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Abstract

To date, it is firmly established that mitochondrial function plays an
important role in the regulation of apoptosis (programmed cell death).
There is also evidence that defects in function may be related to many of
the most common diseases of aging, such as Alzheimer dementia, Parkin-
son’s disease, type II diabetes mellitus, stroke, atherosclerotic heart dis-
ease and cancer. This belief is founded in the observation that mitochon-
drial function experiences measurable disturbance and observable mor-
phological changes under these circumstances. Electron tomography has
allowed significant advances in the understanding of mitochondrial struc-
tures. Despite the recent advances in imaging hardware and specimen
fixation techniques, the interpretation and measurement of the structural
architecture of mitochondria depend substantially on the availability of
good software tools for filtering, segmenting, measuring and classifying
the features of interest. It has been argued in the structural biology com-
munity that the image processing methodologies in the three-dimensional
electron tomography field are not yet sufficiently developed, so as to cor-
rectly extract features and understand spatial relationships in mitochon-
drial structures. The main motivation for the proposed work is the devel-
opment of mathematically sound and computationally robust algorithms
for the reduction of noise and enhancement of structural information in
mitochondrial images. Our research efforts will initially focus on the un-
derstanding of the sources and mechanisms which introduce noise (image
degradation) in electron tomography process. Correct modeling of the
degradation, will allow us to design effective, correct, algorithms for the
removal of the noise without negatively impacting fine-detail structural
information, and will allow for a posteriori reconstruction of more accu-
rate three-dimensional mitochondrion images. Our noise reduction and
reconstruction efforts will employ a partial differential equation approach
based on the minimization of the total variation norm, which has been
utilized very successfully in other areas of computer vision.

1



1 Specific Aims

The objective of this research, from the standpoint of our contribution to public

health, is to develop, implement and integrate modern image processing tech-

niques in order to obtain more accurate mitochondrial structural information

from data collected using three-dimensional (3-D) electron tomography (ET).

The larger goal is to boost the understanding of the intricate mitochondrial

architecture and its relation to functionality. The work is relevant in particular

to the structural biology community and to its contribution to public health

through the understanding of biological systems.

To date, it is firmly established that mitochondrial function plays an impor-

tant role in the regulation of apoptosis (programmed cell death) [41]. There

is also evidence that defects in function may be related to many of the most

common diseases of aging, such as Alzheimer dementia, Parkinson’s disease,

type II diabetes mellitus, stroke, atherosclerotic heart disease and cancer [78].

This belief is founded in the observation that mitochondrial function experiences

measurable disturbance and observable morphological changes under these cir-

cumstances [78, 36]. Electron tomography has allowed significant advances in

the understanding of mitochondrial structures. This imaging technique cur-

rently provides the highest 3-D resolution of the internal arrangement of mi-

tochondria in thick sections. Despite the recent advances in imaging hardware

and specimen fixation techniques, the interpretation and measurement of the

structural architecture of mitochondria depend substantially on the availability

of good software tools for filtering, segmenting, measuring and classifying the

features of interest.

It has been argued in the structural biology community [36] that the image

processing methodologies in the 3-D ET field are not yet sufficiently developed,

so as to correctly extract features and understand spatial relationships in mi-
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tochondrial structures. There is a strong need for a set of image processing

methodologies that will facilitate efficient reconstruction and analysis of the

data obtained via ET. The main motivation for the proposed work is the devel-

opment of mathematically sound and computationally robust algorithms for the

reduction of noise and enhancement of structural information in mitochondrial

images. We will establish a multi-disciplinary approach, based on a combi-

nation of established expertise in the fields of image processing, mathematics,

computational science, and structural biology. Our research efforts will initially

focus on the understanding of the sources and mechanisms which introduce

noise (image degradation) in ET process. Correct modeling of the degrada-

tion, will allow us to design effective, correct, algorithms for the removal of

the noise without negatively impacting fine-detail structural information, and

will allow for a posteriori reconstruction of more accurate 3-D mitochondrion

images. Our noise reduction and reconstruction efforts will employ a partial

differential equation (PDE) approach based on the minimization of the total

variation norm, which has been utilized very successfully in other areas of com-

puter vision [18, 20, 21, 27, 91, 92, 107, 24, 108].

2 Background and Significance

The basic stages involved in electron tomography are [36]: a) tilt series ac-

quisition, b) views alignment and normalization, c) tomographic computation

and volume reconstruction, d) segmentation and measurement, and e) render-

ing and visualization. Several software applications and computational tech-

niques have been specifically developed for ET. These packages offer compre-

hensive sets of tools that allow a wide range of structural biology analyses.

The most popular general packages are IMOD [54, 66], SPIDER [8, 35, 125],

Protomo [120, 122, 104, 121], SerialEM [67], EM3D [46], XMIPP [96], TOM
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[72], EMAN/EMAN2 [63, 103], and UCSF tomography [127, 128]. There are

also many tools available that permit specialized tasks such as data acquisition

[102, 67, 127, 128, 72, 129], signal filtering [74, 15, 64, 70, 106, 97, 30, 32, 121],

image segmentation [61, 110, 88], and data visualization [39, 3, 124, 123].

