating object, but since we are 

dealing with such massive stars, relativistic effects must be taken into account.  The rough 

approximation 

ΩK ≈ 0.65(M/R3)1/2                (24) 

can be used since it is very accurate, however, this does not give the exact value because it 

cannot be calculated from a direct formula.  It can only be generated as a self-consistency 

condition [13] from Einstein’s equations for relativistic rotating stars.   

 Recall from equation 12, the line element for stars is equal to ds2 = gμνdxμdxν = -e2νdt2 

+ e2ψ(dφ – ωdt)2 + e2μdθ2 + e2λdr2 .  To calculate the Kepler frequency, we consider only a 

solitary point on the star’s surface.  Therefore, r = θ = constant, so we can say that the line 

element is now equal to  

ds2 = (e2ν – e2ψ(Ω – ω)2)dt2 .    (25) 
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After several calculations and manipulations, we arrive with a Kepler frequency of 

ΩK = ω + (ω’/2 ψ) +eν-ψ(ν’/ψ +  (ω’ eν-ψ /2 ψ)2)1/2          (26) 

We are interested in the Kepler period of the stars, which is simply 

PK = 2π/ ΩK.      (27) 

The calculated values of Kepler periods (PK) for these EOSs have been displayed in Figure 

14 showing PK versus M/Msol.  Alternatively, the frequency ν, has been plotted against the 

mass in Figure 13.   Again, since NJLEOSNM is the stiffest EOS, it can support the largest 

mass.  As can easily be seen, these equations of state can account for the observed stars.  

However, if gravity wave instabilities were taken into consideration, the values shown would 

decrease by 30-40%, but these curves represent the absolute limit for rotation.   

 

Figure 13. Kepler (mass shedding) frequency of compact stars versus their masses (in 
units of solar mass).  Frequencies of observed stars have been shaded.  Observed stars 
rotate below the mass shedding frequency.   

 



 29

 

Figure 14.  Kepler (mass shedding) period versus mass (in solar masses) for sequence of 
stars.  Observed stars rotate above the mass shedding period.   

QUARK STARS 
 As previously stated, the strange quark star model used for this paper utilizes the MIT 

bag model equation of state P = (ε – 4B)/3.  Just as within the last section, the first plot 

shown for strange quark stars is a mass versus radius comparison.  On the contrary, it is 

strikingly different than Figure 1.  Shown in Figure 15 are three curves, all calculated with 

bag constant = 145 MeV.  The solid line represents the core of the strange star.  To produce 

the other two curves, the crust density for the model was fixed at 4 x 108 g/cm3 and 4 x 1011 

g/cm3 and then calculations were run.  This plot allows the reader to determine the mass of 
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the crust (for a given crust density) and radius on the curve.  Note that an increase of only a 

few orders of magnitude makes a substantial increase in the mass of the crust (the electric 

dipole gap is negligible in this plot since its size is on the magnitude of only a few fm).  

Figure 16 shows the same plot as Figure 15, except that for this graph calculations were 

made using the bag constant = 160 MeV.  It is also obvious that as the bag constant is 

increased, the limiting mass decreases.   

 

Figure 15. Comparison of mass versus radius for a strange quark star with bag 
constant  B1/4 = 145 MeV.  The crust energy-density has been set for two different 
values. 
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Figure 16. Comparison of mass versus radius for a strange quark star with bag 
constant  B1/4 = 160 MeV.  The crust energy-density has been set for two different 
values.   
 Another plot of mass versus radius is displayed in Figure 17, but here the energy-

density of the crust has not been predetermined and fixed for calculations.  Different bag 

constants have again been presented, and also models for rotating and non-rotating stars.  The 

rotating models for these stars can support greater masses because of the centrifugal force, as 

discussed in section 3.  If mass were calculated conventionally by 3
2

0

44 ( )
3

R RM r r dr ππ ε= =∫ , 

then the mass would increase to infinity since M α R3, however this clearly does not happen, 

and there is a limiting mass which is a direct result of Einstein’s equations.   
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Figure 17. Mass (in solar masses) versus radius for strange quark stars.  Shown are a 
comparison of rotating and non-rotating sequences for different bag constants.   
 

