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Generating phase shifts from pseudo state energy shifts
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A simple way to generate low energy phase shifts for elastic scattering using bound-state calcu-
lations is postulated, validated and applied to the problem of e

+-Mg scattering. The essence of
the method is to use the energy shift between a small reference calculation and the largest possible
calculation of the lowest energy pseudo-state to tune a semi-empirical optical potential. The ` = 1
partial wave for e

+-Mg scattering is predicted to have a shape resonance at an energy of about 0.13
eV. The value of Zeff at the center of the resonance is about 1500.

PACS numbers: 34.85.+x, 34.80.Bm, 31.25.Jf, 03.65.Nk

One of the most technically demanding problems in
quantum physics is the scattering problem, i.e. the pre-
diction of the reaction probabilities when two objects col-
lide [1]. The underlying difficulty lies in the unbounded
nature of the wave function. This leads to a variety of
computational and analytic complications that are sim-
ply absent in bound state calculations, e.g. the Schwartz
singularities that occur in the Kohn variational method
for scattering [2, 3].

One approach to solve scattering problems is to use
bound state methods. There are many examples of such
approaches, one of the most popular being the R-matrix
methods that use the solutions of the Schrodinger equa-
tion in a finite sized cavity to determine the behaviour of
the wave function in the interaction region [1]. The total
wave function is then constructed by splicing the inner
wave function onto the asymptotic wave function.

However, despite the considerable activity in this area,
there are a number of problems that are beyond resolu-
tion. The e+-atom problem is a notoriously hard numer-
ical problem since the atomic electrons tend to localize
around the positron, thus giving a very slowly convergent
partial wave expansion of the wave function inside the
interaction region (this should not be confused with the
partial wave expansion of the asymptotic wave function)
[4–7]. For example, the dimensionality of the equations
to be solved to achieve a given accuracy are about 5 times
larger for e+-H scattering than for e−-H scattering. At
present, there are a number of positron collision problems
that are simply inaccessible with existing approaches [7].

This article had its origin in a particular scattering
problem, namely the determination of the near thresh-
old phase shifts for positron scattering from the di-valent
group II and IIB atoms. The dimension of the secular
equations for bound state calculation on such systems
are very large, for example a CI calculation of the e+Ca
2Po state resulted in equations of dimension 874,448 [8].
Application of the CI-Kohn approach [9] to determine
the phase shifts for e+-Mg scattering in the 2Po channel

would result in linear equations that are simply too large
(≈ 1, 000, 000) to be solved by direct methods. Iterative
methods do exist, but there are no robust methods that
absolutely guarantee convergence [10]. It is likely that
the development of an efficient linear solver for the class
of problems that arise from a basis set treatment of quan-
tum scattering would involve a good deal of initial effort
and experimentation. There is, however, a great deal of
experience in obtaining the lowest eigenvalues of the large
symmetric matrices that arise in electronic structure cal-
culations [11].

The idea behind the current method lies closest to the
trivial R-matrix method [12] which is exploited in Quan-
tum Monte Carlo (QMC) calculations of scattering [13].
In the QMC, one extracts the phase shift by comparing
the zero point energy of a finite size cavity to the energy
of the system wave function in the same cavity. In the
present method, the phase shift is extracted from the en-
ergy shift when a reference wave function is enlarged in
size to account for short and long range correlations. The
method is applied to e+-Mg scattering in the 2Po sym-
metry and used to predict the existence of a prominent
shape resonance at 0.13 eV incident energy. This is note-
worthy since shape resonances are currently unknown in
e+-atom or e+-molecule scattering [14].

Our method proceeds as follows. The initial calcula-
tion uses a reference CI wave function of product form,
viz

Ψ0 = Φgs(X)φ0(r) . (1)

The wave function of the parent atom is Φgs(X) where X

is the collective set of target coordinates. The wave func-
tion of the projectile is φ0(r) and is constructed from a
linear combination of a finite number of square-integrable
functions, {Ωi(r)} designed to give a good representation
of the wave function in a bounded interaction region. The
energy expectation, E0 is given by

E0 = 〈Ψ0|Hexact|Ψ0〉. (2)
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The wave function Ψ0 is then augmented by a very
large number of additional functions to represent the
correlations between the projectile and the target con-
stituents. This augmented trial function is

Ψ1 = Φgs(X)φ0(r) +
∑

i,j

ci,jΦi(X)φj(r) . (3)

The trial wave function Ψ1 is used to diagonalize Hexact

giving an energy of E1. The additional functions do not
include any that have the same sub-symmetries as those
comprising Ψ0.

Next, a semi-empirical potential of the form

Vpol = −
αd

2r4

(

1 − exp(−r6/ρ6)
)

, (4)

is added to Hexact (αd is the dipole polarizability). This
potential only acts on the scattering projectile. Then
Ψ′

0 is used to diagonalize Hexact + Vpol giving Epol. The
wave function, Ψ′

0 = Φgs(X)φ′
0(r) is constructed with

φ′
0(r) chosen as a linear combination of {Ωi(r)}. The

parameter ρ in eq. (4) is adjusted until Epol = E1. Figure
1 is a schematic diagram outlining this procedure.