There have been many technical improvements in computational tools (both

hardware and software) aimed at furthering the capability of extracting quan-

titative information from tomograms. The interpretation and measurement of

the substructures of mitochondria depend crucially on the employment of algo-

rithms for segmenting and classifying the features of interest, tools for making

3-D measurements, and software for interactively visualizing components of the

structure [78]. Among the most critical aspects within electron tomography are

the 3-D filtering and two-dimensional (2-D) and 3-D segmentation processes.

The former constitutes the main topic of this research. Below we present the

state of the art in the two main PDE-based approaches used for the reduction

of noise and the enhancement of local structures in 3-D tomograms.

Anisotropic Nonlinear Diffusion. Anisotropic Nonlinear Diffusion is a

very powerful image processing technique used for the reduction of noise and

enhancement of structural features. It was first introduced in image processing

by Perona and Malik [82] as an attempt to overcome the shortcomings of linear

diffusion processes, namely the blurring of edges and other localization problems.

The model accomplishes this by applying a process that reduces the diffusivity

in places having higher likelihood of being edges. This likelihood is measured

by a function of the local gradient ‖∇u‖. The model can be written as

∂tu−∇ ·
(
g

(
‖∇u‖2

)
∇u

)
= 0, (1)

on the image domain Ω, with homogenous Neumann boundary conditions ∂nu =

0 on ∂Ω (no flux across the image boundary), and initial condition u (0, x) =
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u0 (x) where u0 ∈ C
(
R2

)
. In this model the diffusivity has to be such that

g
(
‖∇u‖2

)
→ 0 when ‖∇u‖ → ∞ and g

(
‖∇u‖2

)
→ 1 when ‖∇u‖ → 0.

One of the diffusivity functions proposed by Perona-Malik, is g
(
‖∇u‖2

)
=

(
1 + ‖∇u‖2

/
λ2

)−1
where λ > 0 is a free parameter. Despite the practical suc-

cess of the Perona-Malik model, it presents some serious theoretical problems

[118, 73, 51, 47, 83, 17, 38, 10]. It has been argued [38, 10] that the regularizing

effect of the discretization is perhaps the key element in the success or failure

of the model. Most practical applications work very well provided that the nu-

merical schemes stabilize the process through some implicit regularization. This

observation motivated much research towards the introduction of the regular-

ization directly into the PDE to avoid the dependence on the numerical schemes

[17, 73]. A variety of spatial, spatio-temporal, and temporal regularization pro-

cedures have been proposed over the years [17, 6, 119, 60, 111, 115]. The one

that has attracted much attention is the mathematically sound formulation due

to Catté, Lions, Morel and Coll [17]. They proposed to replace the diffusivity

g
(
‖∇u‖2

)
of the Perona-Malik model by a slight variation, g

(
‖∇uσ‖2

)
, with

uσ = Gσ ∗ u, where Gσ is a smooth kernel (Gaussian). This spatial regulariza-

tion model belongs to a class of well-posed problems (existence and uniqueness

were proven in [17]), and its successful implementation is contingent on choosing

an appropriate value for the additional regularization parameter, σ.

Frangakis and Hegerl [33] introduced anisotropic nonlinear diffusion in ET.

They proposed a diffusivity matrix D structured as follows:

D =
[

v1 v2 v3

]





λ1 0 0

0 λ2 0

0 0 λ3





[
v1 v2 v3

]T

. (2)

The vectors vi are the eigenvectors of the image’s structure tensor J = ∇u ·∇uT
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or its convolved version Jσ = Kσ ∗ J, where Kσ is a Gaussian kernel of width

σ. The parameters λi are functions of the eigenvalues, µ1 ≥ µ2 ≥ µ3, of the

structure tensor J (or Jσ). Together, the eigenvalues µi and the eigenvectors vi,

characterize the local structural features of the image u within a neighborhood

of size O (σ). Each parameter λi reflects the variance of the gray level in the

direction of the corresponding eigenvector vi, and has to be chosen carefully.

Frangakis et al chose the parameters λi to create a hybrid model that com-

bines both edge enhancing diffusion (EED) [112] and coherence enhancing dif-

fusion (CED) [114, 113, 117]. EED is based on the directional information of

the eigenvectors of the structure tensor J and its aim is to preserve and en-

hance edges. CED is based on the directional information of the eigenvectors

of the convolved structure tensor Jσ and it is intended for improving flow-like

structures and curvilinear continuities. For EED, the parameters λi are chosen

following the Perona-Malik model [82] with

λ1 = λ2 = g (µ1) , λ3 = 1, (3)

while for CED, they are defined according to

λ1 = λ2 = α, λ3 = α + (1− α) exp
(
−C

/
(µ1 − µ3)

2
)

, (4)

with user-defined free parameters α (regularization constant, typically 10−3)

and C > 0. Structures with (µ1 − µ3)
2 > C will be regarded as line-like patters

and will be enhanced.