 The surface gravity for two models of strange quark stars is shown in Figure 18, with 

bag constants B1/4 = 145 MeV and 160 MeV.  As gs,14 is a function of mass, it should and 

does peak at the limiting mass of the strange stars.   
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Figure 18. Surface gravity as a function of mass (in solar masses) for strange quark 
stars with different bag constants. 
 

 When we analyze these equations of state, we are looking for particular properties of 

strange stars (M, R, g14, A, etc.) in order to determine if these objects are associated with a 

number of astrophysical phenomena, such as: 

• Pulsar Glitches  

• X-ray bursts   

• Interpretation of millisecond pulsars (MSP)  

• Gamma-ray burst models  

 

A very important property that is investigated in these phenomena is the baryon number of 

such stars.  The baryon number of the crust for strange stars versus the number for the core 
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(Figure 19) is nearly linear.  However, at a certain core number (corresponding to the 

limiting mass), the crust baryon number does “turn” and begin to decrease, as well as the 

core number.      

 

Figure 19. Baryon number of crust versus baryon number of core for bag constants  
B1/4 = 145 MeV, 160 MeV. 
 
The mass and thickness of the crust are dependent upon the core’s composition and 

important factor in various stellar behaviors, such as pulsar 

aper, 

.  

ne 

model assumes that quark masses stay constant.  Figures 20, 21, and 22 show these properties 

properties.  Crust mass is an 

glitches and cooling behavior.  Although these phenomena are not discussed in the p

they are very complicated problems that are currently being investigated in other projects

Crust mass and baryon number will be examined further by myself in future work to be do

on a new EOS [34] which takes into consideration changing quark masses in matter.  This 

new EOS is an improved model to the standard model used in this paper as the MIT bag 
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for the standard bag model which was used in this paper (mu,d,s = constant), and will be 

compared to properties of the new EOS mentioned. 

 

Figure 20. Baryon number of crust versus radius of strange quark matter core for bag 
1/4 = 145 MeV, 160 MeV. constants B

 

Figure 21. Crust mass versus total mass of strange quark star for bag constants B1/4 = 
145 MeV, 160 MeV.   
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Figure 22. Crust mass versus total radius of strange quark star for bag constants B1/4 = 
145 MeV, 160 MeV.   
 

 

CHAPTER 5 

SUMMARY 

 The nature of “neutron” stars causes them to have enormous pressures in their cores, 

allowing extraordinary and exciting properties, one of which is the possibility of breaking 

down neutrons and protons to their elementary particles, quarks.  Their super-dense 

characteristic also allows them to host other exotic particles (hyperons, quarks, boson 

condensates) and presents them as an ideal laboratory for interesting phenomena and 

interactions.  Since the density of these stars is so great, a relativistic treatment must be used 

when performing calculations; however, this does allow and explain fascinating properties 
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such as frame-dragging, existence of limiting masses, and general-relativistic mass shedding.  

It should also be noted that certain rela

relativistic calculations, ranging from mass-radius curves to surface gravity and spin 

frequencies.   

s 

pecially 

inable 

 and 

by the 

n of state.  For the equations of state used to model the neutron stars in this 

 

lot 

rtant 

tions can be understood and predicted by these 

 Because strange quark matter is of such great interest in the astrophysics and nuclear 

physics communities, the idea that this matter may be at the cores of these stars, or that star

may actually be completely composed of strange quark matter is quite fascinating, es

since quark deconfinement may happen at densities as low as 2.5ρ0, a value easily obta

in these EOSs.  If these stars do contain quark matter it will be color superconducting,

nuclear crust (if any) will be suspended above the core over a superconducting gap [4].  

Furthermore, if rotating, the cores may even rotate at different frequencies (differential 

rotation) than the crust enveloping them.  The properties of strange quark stars are strikingly 

different than those of conventional neutron stars.   

 Finally, a key feature is that many properties of a neutron star are determined 

nuclear equatio

paper, careful consideration was made in their design depending on the particular cores 

desired to explain.  However, for quark stars following the MIT bag model, the EOS is 

straightforward, with a linear curve of pressure versus energy-density.  It is important to note 

here that not all strange star equations of state follow such a design.  For example, an EOS 

from reference [34] (Figure 23) has been used to plot pressure versus energy-density, and is

also compared to the MIT bag model for bag constants = 145 MeV and 160 MeV.  This p

is not linear, and is actually more closely approximated by a parabolic curve.  It is impo
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to investigate such stars since they may represent a substantial portion of dark matter, and 

strange nuggets could even convert all nuclear matter it contacts into strange quark matter.   

