
 

 
   

Computational Science & 
Engineering Faculty and Students 

Research Articles 
 

Database Powered by the 
Computational Science Research Center  

Computing Group 

 
COMPUTATIONAL SCIENCE 
& ENGINEERING  

   

 

 
 

Computational Science Research Center 
College of Sciences 

5500 Campanile Drive 
San Diego, CA 92182-1245 

(619) 594-3430 

 

 
© 2007 

Rotating Neutron Stars 
 

Fridolin Weber and Philip Rosenfield 
 

February 2007 

 
 
 

Publication Number: CSRCR2007-06 

 



ar
X

iv
:a

st
ro

-p
h/

07
02

22
1v

1 
  8

 F
eb

 2
00

7

EPJ manuscript No.
(will be inserted by the editor)

Rotating Neutron Stars

Fridolin Weber a and Philip Rosenfield

Department of Physics, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1233, USA

Received: date / Revised version: date

Abstract. Because of the tremendous densities that exist in the cores of neutron stars, a significant fraction
of the matter in the cores of such stars is likely to exist in the form of hyperons. Depending on spin frequency,
the hyperon content changes dramatically in rotating neutron stars, as discussed in this paper.

PACS. 26.60 +c Nuclear matter aspects of neutron stars – 97.60.Gb Pulsars – 97.60.Jd Neutron stars

1 Introduction

Rotating neutron stars are called pulsars. Three distinct
classes of pulsars are currently known. These are (1) rota-
tionpowered pulsars, where the loss of rotational energy
of the star powers the emitted electromagnetic radiation,
(2) accretion-powered (X-ray) pulsars, where the gravita-
tional potential energy of the matter accreted from a low-
mass companion is the energy source, and (3) magnetars,
where the decay of a ultra-strong magnetic field powers
the radiation. The matter in the cores of rotating neutron
stars is compressed to ultra-high densities that may be
more than an order of magnitude greater than the den-
sity of atomic nuclei. This makes (rotating) neutron stars
superb astrophysical laboratories for a wide range of fas-
cinating physical studies [1,2,3]. This includes the physics
of hyperons in cold ultra-dense matter, whose thresholds,
according to model calculations, are easily reached in the
cores of neutron stars (see Fig. 1), depending on the mass
and rotational frequency of a neutron star. The most rapidly
rotating, currently known neutron star is pulsar PSR J1748-
2446ad, which rotates at a period of 1.39 ms (which cor-
responds to a rotational frequency of 719 Hz) [4]. It is fol-
lowed by PSRs B1937+21 [5] and B1957+20 [6] whose ro-
tational periods are 1.58 ms (633 Hz) and 1.61 ms (621 Hz),
respectively. Finally, we mention the recent discovery of
X-ray burst oscillations from the neutron star X-ray tran-
sient XTE J1739–285 [7], which could suggest that XTE
J1739–285 contains the most rapidly rotating neutron star
yet discovered. Rapid rotation changes the structure and
composition of neutron stars dramatically, and leads to
novel phenomena like frame dragging (Lense Thirring ef-
fect), as discussed in this paper.

a The research of F. Weber is supported by the National
Science Foundation under Grant PHY-0457329, and by the
Research Corporation.
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Fig. 1. Change of central density with rotational neutron star
frequency [2]. ǫ0 = 140 MeV/fm3 denotes the density of nuclear
matter, ΩK is the Kepler frequency, and M(0) is the star’s
mass at zero rotation.

2 Stellar structure equations

Since neutron stars are objects of highly compressed mat-
ter, the geometry of spacetime is changed dramatically
from flat space by these objects. Neutron star models are
thus to be computed from Einstein’s field equations of
general relativity (µ, ν=0,1,2,3),

Gµν ≡ Rµν −
1

2
gµνR = 8πTµν(ǫ, P (ǫ)) , (1)

which couples Einstein’s curvature tensor, Gµν , to the
energy–momentum density tensor, Tµν , of the stellar mat-
ter. The quantities Rµν ≡ Γ σµσ, ν − Γ σµν, σ + Γ σκν Γ

κ
µσ −

Γ σκσ Γ
κ
µν , gµν , and R ≡ Rµνg

µν in denote the Ricci ten-
sor, metric tensor and scalar curvature, respectively [2].