To combine the advantages of EDD and CED the approach presented in [33]

uses a switch based on comparing an ad hoc threshold parameter1 to the local

relation between structure and noise (µ1 − µ3). EDD is used when the difference
1The threshold is computed from the mean value of (µ1 − µ3) in a subvolume of the image

containing only noise.
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(µ1 − µ3) is smaller than the threshold parameter. When it is larger, the model

would switch to CED. In a separate communication, Frangakis, Stoschek and

Hegerl [34], applied the hybrid model to 2-D and 3-D synthetic data and com-

pared it with conventional methods as well as with wavelet transform filtering.

They concluded that the model exhibits an excellent performance at lower fre-

quencies, achieving considerable improvement in the signal-to-noise ratio (SNR),

but that due to the low-pass characteristics of the diffusion and the discretiza-

tion stencil, high frequencies components of the signal are irreversibly degraded.

In [33] the authors applied the model to volumetric data as obtained by electron

tomography. A considerable SNR improvement was achieved for both of the ex-

amples presented. Thus, it greatly facilitated the posterior segmentation and

visualization. They again noted that the method acts as a low-pass filter, and

that this is an expected, yet unwanted, effect of the theoretical considerations

involved.

Fernández and Li [30, 31] proposed a variant to the model in [33] for ET filter-

ing by anisotropic nonlinear diffusion, capable of reducing noise while preserving

both planar and curvilinear structures. They provided the model with a back-

ground filtering mechanism that highlights the interesting biological structural

features and with a new criterion for stopping the iterative process. The CED

model presented in (4) diffuses unidirectionally along the direction of minimum

change v3, and efficiently enhances line-like structures (where µ1 ≈ µ2 * µ3).

It was argued in [30] that a significant amount of structural features from bi-

ological specimens resemble plane-like structures at local scale. Therefore, the

authors defined a set of metrics to discern whether the features are plane-like,

line-like or isotropic. The metrics defined are:

P1 =
µ1 − µ2

µ1
, P2 =

µ2 − µ3

µ1
, P3 =

µ3

µ1
, (5)
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which satisfy 0 ≤ Pi ≤ 1, ∀i and P1 + P2 + P3 = 1. We should note that µ1, µ2

and µ3 are the eigenvalues of the convolved structure tensor Jσ. These metrics

are such that when P1 > P2 and P1 > P3, we have a plane-like structure; when

P2 > P1 and P2 > P3, we have a line-like structure; and when P3 > P1 and

P3 > P2, we have an isotropic structure. To achieve planar enhancing diffusion,

equation (4) is modified as follows:

λ1 = α,

λ2 = α + (1− α) exp
(
−C2

/
(µ1 − µ2)

2
)

,

λ3 = α + (1− α) exp
(
−C3

/
(µ1 − µ3)

2
)

.

(6)

For the case of isotropic structure the model employs what the authors call

“background diffusion” based on Gaussian smoothing.

To address the crucial question of when to stop the filtering process the au-

thors proposed two different criteria. In [30], they proposed a stopping criterion

based on the evolution of the variance in the subvolume of noise from which the

EED/CED threshold’s switch was obtained. The devised a ratio, similar to the

one proposed in [114], the relative noise variance

rN (t) =
var (ut

N )
var (u0

N )
, (7)

where u0
N and ut

N represent the gray values of the subvolume N at time 0 and

t, respectively. Since rN (t) decreases monotonically from 1 to 0, a suitable

threshold can be set based on the desired noise reduction factor. However, since

this criterion does not consider the entire volume, it can not guarantee that the

signal will not be affected by the diffusion. To avoid this, the authors proposed

a different criterion [31] similar to the one proposed in [71]. The noise-estimate

variance criterion states that the optimal stopping time is the time (iteration)
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in which var
(
u0 − ut

)
reaches var

(
u0

N

)
, which can be expressed analytically as

tstop = arg min
t

{∣∣var
(
u0

N

)
− var

(
u0 − ut

)∣∣} , (8)

where ut and u0 represent the gray values of the whole volume at time 0 and t,

respectively.

Total Variation Based Methods. Rudin, Osher and Fatemi [89] pro-

posed image noise removal by minimizing the total variation (TV) norm of the

estimated solution. They derived a constrained minimization algorithm as a

time-dependent nonlinear PDE, where the constraints are determined by the

noise statistics. They stated that the space of bounded total variation is the

proper class for many basic image processing tasks. Thus, the restored image

is the solution of

min
u

∫

Ω
‖∇u‖ dx, (9)

subject to the following constraint involving the observed image u0,

1
2

∫

Ω
(u− u0)

2 dx = σ2. (10)

This constraint uses a priori information that the standard deviation of the

noise is σ (it is also assumed that the noise is normally distributed with mean

zero, i.e.
∫

u dx =
∫

u0 dx.) In most practical cases this parameter will not be

known and the success of the method will require a good estimate of its value.

To solve this minimization problem one would usually solve its Euler-Lagrange

equation, namely

−∇ ·
(
∇u

‖∇u‖

)
+ λ (u− u0) = 0, in Ω, (11)

subject to ∂nu = 0 on ∂Ω.
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The solution procedure proposed in [89] uses a parabolic equation with time

as an evolution (scale) parameter, or equivalently, the gradient descent method.