 

Figure 23. Comparison of equations of state for the Indian model to the MIT bag model, 
B1/4 = 145 MeV and 160 MeV.   
 
 The aim of this work is to aid in alleviating some of the huge uncertainties associated 

with compact star equations of state.  These uncertainties arise from several aspects, such as: 

the many-body approximations (Hartree, Hartree-Fock, Brueckner-Hartree-Fock), relativistic 

effects (Schrödinger versus field theoretical approach), the “building blocks” of neutron star 

matter (phase transitions, quarks, boson condensates), and the true ground state of the strong 

interaction.  This paper offers several important conclusions with respect to these compact 

stars.  In particular: 
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1) Maximal density of “neutron” stars 

2) Possibility of actually containing exotic phases/particles inside the core (boson 

condensates, quark matter, or solely nucleons) 

3) For heavy “neutron” stars, the equation of state must become stiffer due to fewer 

degrees of freedom, and central-density decreases. 

Also, three new EOSs from Jefferson Lab (NJL model) and the rapidly rotating 716 Hz star 

were compared to many accepted EOSs of state for neutron stars.  Although the rapidly 

rotating star can be explained by these equations of state, no solid conclusions can be made 

yet on the NJL models.  Further study is required, and is currently being done.  These 

findings will help in determining whether or not observed “neutron” stars are actually what 

we believe to be neutron stars at all, and if classified as so, will give astronomers and 

astrophysicists a collection of properties on which to begin new research.   

The future of “neutron” star and strange star research has enormous potential, not 

tr

• 

 Differential rotation (rigid-body was studied in this paper) 

• “Hot” neutron stars (“cold” stars were studied in this paper, T ≤ 1 MeV) 

• Density dependent microscopic theories 

• Gravity-wave instabilities [27] 

These studies will ultimately be able to help us understand the true nature of the matter that 

fills our universe.   

 

only for studies specific to the stars themselves, but also to many different aspects of 

s ophysics.  Some possibilities include: a

Further study of strange stars for the M. Dey, J. Dey, M. Bagchi EOS [34] 

•

 



 40

REFERENCES 

 1 A.R. Bodmer, Phys. Rev. D 4, 1601 (1971). 
 2 E. Witten

(1989); 58, 4388 (1989); 59, 1199 (1990). 

 6 C. Alcock and A. V. Olinto, Ann. Rev. Nucl. Part. Sci. 38, 161 (1988).  

Energy Physics, Cosmology and Gravitation Series (IOP Publishing, Bristol, Great Britain, 

 9

 J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374 (1939).  
11 J. L. 

13 N.K. Glendenning, Compact Stars, Nuclear Physics, Particle Physics, and General   
 York, 2000) 

14 J. M L
15 A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorne, V.F. Weisskopf, Phys. Rev. D 9, 3471 

(19 ).
16 A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorne, Phys. Rev. D 10, 2599 (1974).  
17 E. Farhi, R.L. Jaffe, Phys. Rev. D 
18 K. ja The Condensed Matter Physics of QCD, 

At the Frontier of Particle Physics/Handbook of QCD, World Scientific, 2001. 
19 M. f 1, 131 (2001). 

21 81, 53 (1998); Ann. 
000). 

 N.K. Glendenning, Mod. Phys. Lett. A 5, 2197 (1990). 
23 J. Madsen and M.J. Olesen, Phys. Rev. D 43, 1069 (1991). 
24 R.R. Caldwell and J.L. Friedman, Phys. Lett. B 264, 143 (1991). 

, Phys. Rev. D 30, 272 (1984). 
 3 H. Terazawa, INS-Report-338, INS, Univ. of Tokyo, 1979; J. Phys. Soc. Japan, 58, 3555 

 4 N.K. Glendenning, F. Weber, Astrophys. J. 400, 647, 648 (1992). 
 5 C. Alcock, E. Farhi, and A. V. Olinto, Astrophys. J. 310, 261 (1986). 