http://lanl.arXiv.org/abs/astro-ph/0702221v1
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(Commas followed by a Greek letter denote derivatives
with respect to space-time coordinates, e.g. ,ν = ∂/∂xν .)
The Christoffel symbols are defined as Γ σµν = (1/2)gσλ

(gµλ, ν +gνλ, µ−gµν, λ). Theories of superdense matter en-
ter in Eq. (1) through the energy–momentum tensor,

Tµν = uµ uν (ǫ+ P ) + gµνP , (2)

which contains the equation of state (EoS), i.e. pressure as
a function on energy density, P (ǫ), of the stellar matter.
The quantities uµ and uν in Eq. (2) are four-velocities,
defined as uµ = dxµ/dτ and uν = dxν/dτ , where dτ2 =
−ds2. These velocities are the components of the macro-
scopic velocity of the stellar matter with respect to the
actual coordinate system that is being used.

2.1 Non-rotating stars

Non-rotating neutron stars are spherically symmetric. The
metric of such stars thus dependes only on the radial co-
ordinate and is given by

ds2 = −e2Φ dt2 + e2Λ dr2 + r2 dθ2 + r2 sin2θ dφ2 , (3)

where Φ and Λ are the radially varying metric functions.
From Eq. (3) it follows that the components of the metric
tensor are given by

gtt = − e2Φ , grr = e2Λ , gθθ = r2 , gφφ = r2 sin2θ , (4)

so that the only non-vanishing Christoffel symbols are

Γ rtt = e2Φ−2ΛΦ′ , Γ ttr = Φ′ , Γ rrr = Λ′ , Γ θrθ = r−1 ,

Γφrφ = r−1 , Γ rθθ = −re−2Λ , Γφθφ =
cos θ

sin θ
,

Γ rφφ = −r sin2θ e−2Λ , Γ θφφ = − sin θ cos θ . (5)

Subsituting Eqs. (4) and (5) into (1) and using Tµν;µ = 0
(the semicolon denotes covariant differentiation) leads to
the Tolman–Oppenheimer–Volkoff (TOV) equation [2],

dP

dr
= −

ǫm

r2
(1 + P/ǫ)

(

1 + 4πr3P/m
)

1 − 2m/r
, (6)

applicable to compact stellar configurations in general rel-
ativistic hydrostatic equilibrium. We use units for which
the gravitational constant and velocity of light are G =
c = 1 so that the mass of the sun is M⊙ = 1.47 km. The
mass contained in a sphere of radius r is given by m =
4π

∫ r

0
r2ǫdr. Hence the star’s total mass follows as M ≡

m(R), where R denotes the star’s radius. The Newtonian
limit of Eq. (6) is obtained for P/ǫ ≪ 1, 4πr3P/m ≪ 1,
and 2m/r ≪ 1. General relativity, thus, increases the pres-
sure gradient inside the star which leads to smaller, more
compact stars. The masses of neutron stars lie between
about one and two solar masses, and their radii are around
10 km. Thus, 2M/R ∼ 30 − 60% for neutron stars. Solu-
tions of the TOV equations are shown in Fig. 2.
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Fig. 2. Neutron star mass versus central energy density for
different equations of state of neutron star matter [8].

2.2 Rotating stars

The structure equations of rotating neutron stars are con-
siderably more complicated than those of non-rotating
neutron stars [2]. These complications have their cause
in the rotational deformation, that is, a flattening at the
pole accompanied by a radial expansion in the equatorial
direction, which leads to a dependence of the star’s met-
ric on the polar coordinate, θ. Secondly, rotation stabilizes
a neutron star against gravitational collapse. A rotating
neutron star can therefore carry more mass than a non-
rotating star. Being more massive, however, means that
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Fig. 3. Dragging of local inertial frames (Lense-Thirring effect)
caused by ∼ 1.4 M⊙ neutron stars rotating at 2 ms [9]. The
frequency ω̄ is defined in Eq. (9).

the geometry of space-time is changed too. This renders
the metric functions of a rotating neutron star frequency
dependent. Finally, the general relativistic effect of the
dragging of local inertial frames implies the occurrence of
an additional non-diagonal term, gtφ, in the metric tensor
gµν . This term imposes a self-consistency condition on the
stellar structure equations, since the degree at which the
local inertial frames are dragged along by the star is de-
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Fig. 4. Mass–radius relations of non-rotating neutron stars for
different EoSs.