This is

∂tu−∇ ·
(
∇u

‖∇u‖

)
+ λ (u− u0) = 0, (12)

in Ω, for t > 0, with homogeneous Neumann boundary conditions ∂nu = 0

on ∂Ω and u (0, x) = u0 is the observed image used as initial condition. For

the parameter λ they suggested a dynamic value λ (t) estimated by Rosen’s

gradient-projection method, which as t →∞ converges to

λ = − 1
2σ2

∫

Ω

[
∇uT (∇u−∇u0)

‖∇u‖

]
dx. (13)

The Rudin-Osher-Fatemi (ROF) model, in its original form, presents several

practical challenges [1]. The model has been extensively studied and improved

upon by many scientists [1, 109, 100, 11, 40, 65, 95, 101, 107, 76, 19, 59, 23,

90, 75]. Two of the most relevant improvements to the method were proposed

by Marquina and Osher [65] and Blomgren, Chan and Mulet [11]. In [65], the

authors proposed a different version of the transient parabolic equation that

helps speed up the convergence of the time-marching scheme. The new evolution

equation is

‖∇u‖∇ ·
(
∇u

‖∇u‖

)
+ ‖∇u‖λK ∗ (K ∗ u− u0) = 0, in Ω, for t > 0, (14)

where K (x) is a blurring operator (heat kernel). This approach fixes the stair-

case problem of the original scheme and is used for removal of both blur and

noise. In [11], the authors introduced a new approach considering a regularizing

functional of the type

R (u) =
∫

Ω
‖∇u‖p dx, p ∈ [1, 2] . (15)
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For an exponent p = 1, one has the TV-norm and when p = 2, one would

be using the L2-norm. This approach was studied further in [95] where the

following evolution equation was proposed:

∂tu−∇ ·
(
‖∇u‖p−2∇u

)
+ λ (u− u0) = 0, in Ω, for t > 0. (16)

Today, the TV-based methods are very well established in the image processing

community. They are regarded as the most appropriate and powerful tools for

signal reconstruction.

Jonsson, Huang and Chan [48] introduced TV regularization in positron

emission tomography (PET) because of its superb noise removal capabilities

while capturing sharp edges without oscillations. They modified the standard

expectation maximization (EM) for PET to incorporate the TV regularization

which resulted in a robust algorithm independent of the amount of regulariza-

tion. This is equivalent to minimizing

min
u

α

∫

Ω

√
|∇Φ|2 + βdΩ +

V∑

v=1

u (v)−
D∑

d=1

nd log Pu (d), (17)

where nd is the photon count (Poisson process) for a detector pair indexed by

d, d = 1, . . . ,D, u (v), v = 1, . . . , V , denote the intensity within voxel v, P

is the detection probability matrix, nd = Pu (d) is the mean value of counts,

Φ =
∑V

v=1 u (v) ϕv is a linear interpolation2 of the vector u, β is a small number

used to reduce the ill-posedness of the problem, and α is a free parameter chosen

by trial and error. The authors argued that their TV regularized EM-algorithm

is far better that the standard EM-method when it comes to convergence and

enhancement of object edges, better than the standard EM-method at recon-

structing large flat regions, and comparable to the standard EM-method for
2ϕv is a piece-wise linear function, such that ϕv = 1 on the center of the voxel v and zero

on all other centers
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smaller constant intensity regions.

Panin, Zeng and Gullberg [77] proposed a similar approach in the form of

an iterative Bayesian reconstruction where the regularization norm is included

in the one step late-expectation maximization (OSL-EM) algorithm. They ex-

tended the TV norm minimization constraint to the field of single positron emis-

sion computed tomography (SPECT) image reconstruction with a Poisson noise

model. The authors proposed the following minimization problem (Tikhonov

iterative method [105])

min
u

{
1
2 ‖Au− u0‖2 + β TV (u)

}
, (18)

where A is a linear operator, TV (u) serves as a regularization functional and β is

a regularization parameter that controls the weight applied to the minimization

of the regularization term relative to the minimization of the residual norm.

This TV regularization scheme, when apply to SPECT, provides reconstructed

images that have attractive features, such as the identification of distinguishable

sharp edges.

Persson, Bone and Elmqvist [84] extended the TV norm formulation from 2-

D to 3-D and incorporated it into an ordered subsets EM algorithm for limited

view angle acquisition geometry in gamma camera imaging (ectomography).

They modified Green’s algorithm [42]

un+1
i =

un
i∑

j cij + β (∂/∂ui)TV (un)

∑

j

cijpj∑
k cijun

k

, (19)

where un
i is the estimate of the intensity of pixel i after n iterations, cij is the

contribution of image pixel i to projection pixel j, β is a parameter that can

be interpreted as the relative strength of the prior compared with the data in
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the image estimate3, pj is the component j of the projection data set p, and

TV (u) is used as the energy function [58]. The authors called their algorithm

TV3D-EM, and evaluated it using a modeled point spread function and digital

phantoms. The reconstructed images, when compared with those reconstructed

with the 2-D filtered back-projection algorithm, show perceived improvement in

quality. The TV3D-EM yielded a reduction in artifacts, caused by the incom-

plete angular sampling of a limited view angle system, while the noise level was

controlled.