 7 J. Madsen, Lecture Notes in Physics 516, 162 (1999).  
 8 F. Weber, Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics, High 

1999).  

 R. C. Tolman, Phys. Rev. 55, 364 (1939). 
10

Friedman, J. R. Ipser, and L. Parker, Astrophys. J. 304, 115 (1986).  
12 J. B. Hartle, Astrophys. J. 150, 1005 (1967). 

Relativity, 2nd ed. (Springer-Verlag, New

. attimer and M. Prakash, Astrophys. J. 550, 131 (2001). 

74  

30, 2379 (1984). 

Ra gopal, F. Wilczek, in: M. Shifman (Ed.), 

 Al ord, Ann. Rev. Nucl. Part. Sci. 5
20 M. Alford, K. Rajagopal, F. Wilczek, Phys. Lett. B 422, 247 (1998). 

R. Rapp, T Schaefer, E.V. Shuryak, M. Velkovsky, Phys. Rev. Lett. 
Physics 280, 35 (2

22

 



 41

25 D. Chakrabarty and S.E. Thorsett, Astrophys. J. 512, 288 (1999). 
26 M. Bejger and P. Haensel, Astron. & Astrophys. 420, 988 (2004). 
27 F. Weber, Prog. In Part. And Nuc. 005). 
28 Strangeness in Compact Stars, (astro-

31

3

3 ys. Rev. C 72,      
95 (2006) 

s. Lett. B  438, 123 (1998); M.   

35 sz, E. Kuulkers, Mon. Not. R. Astron. Soc. 305, 132 (1999) 

 Roche, B. Willems, T.R. Bedding, I.K. Baldry, 

.M. Corder, A 
ic Orbital Decay, (astro-ph/0508050) 

 Phys. 54, 193-288 (2

F. Weber, A.T. Cuadrat, A. Ho, P. Rosenfield, 
ph/0602047) 

29 N. K. Glendenning, Phys. Rev. Lett. 57, 1120 (1986)  
30 N. K. Glendenning, Nucl. Phys. A 493, 521 (1989)  

 F. Weber and M. K. Weigel, Nucl. Phys. A 505, 779 (1989)  
2 M. Alford and S. Reddy, Phys. Rev. D 67, 074024 (2003) 
3 P. Wang, S. Lawley, D.B. Leinweber, A.W. Thomas, A.G. Williams, Ph
045801 (2005); S. Lawley, W. Bentz, A.W. Thomas, Phys. Lett. B 632, 4

34 M. Dey, I. Bombaci, J. Dey, S. Ray, B.C. Samanta, Phy
Bagchi, S. Ray, M. Dey, J. Dey, Strange Star Equation of State with a Modified 
Richardson Potential, (astro-ph/0509703) 

 J.A. Oro
36 H. Quaintrell, A.J. Norton, T.D.C. Ash, P.

R.P. Fender, A&A 401, 313-323 (2003) 
37 D.J. Nice, E.M. Splaver, I.H. Stairs, O. Loehmer, A. Jessner, M. Kramer, J

2.1 Solar Mass Pulsar Measured by Relativist
38 W. Zhang, T.E. Strohmayer, J.H Swank, Astrophy. J. 482, L167 (1997)

 



 42

 

APPENDIX 

SAMPLE EOS 
 



 

 

SAMPLE EOS 

 Shown here is the input file for the equation of state ewal-cfl-mixed.  

The first column is the pressure (MeV/fm3), the second is the energy-density 

(MeV/fm3), and the third is the baryon number density (1/fm3).   
 