termined by the initially unknown stellar properties like
mass and rotational frequency. The covariant components
of the metric tensor of a rotating compact star are thus
given by [2,10]

gtt = −e2ν + e2ψω2 , gtφ = −e2ψω , grr = e2λ ,

gθθ = e2µ , gφφ = e2ψ , (7)

which corresponds to a line element, ds2 = gµνdx
µdxν , of

the form

ds2 = −e2νdt2 + e2ψ(dφ − ωdt)2 + e2µdθ2 + e2λdr2 . (8)

Here each metric function, i.e. ν, ψ, µ and λ, as well as the
angular velocities of the local inertial frames, ω, depend
on the radial coordinate r and on the polar angle θ and,
implicitly, on the star’s angular velocity Ω. Of particular
interest is the relative angular frame dragging frequency,
ω̄, defined as

ω̄(r, θ,Ω) ≡ Ω − ω(r, θ,Ω) , (9)

which is the angular velocity of the star, Ω, relative to
the angular velocity of a local inertial frame, ω. It is this
frequency that is of relevance when discussing the rota-
tional flow of the fluid inside the star, since the mag-
nitude of the centrifugal force acting on a fluid element
is governed–in general relativity as well as in Newtonian
gravitational theory–by the rate of rotation of the fluid
element relative to a local inertial frame [11]. In contrast
to Newtonian theory, however, the inertial frames inside
(and outside) a general relativistic fluid are not at rest
with respect to the distant stars. Rather, the local inertial
frames are dragged along by the rotating fluid. Depend-
ing on the internal stellar constitution, this effect can be
quite strong, as shown in Fig. 3 for neutron stars rotat-
ing at 2 ms [9]. The stellar models are computed for three
different equations of state: (1) HV, which describes neu-
tron stars made of nucleons (N) and hyperons (H); GB180

300 ,
which describes neutron star matter in terms of nucleons,
hyperons, and quarks (Q); and CFL, which assumes that
the quarks are color superconducting (CFL phase) [12].
For a very compact neutron star, as obtained for the CFL

8 10 12 14 16 18
R (km)

0.0

0.4

0.8

1.2

1.6

2.0

2.4

M
 / 

M
su

n

HV (N)

G300
B180

 (N,H,Q)

CFL (N,H,sQ)

Fig. 5. Same as Fig. 4, but for neutron stars rotating at the
mass shedding (Kepler) frequency.

case, one sees that the local inertial frames at the star’s
center rotate at about half the star’s rotational frequency,
ω(r = 0) ≃ Ω/2. This value drops to about 15% for the
local inertial frames located at the star’s equator.

Figures 4 and 5 show the influence of rotation on the
mass–radius relationship of neutron stars. For ultrafast
rotation at the Kepler frequency, a mass increase up to ∼

20% is obtained, depending on the equation of state. The
equatorial radius increases by several kilometers, while the
polar radius get smaller by several kilometers. The ratio
between both radii is around 2/3, except for rotation close
to the Kepler frequency.

2.3 Limiting rotational periods

No simple stability criteria are known for rapidly rotat-
ing stellar configurations in general relativity. However,
an absolute limit on rapid rotation is set by the onset
of mass shedding from the equator of a rotating star. The
corresponding rotational frequency is known as the Kepler
frequency, ΩK. In classical mechanics, the expression for
the Kepler frequency, determined by the equality between
the centrifugal force and gravity, is readily obtained as
ΩK =

√

M/R3. In order to derive the general relativistic
counterpart of this relation, one applies the extremal prin-
ciple to the circular orbit of a point mass rotating at the
star’s equator. Since r = θ = const for a point mass there,
one has dr = dθ = 0. The line element (8) then reduces to
ds2 = (e2ν−e2ψ(Ω−ω)2) dt2. Substituting this expression
into J ≡

∫ s2

s1
ds, where s1 and s2 refer to points located at

that particular orbit for which J becomes extremal, gives

J =

∫ s2

s1

dt
√

e2 ν − e2ψ (Ω − ω)2 . (10)

Applying the extremal condition δJ = 0 to Eq. (10) and
noticing that V = eψ−ν (Ω − ω) then leads to