Kisilev, Zibulevsky and Zeevi [52] incorporated the wavelet transform (WT)

and TV based regularization procedures into the maximum likelihood (ML)

framework, embedded into the iterative processes (reconstruction processes) of

the EM algorithm and the conjugate barrier (CB) algorithm for PET. Their ap-

proaches involve a similar iterative formulation for the penalized EM algorithm

(19), and the following two iterative steps for the CB algorithm [9]

step 1 : uk+1 = ∇u∗
(
ξk+1

)

step 2: ξk+1 = ξk − γ0
√

k

∥∥∇L
(
uk

)∥∥
∞∇L

(
uk

)

where ∇L (uv) = p (v)−
D∑

d=1

ndp(v,d)
V∑

v′=1
uv′p(v,d)

+ µTV (u),

(20)

where h∗ is the so called conjugate function of h:

h∗ (ξ) = sup
u∈Ω

[
ξTu− h (u)

]
, h (u) =






‖u‖p , u ∈ Ω

+∞, u /∈ Ω
, (21)

ξ is called the conjugate image, so that ξ, λ ∈ RV , γk is a positive step size at the

k-th iteration, and γ0 is a small positive constant. The authors concluded that

the combination of the CB algorithm with the TV penalty achieves the best
3As β → 0 the algorithm approaches the ML-EM solution.
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contrast to noise trade-off, and that it improves the contrast and suppresses

noise simultaneously.

More recently, Zhang and Froment [126] developed a Fourier-based tomo-

graphic reconstruction and regularization method from given parallel x-ray pro-

jections. They considered a constrained optimization problem of the form

find u∗ ∈ U such that TV (u∗) = min
u∈U

TV (u) , (22)

where U is the constraint space of images which satisfy the boundary condition

U =






u ∈ RN2
: Fm,n ∈

[
F−m,n, F+

m,n

]

∀m,n = −N
2 , · · · , N

2 − 1





, (23)

in which Fm,n are the Fourier coefficients of the discrete image um,n of size

N ×N on the Cartesian grid. Since TV is a convex function and U is a convex

set, any solution u∗ of (22) is given by u∗ = P (u∗ − t · g (u∗)), for t > 0, where

P is the projector onto U that minimizes the distance and g (u) a subgradi-

ent of TV (u) at u. The authors’ experiments on the well-known Shepp-Logan

head phantom [93], show that this approach outperforms the following classical

reconstruction methods both in terms of PSNR (an objective mean-square er-

ror) and visual quality: direct Fourier method (DFM), filtered back-projection

(FBP), and Tikhonov iterative method (TIM).

Sidky, Kao and Pan [94] developed and investigated an iterative image re-

construction algorithm based on the minimization of the image TV norm that

applies to both fan-beam and cone-beam computed tomography (CT). This

model aims to reconstruct images from sparse or insufficient data problems

that may occur due to practical issues of CT scanning (including the few-view,

limited-angle, and bad-bin problems.) The TV algorithm that they developed
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aims at finding u by implementing the following optimization scheme [16]

min ‖u‖TV such that Mu = g, uj ≥ 0. (24)

In the algorithm, the authors seek to obtain an image represented by the finite

vector u from the knowledge of the data vector g and the system matrix M. The

minimization of the image TV is carried out by the gradient descent method,

and the constraints imposed by the known projection data are incorporated by

projection on convex sets (POCS) [7]. They demonstrated and validated the

proposed TV algorithm for image reconstruction in various sparse or insufficient

data under “ideal” conditions. Also, they presented preliminary results indicat-

ing that the TV algorithm seems to be effective on sparse data problems in the

presence of signal noise.

Asaki, Campbell, Chartrand, Powell, Vixie and Wohlberg [2] applied TV

regularization methods to Abel inversion tomography. The inverse Abel trans-

form tomography is formulated as a functional minimization problem:

min
u

F (u) = min
u

{‖Pu− u0‖d + αTV (u)} , (25)

where ‖ · ‖d is an appropriate data fidelity norm, TV (u) is the regularization

term determined by a probability model of the types of objects we expect, and α

is a parameter that should lead to a solution with data fidelity norm equal to the

known or estimated variance of the data noise. The authors treated the noise

as it if where stationary Gaussian white noise, even though typical experiments

are dominated by signal-dependent Poisson noise. Their experimental results

showed favorable characteristics of noise suppression and density discontinu-

ity preservation. They also introduced an adaptive TV method that employs

a modified discrete gradient operator acting only apart from data-determined
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density discontinuities. The authors claim that this method provides improved

density level preservation relative to the basic TV method.

3 Preliminary Studies

The image processing techniques we are employing in this work are extensions

based on previous work of the main PI. In Blomgren-Chan [12], the ROF TV

approach was extended to vector valued images. In the context of [12] the main

interpretation was RGB color vectors, but the approach readily extends to other

vector, or tensor field images. Further extensions relevant to the current work

were explored in [11], and [14]; and a simple, yet extremely effective computa-

tional scheme was developed in [13]; the basic idea of feature-driven adaptivity

was introduced in [99].