Wall_CFL_mixed 
 70 
      1.41367000E+01    2.93171000E-02    0.0150 
      5.67855000E+01    2.49804000E-01    0.0600 
      9.76008000E+01    1.27001000E+00    0.1032 
      1.39848000E+02    3.53664000E+00    0.1469 
      1.75728000E+02    6.51535000E+00    0.1833 
      2.18953000E+02    1.14398000E+01    0.2263 
      2.59167000E+02    1.73448000E+01    0.2653 
      3.17679000E+02    2.07321000E+01    0.3210 
      3.69495000E+02    2.28265000E+01    0.3700 
      4.13003000E+02    2.51981000E+01    0.4110 
      4.50195000E+02    2.78010000E+01    0.4458 
      4.82624000E+02    3.06011000E+01    0.4760 
      5.37507000E+02    3.66957000E+01    0.5267 
      5.83732000E+02    4.33413000E+01    0.5689 
      6.24650000E+02    5.0454100
      6.62444000E+02    5.7982000
      6.98678000E+02    6.58959000E+01    0.6717 
      7.34229000E+02    7.41799000E+01    0.7028 
      7.87769000E+02    8.72860000E+01    0.7490 
      8.24673000E+02    9.64794000E+01    0.7805 
      8.64062000E+02    1.06052000E+02    0.8137 
      9.10006000E+02    1.16040000E+02    0.8520 
      9.34081000E+02    1.21217000E+02    0.8720 
      9.81873000E+02    1.37258000E+02    0.9111 
      1.01488000E+03    1.48347000E+02    0.9379 
      1.06621000E+03    1.65591000E+02    0.9790 
      1.10168000E+03    1.77502000E+02    1.0070 
      1.13817000E+03    1.89753000E+02    1.0356 
      1.17571000E+03    2.02351000E+02    1.0647 
      1.21430000E+03    2.15301000E+02    1.0944 
      1.25397000E+03    2.28610000E+02    1.1247 
      1.29475000E+03    2.42286000E+02    1.1554 
      1.33664000E+03    2.56334000E+02    1.1868 
      1.37968000E+03    2.70762000E+02    1.2187 
      1.42388000E+03    2.85576000E+02    1.2512 
      1.46926000E+03    3.00784000E+02    1.2843 
      1.49240000E+03    3.08537000E+02    1.3010 
      1.53959000E+03    3.24348000E+02    1.3349 
      1.58801000E+03    3.40569000E+02    1.3695 
      1.61269000E+03    3.48836000E+02    1.3870 
      1.66301000E+03    3.65687000E+02    1.4224 
      1.71462000E+03    3.82966000E+02    1.4584 

0E+01    0.6059 
0E+01    0.6397 



 

 

      1.74091000E+03    3.91769000E+02    1.4767 
      1.76753000E+03    4.00682000E+02    1.4951 
      1.82178000E+03    4.18840000E+02    1.5323 
      1.87738000E+03    4.37449000E+02    1.5702 
      1.90570000E+03    4.46925000E+02    1.5893 
      1.93436000E+03    4.56517000E+02    1.6087 

    2.11377000E+03    5.16542000E+02    1.7279 
E+03    5.26969000E+02    1.7483 
E+03    5.48191000E+02    1.7897 

      1.99273000E+03    4.76050000E+02    1.6478 
      2.02245000E+03    4.85993000E+02    1.6676 
      2.05253000E+03    4.96056000E+02    1.6875 
      2.08297000E+03    5.06239000E+02    1.7076 
  
      2.14494000

  2.20839000    
      2.24068000E+03    5.58989000E+02    1.8106 
      2.27335000E+03    5.69913000E+02    1.8317 
      2.30639000E+03    5.80965000E+02    1.8529 
      2.37364000E+03    6.03452000E+02    1.8959 
      2.40785000E+03    6.14890000E+02    1.9177 
      2.44245000E+03    6.26459000E+02    1.9396 
      2.47745000E+03    6.38160000E+02    1.9616 
      2.51285000E+03    6.49994000E+02    1.9839 
      2.54865000E+03    6.61962000E+02    2.0063 
      2.58486000E+03    6.74064000E+02    2.0289 
      2.62147000E+03    6.86303000E+02    2.0516 
      2.69594000E+03    7.11193000E+02    2.0976 
      2.73379000E+03    7.23846000E+02    2.1209 
      2.77207000E+03    7.36639000E+02    2.1443 
      2.81077000E+03    7.49573000E+02    2.1680 
END OF DATA 
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Compact stars are extremely dense objects with very interestin
great interest to astrophysicists, but their dense nature provide
variety of phenomena and exotic particles that may prove sign
physics as well.  One particular subject is that of strangeness a
investigates such stars as well as their nuclear counterparts, ne
relativistic neutron stars are examined as well as the impact of
astronomical objects.   
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