ψ,r e
2 ν V 2

− ω,r e
ν+ψ V − ν,r e

2ν = 0 . (11)

This relation constitutes a quadratic equation for the or-
bital velocity V of a particle at the star’s equator. One
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thus obtains for the Kepler frequency ΩK the final rela-
tion [2]

ΩK = ω +
ω,r
2ψ,r

+ eν−ψ

√

ν,r
ψ,r

+
( ω,r

2ψ,r
eψ−ν

)2

, (12)

which is to be solved self-consistently at the equator of
a rotating neutron star. The general relativistic Kepler
period follows from Eq. (12) as PK = 2π/ΩK. For typ-
ical neutron star matter equations of state, the Kepler
period obtained for 1.4M⊙ neutron stars scatters around
1 ms. One exception to this are strange quark matter stars.
These are self-bound and, thus, tend to possess smaller
radii than conventional neutron stars, which are bound by
gravity only. Because of their smaller radii, strange stars
can withstand mass shedding down to periods of around
0.5 ms [13,14]. The CFL neutron star discussed just above
is a quark-hybrid star and as such bound by gravity only.
The dense quark core in the center of this neutron star
implies a relatively large binding energy of 0.12M⊙, lead-
ing to a rather low mass shedding period of 0.7 ms. In
closing this section, we introduce the moment of inertia
of a rotating neutron star described by the metric in Eq.
(8). For such stars the moment of inertia is given by

I = 2π

∫ π

0

dθ

∫ R(θ)

0

dr eλ+µ+ν+ψ ǫ+ P

e2ν−2ψ − ω̄2

ω̄

Ω
. (13)

Figure 6 shows that the crustal fraction of the moment of
inertia of a neutron star may be around 50% smaller if the
star contains a very soft phase of matter like CFL quark
matter. This may be of relevance for pulsar glitch models
and the modeling of the post-glitch behavior of pulsars.

3 Composition of neutron star matter

A vast number of models for the equation of state of neu-
tron star matter has been derived in the literature over the
years. These models can roughly be classified as follows:

– Thomas-Fermi based models [15,16]

– Schroedinger-based models (e.g. variational approach,
Monte Carlo techniques, hole line expansion (Brueck-
ner theory), coupled cluster method, Green function
method) [17,18,19,20]

– Relativistic field-theoretical treatments (relativistic mean
field (RMF), Hartree-Fock (RHF), standard Brueckner-
Hartree-Fock (RBHF), density dependent RBHF (DD-
RBHF) [1,21,22,23,24,25,26]

– Nambu-Jona-Lasinio (NJL) models [27,28,29,30,31,32]
– Chiral SU(3) quark mean field model [33].

Neutron star masses computed for some of these models
are shown in Fig. 2.

3.1 Relativistic nuclear field-theoretical models

Relativistic nuclear field-theoretical models [1,2,21,22,23,
24,25,26] are based on Lagrangians of the form L = LB +
LM + Lint + Llept, where

LB =
∑

B

ψ̄B (iγµ∂
µ −mB)ψB , (14)

LM =
1

2

∑

i=σ,δ

(

∂µΦi∂
µΦi −m2

iΦ
2
i

)

−
1

2

∑

κ=ω,ρ

(1

2
F (κ)
µν F

(κ)µν −m2
κA

(κ)
µ A(κ)µ

)

, (15)

Lint = ψ̄Γ̂σ(ψ̄, ψ)ψΦσ − ψ̄Γ̂ω(ψ̄, ψ)γµψA
(ω)µ

+ψ̄Γ̂δ(ψ̄, ψ)τψΦδ − ψ̄Γ̂ρ(ψ̄, ψ)γµτψA
(ρ)µ .(16)

Here, LB and LM are the free baryonic and the free mesonic
Lagrangians, respectively, and interactions are described

by Lint, where F
(κ)
µν = ∂µA

(κ)
ν −∂νA

(κ)
µ is the field strength

tensor of one of the vector mesons (κ = ω, ρ). In the case

of RMF, RHF and RBHF the meson-baryon vertices Γ̂α
(α = σ, ω, δ, ρ) are density-independent quantities which

are given by expressions like Γ̂σ = igσ for the scalar σ me-
son, Γ̂µω = gωγ

µ + (i/2)(fω/2m)∂λ[γ
λ, γµ] for ω mesons,

etc. [2]. In the framework of the DD-RBHF scheme, the

meson-baryon vertices Γ̂α depend on the baryon field op-
erators ψ [24]. The field equations that follow from Eqs.
(14)–(16) have the mathematical form