The CI has extensive experience in the electron tomography field; ET of

multicomponent biological structures were investigated in [80]; mitochondrial

crista junctions examined in [81]; membrane architecture of mitochondria in

neurons of the central nervous system studied in [79]; and methods and results

of cutting edge ET described in [78, 37, 36].

Parameter-Free Adaptive Total-Variation-Based Noise Removal

and Edge Strengthening for Mitochondrial Structure Extraction. In

previous work we implemented a variation of Blomgren, Chan and Mulet’s [11]

version of the fully nonlinear ROF [89] Euler-Lagrange equation as modified by

Marquina and Osher [65],

∂tu− ‖∇u‖∇ ·
(
L

(
‖∇u‖p−2

)
∇u

)
+ Λ (u− u0) = 0, (26)

defined in the domain Ω with boundary conditions ∂nu = 0 on ∂ Ω (where n

is the unit normal vector to the boundary of the domain Ω). The Neumann
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boundary conditions should guarantee that the filtering does not significantly

affect the average gray value of the image. The initial condition is the observed

image u (0, x) = u0 (x), in Ω. The model can be regarded as an “adaptive TV

model with morphological convection and anisotropic diffusion.” Unlike the ap-

proach in [89], we implemented a user-independent choice of all the parameters

in the model. We start by estimating the unknown noise-level. In this work

we assumed that the image has been perturbed by additive Gaussian noise,

u0 = u + η, hence the variance of the noisy image has to be equal to the sum of

the variance of the true image and the variance of the noise, σ2
u0

= σ2
Gσ∗u0

+σ2
η.

Here, the variance of the (unknown) true image is approximated by the variance

of the convolved noisy image. This parameter will be updated iteratively.

For the parameter λ, we implemented a variation of the method suggested in

[89]. Instead of integrating (or summing) over the domain, Ω, we implemented

a pixel-wise Λ ≡ ‖∇u‖λ as (with a little abuse of notation)

Λ = − 1
2σ2

[
ux (ux − (u0)x) + uy

(
uy − (u0)y

)]
. (27)

The dynamic parameter Λ has the following attributes:

1. The smaller the value of Λ, the more the diffusion contributed by the

forcing term. Analogously, the larger the value of Λ, the lesser the diffusion

contributed by the forcing term.

2. At the beginning of the scale-marching iterations the gradients ux ≈ (u0)x,

and uy ≈ (u0)y, therefore the terms ux−(u0)x and uy−(u0)y are very small

and the forcing term tends to contribute more to the diffusion process. In

areas where ux and uy are large (i.e. near edges), these values compensate

for the small values of ux − (u0)x and uy − (u0)y.

3. As iterations evolve the terms ux − (u0)x and uy − (u0)y get larger. Near
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edges, the forcing term prevents diffusion and helps reach convergence.

We can also get an a posteriori estimate to the variance of the noise σ2 by

integrating (or summing) over the domain after convergence,

σ2 = − 1
2

∫

Ω

1
Λ

[
ux (ux − (u0)x) + uy

(
uy − (u0)y

)]
dx. (28)

The diffusion tensor L
(
‖∇u‖p−2

)
incorporates the parameter 1 ≤ p ≤ 2, as

suggested in [12]. The diffusion tensor becomes

L
(
‖∇u‖p−2

)
=




‖∇u‖px−2 −‖∇u‖pxy−2

−‖∇u‖pxy−2 ‖∇u‖py−2



 , (29)

where px, py, pxy, are the following unnormalized Gaussians px = 1+ e−û2
x/4σ2

,

py = 1 + e−û2
y/4σ2

, pxy = 1 + e−(û2
x+û2

y)/4σ2
. In these equations, ûx and ûy

are the gradients of the convolved noisy image Gσ ∗ u0 used to estimate the

unknown parameter σ. The dynamic parameters px, py, pxy, have the following

attributes:

1. For every pixel in the image, the parameters take values: 1 ≤ px ≤ 2,

1 ≤ py ≤ 2 and 1 ≤ pxy ≤ 2.

2. When px = 1, py = 1 or pxy = 1 the model uses the TV-norm in the

corresponding direction, and when px = 2, py = 2 or pxy = 2, the model

uses the L2-norm in the corresponding direction.

3. When the parameters 1 < px < 2, 1 < py < 2 and 1 < pxy < 2, the model

interpolates between both norms.

Experimental Results. The mitochondrial images produced by the elec-

tron microscope are of extremely low contrast (see Figure 1(a)). If we plot the

distribution of intensities of the image we observe that the intensity range is
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very narrow. It does not cover the potential range of gray tones [0, 255], and is

missing the high and low values that would result in good contrast (see Figure

1(a)). To improve the contrast in the image we spread the intensity values over

the full range of the image by a process called histogram equalization. Figure

2(a-b) shows the mitochondrion image after the histogram equalization and its

corresponding image histogram. This process notably improves the contrast of

the image which becomes better suited for our dynamic noise removal and edge

strengthening model.
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Figure 1: (a-left) Extremely low contrast electron microscope mitochondrion
image. (b-right) Image histogram: the intensity range is very narrow.

After the histogram equalization we estimate the value of the variance of the

noise as described above, σ2
η = σ2

u0
− σ2

G∗u0
. This value will be dynamically up-

dated until the model reaches convergence using (18). Figure 3 (a-b) illustrates

the treated image and its contours. We can observed that the treated image

presents better characteristics for either automated or manual segmentation.

Figures 4 (a-b) and 5 (a-b) show the final values of the adaptive parameters px,

py, pxy and Λ.
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Figure 2: (a-left) Mitochondrion image after histogram equalization. (b-right)
Image histogram: the intensity range is spread out over the range [0, 255].

4 Research Design and Methods

The research work comprises the following stages: 1) Estimation of the param-

eters of the noise incorporated into the ET processes, 2) development of the

Total Variation based noise removal and structure enhancement algorithm, 3)

Implementation of the numerical solution, and 4) Incorporation of the algorithm

into open source ET reconstruction software.

Noise Estimation. In order to develop efficient image processing tech-

niques, it is required that certain types of basic patterns be extracted from the

noisy data. Most classical techniques are appropriate in the presence of high

(uniform) SNR and Gaussian noise with independent identically distributed

(i.i.d.) samples. But, even small deviation from these assumptions can severely

deteriorate the performance of the filtering techniques [57]. SNR may also vary

significantly from region to region. The presence of unwanted background pat-

terns (structure noise) can degrade the performance of most filters. We will ex-

pand the capabilities of the techniques based on analysis of variance (ANOVA)
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Figure 3: (a-left) Mitochondrion image after being treated with the dynamic
model. (b-right) Contours of the image.

to study the noise patterns incorporated into the three-dimensional data gener-

ated through ET. It has been argued in [57] that the F-statistics associated with

the ANOVA model is optimum for the case of testing against alternatives for

Gaussian noise of unknown variance. Furthermore, that it maximizes the prob-

ability of detection for all alternatives and among all invariant tests with respect

to shifting, scaling, and orthogonal transformation of the data. In the event that

the data exhibit non-Gaussian noise, alternative approaches can be used, as the

ones involving generalized versions of partition tests [56, 50, 28, 29, 62, 53],

or the extensions to the stochastic approximation methodology as suggested in

[62, 53]. From a practical point of view we intend to adapt algorithms from

available software such as SIMEX [25, 98, 85, 86], to evaluate the noise patterns

in three-dimensional ET based on benchmarks, noise-only reconstruction, and

equipment manufacturer’s calibration procedures.

Total Variation Based Noise Removal Algorithm. We will derive a

constrained optimization numerical algorithm for the removal of noise in 3-D

electron tomograms. We will use an approach similar to the one in [89] that
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Figure 4: (b-left) Adaptive parameter px. (a-right) Adaptive parameter py.

minimizes the total variation of the data subject to constraints involving the

statistics of the noise. This is a mature and very well established methodology in

the computer vision community. It has been extensively studied and improved

upon and it is considered the most appropriate for the subject of image restora-

tion. It was designed with the explicit goal of preserving sharp discontinuities

(edges) in images while removing noise and other unwanted fine scale detail

[22]. This will allow the enhancement of the mitochondrial structure in the very

same process when the noise is being removed. Our constrained minimization

problem will be:

min
u

∫

Ω
|∇u|. (30)

Here, Ω ∈ R3 represents the image domain, which in our case is the 3-D to-

mogram. The constraints of the optimization will force the minimization to

take place over images that are consistent with our knowledge about the noise

statistics. We will arrive to an Euler-Lagrange equation of the type

∇ · (G1 (‖∇u‖)∇u)−G2 (‖∇u‖) (u− u0) = 0, (31)
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Figure 5: (a-left) Adaptive parameter pxy. (b-right) Adaptive parameter Λ.

in Ω, with ∂u/∂n = 0 on the boundary ∂Ω. To solve this problem, we will

employ a parabolic equation with time as a scale (evolution) parameter. This

is

∂tu−∇ · (G1 (‖∇u‖)∇u) + G2 (‖∇u‖) (u− u0) = 0, (32)

for t > 0, in Ω, with ∂u/∂n = 0 on the boundary ∂Ω, and the 3-D tomogram

u (0, x, y, z) = u0 (x, y, z) as initial condition.

The main difference between our proposed model and the ones firmly es-

tablished in the computer vision community lies in the terms G1 (‖∇u‖), and

G2 (‖∇u‖). These terms will be specifically tailored to the removal of noise and

structural enhancement of 3-D mitochondria tomograms. The study of the noise

incorporated into 3-D ET will allow the design of these two terms. G1 (‖∇u‖),

will be designed as a diffusion tensor that steers the diffusion process in such

a way that the eigenvectors prescribe the diffusion directions and the corre-

sponding eigenvalues determine the amount of diffusion along these directions.

G2 (‖∇u‖) will be designed in such way that the bias term (forcing term) will

spare the user from choosing an stopping time. Both terms will also include
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dynamic parameters based on local information and noise patterns. This will

allow image reconstruction with minimum human intervention.