(iγµ∂µ −mB)ψB(x) =
∑

M=i,κ

M(x) Γ̂M ψB(x) , (17)

(∂µ∂µ +m2
σ)σ(x) =

∑

B

ψ̄B(x) Γ̂σ ψB(x) , (18)

plus similar equations for the other mesons [2,24].

3.2 Hyperons and baryon resonances

At the densities in the interior of neutron stars, the neu-
tron chemical potential, µn, is likely to exceed the masses,
modified by interactions, of Σ, Λ and possibly Ξ hyper-
ons [2,34]. Hence, in addition to nucleons, neutron star
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matter may be expected to contain significant popula-
tions of strangeness carrying hyperons [34]. The thresh-
olds of the lightest baryon resonances (∆−, ∆0, ∆+, ∆++)
are reached for relativistic mean-field (RMF) calculations
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Fig. 7. Composition of neutron star matter in RMF.

at densities which correspond to unstable neutron stars.
This is different for relativistic Brueckner-Hartree-Fock
(RBHF) calculations where ∆’s appear rather abundantly
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Fig. 8. Same as Fig. 7, but computed in RBHF [35].

in stable neutron stars [35], compare Figs. 7 and 8. De-
pending on the star mass and rotational frequency, the to-
tal hyperon population in neutron stars can be very large
[34], which is illustrated graphically in Figs. 9–12 for ro-
tating neutron stars based on equations of state computed
in the framework of the DD-RBHF formalism. The stars
shown in these figures have rotational frequencies rang-
ing from zero to the mass shedding frequency, νK. Pure
neutron matter, therefore, constitutes an excited state rel-
ative to hyperonic matter which would quickly transform
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Fig. 9. Hyperon composition of a rotating neutron star in
equatorial direction. (DD-RBHF calculation performed for
Bonn (model 1) potential, non-rotating star mass is 1.70 M⊙.)
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via weak reactions like

n→ p+ e− + ν̄e (19)

to the lower energy state. The chemical potentials associ-
ated with reaction (19) in equilibrium obey the relation

µn = µp + µe
−

, (20)

where µν̄e = 0 since the mean free path of (anti) neutrinos
is much smaller than the radius of neutron stars. Hence
(anti) neutrinos do not accumulate inside neutron stars.
This is different for hot proto-neutron stars [36]. Equa-
tion (20) is a special case of the general relation

µχ = Bχµn − qχµe
−

, (21)

which holds in any system characterized by two conserved
charges. These are in the case of neutron star matter elec-
tric charge, qχ, and baryon number charge, Bχ. Applica-
tion of Eq. (21) to the Λ hyperon (BΛ = 1, qΛ = 0), for
instance, leads to µΛ = µn. Ignoring particle interactions,
the chemical potential of a relativistic particle of type χ

is given by µχ = ω(kFχ
) ≡

√

m2
χ + k2

Fχ
, where ω(kFχ

) is

the single-particle energy of the particle and kFχ
its Fermi
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Fig. 11. Hyperon composition of a rotating neutron star
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Groningen potential, non-rotating star mass is 1.60 M⊙.)
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momentum. One thus obtains

kFn
≥

√

m2
Λ −m2

n ≃ 3 fm−1
⇒ n ≡

kFn

3

3π2
≃ 2n0 , (22)

where mΛ = 1116 MeV and mn = 939 MeV was used.
That is, if interactions among the particles are ignored,
neutrons are replaced with Λ’s in neutron star matter at
densities as low as two times the density of nuclear mat-
ter. This result is only slightly altered by the inclusion
of particle interactions [34]. Densities of just ∼ 2n0 are
easily reached in the cores of neutron stars. Neutron stars
may thus be expected to contain considerable populations
of Λ’s, Σ’s and Ξ’s, as confirmed by the outcome of DD-
RBHF calculations shown graphically above. Depending
on the star’s mass, the total hyperon population can be
very large [34].
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