Implementation of the Numerical Solution. Digital images are given

on discrete (regular) grids. This lends itself for discretizing the PDEs to obtain

numerical schemes that can be solved on a computer. Because of their favorable

stability and efficiency properties, semi-implicit schemes have been the methods

of choice for the scale discretization [17, 49, 4, 5, 116, 113, 68, 55, 87, 69, 43,

45, 44, 26]. As for the space discretization, the most popular choices are finite

difference [17, 116, 113] and finite element methods [49, 5, 4, 26, 87, 116, 113]

(in that order of preference). We chose to discretize the space using finite

difference because of its simplicity and straight forward implementation. The

starting point for the numerical implementation is to partition the geometry

(domain) into small units (voxels) of simple shape (cube). This will constitute

our numerical space (grid). Once we have our grid, the idea is to approxi-

mate the partial derivatives by differences in the three directions. In this case,

we need to perform discretizations in scale and space. We perform the semi-

discretization in scale by letting N ∈ N, and k = T/N be fixed numbers4, and

letting u (0, x, y, z) = u0 (x, y, z) in Ω. Then, we can look for a function un for

every n = 1, . . . , N , such that it is a solution to the equation

un − un−1

k
−∇ · (G1 (‖∇un−1‖)∇un) + G2 (‖∇un−1‖) (un−1 − u0) = 0. (33)

It is shown in [49, 5] that there exist unique variational solutions un of the

expression above at every discrete scale step, for which the following stability
4Here, T represents the last scale state we want to reach.
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estimates hold:

‖un‖2 ≤ ‖u0‖2 , ‖un‖∞ ≤ ‖u0‖∞ , forn = 1, . . . , N on Ω

N∑
n=1

‖∇un‖22 h ≤ C,
N∑

n=1
‖un − un−1‖22 ≤ C, on Ω ,

(34)

where C is a general (large) constant5. To discretize the problem in space we

can write the partial derivatives

un−un−1
k − ∂

∂x (G1 (‖∇un−1‖) ∂xun)− ∂
∂y (G1 (‖∇un−1‖) ∂yun)+

− ∂
∂z (G1 (‖∇un−1‖) ∂zun) + G2 (‖∇un−1‖) (un−1 − u0) = 0

(35)

un−un−1
k − ∂xG1 (‖∇un−1‖) ∂xun −G1 (‖∇un−1‖) ∂xxun+

−∂yG1 (‖∇un−1‖) ∂yun −G1 (‖∇un−1‖) ∂yyun+

− ∂zG1 (‖∇un−1‖) ∂zun −G1 (‖∇un−1‖) ∂zzun+

+ G2 (‖∇un−1‖) (un−1 − u0) = 0

(36)

Incorporation of the Algorithm into Open Source Software. All of

the algorithms designed for the reduction of noise and enhancement of struc-

tures in electron tomography will be made available to the developers of open

source electron microscopy software. We plan to contact the developers of the

most popular ET reconstruction packages (IMOD, SPIDER, Protomo, Seri-

alEM, EM3D, XMIPP, TOM, EMAN/EMAN2, and UCSF tomography) to

share with them the algorithms and pseudo-code produced as deliverables in

the proposed work. We will also made the algorithms and pseudo code avail-

able online where developers of other ET software packages can download them.
5Here, h represents a typical element size.
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5 Human Subjects

Not applicable in this section of the 398.

6 Vertebrate Animals

Not applicable in this section of the 398.

7 Select Agent Research

Not applicable in this section of the 398.

8 Resource Sharing

Sharing the results of this project is an important aspect of our proposed ac-

tivities and will be carried out in several different ways. We would like to make

our results available both to the structural biology community and the image

processing community. Our plan includes the following:

Presentations at national scientific meetings. We are expecting to pro-

duce at least one scientific communication per year. Depending of the topic of

the communication, we would like to present our findings in the following scien-

tific meetings: Microscopy & Microanalysis, IEEE International Symposium on

Biomedical Imaging, and IEEE International Conference on Image Processing.

It is expected that the investigators from our team will be active participants

of the discussions at these meetings.

Publications in scientific journals. The scientific communications re-

sulted from our research will be submitted for publication to scientific journals

in the field. The most likely outlet for these communications are the Journal
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of Structural Biology, the Nature Structural & Molecular Biology Journal, and

the IEEE Transactions on Image Processing.

Incorporation into open source software. All of the algorithms de-

signed for the reduction of noise and enhancement of structures in electron

tomography will be made available to the developers of open source electron

microscopy software. We plan to contact the developers of the most popu-

lar ET reconstruction packages (IMOD, SPIDER, Protomo, SerialEM, EM3D,

XMIPP, TOM, EMAN/EMAN2, and UCSF tomography) to share with them

the algorithms and pseudo-code produced as deliverables in the proposed work.

Online publication. The results of the proposed research will be also made

available to the public at large via a dedicated website. We plan to set up an

email account specially for the purpose of facilitating the communication be-

tween people interested in our results and the investigators.

The proposed research project has been submitted for funding in response to
the NIH request for applications: “Innovations in Biomedical Computational
Science and Technology (R01)”, in collaboration with Professors Peter Blomgren
and Terry Frey.
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