Reference calculation
Ψ0 = Φgsφ0 H = Hexact

Ψ1 = Φgsφ0 + Σij cij Φiφj 

H = Hexact

Ψ0 = Φgsφ0

H = Hexact + Vpol

Add VpolImprove Ψ

E

Tune
Vpol

’ ’

FIG. 1: Schematic diagram showing the strategy used to tune
the semi-empirical optical potential.

In the final stage, the basis {Ωi(r)} is enlarged to per-
mit continuum solutions, giving

Ψcontinuum = Φgs(X)φcontinuum(r) . (5)

The phase shifts of Hexact + Vpol are then obtained by
using Ψcontinuum as the scattering wave function.

The method is verified by computing the low energy
phase shifts and annihilation parameters for s-wave e+-H
scattering. The reference wave function, Ψ0, consisted of
the hydrogen atom ground state multiplied by a positron
basis of 30 ` = 0 Laguerre type orbitals. The energy and
annihilation rate of Ψ0 are given in Table I.

A sequence of successively larger calculations with L
(the maximum ` value of any orbital included in the
basis) were done up to L = 12. The energies at a
given L, 〈E〉L, and annihilation rates, 〈Γ〉L, are given
in Table I. A major problem affecting CI calculations
of positron-atom interactions is the slow convergence of
the energy with L [5, 6, 15]. One way to determine the

TABLE I: Results of CI calculations for the 1Se symmetry
of e

+H for a series of L. The number of electron (Ne) and
positron (Np) orbitals are listed. The total number of two-
body functions in the CI basis are in the NCI column. Ener-
gies are given in Hartree while spin-averaged annihilation rate
(Γ) are given in units of 109 s−1 (Γ for Ψ0 is for the tuned
Vpol). The extrapolations to the L → ∞ limits use eq. (6).

L Ne Np NCI 〈E〉L 〈Γ〉L

Ψ0 1 30 30 -0.49772560 0.00089605

9 250 259 6511 -0.49797210 0.0040914253

10 274 283 7087 -0.49797276 0.0042047713

11 298 307 7663 -0.49797325 0.0042994659

12 322 331 8239 -0.49797360 0.0043795165

L → ∞ extrapolations

1-term eq. (6) -0.49797439 0.005341190

2-term eq. (6) -0.49797509 0.005334089

3-term eq. (6) -0.49797509 0.005264739

L → ∞ energy, 〈E〉∞, is to make use of an asymptotic
analysis. It has been shown that successive increments,
∆EL = 〈E〉L − 〈E〉L−1, to the energy can written as an
inverse power series [6, 16–20], viz

∆EL ≈
AE

(L + 1

2
)4

+
BE

(L + 1

2
)5

+
CE

(L + 1

2
)6

+ . . . . (6)

The L → ∞ limits have been determined by fitting sets
of 〈E〉L values to asymptotic series with either 1, 2 or 3
terms. The factors, AE , BE and CE for the 3-term ex-
pansion are determined at a particular L from 4 succes-
sive energies (〈E〉L−3, 〈E〉L−2, 〈E〉L−1 and 〈E〉L). The
series is summed to ∞ once the linear factors have been
determined and the L → ∞ limits are given in Table I).

The trial function Ψ0 was then used to diagonalize the
Hamiltonian with an additional polarization potential
(αd = 4.5 a3

0). The energy from this calculation matches
the 3-term extrapolation in Table I when ρ = 2.0495 a0.
This value of ρ is close to a value of ρ = 2.051 a0 that was
obtained when a polarization potential of this form was
tuned to an exact phase shift in a semi-empirical investi-
gation of e+-H scattering [21]. The phase shifts obtained
by integrating the Schrodinger equation for the model
Hamiltonian with ρ = 2.0495 a0 are depicted in Figure 2
and the level of agreement with the close to exact phase
shifts could hardly be better.

Besides obtaining phase shifts, this procedure was used
to determine the annihilation parameter, Zeff . In this
case the extrapolation to the L → ∞ limits were done
with an asymptotic series similar as eq. (6) but with the
leading order starting as AΓ/(L + 1/2)2. The ratio be-
tween the annihilation rates calculated with Ψ0 and Ψ1

can be equated with the enhancement factor, G, for s-
wave e+-H scattering [21]. The enhancement factor of
G = 5.95, is within 1.5% of the enhancement factor cho-
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FIG. 2: The phase shift for e
+-H scattering in the s-wave as

a function of k (in units of a
−1
0 ). The solid line shows the

results of the present calculation while the triangles show the
close to exact phase shifts of Bhatia et al [22].

sen by normalization to an accurate T -matrix close cou-
pling calculation [21, 23]. The predicted Zeff , although
not shown, lie within 5% of those of Bhatia et al [24] over
the k ∈ [0, 0.7] a−1

0 range.
This approach to computing the phase shifts was ap-

plied to the determination of e+-Mg scattering in the
LT = 1 partial wave. The treatment of Mg requires the
use of a frozen core approximation whose details have
been discussed elsewhere [6, 25], so only a brief descrip-
tion is given here. The model Hamiltonian is based on
a Hartree-Fock (HF) wave function for the Mg ground
state. The impact of the direct and exchange part of
the HF core interactions on the active particles are com-
puted exactly. One- and two-body core-polarization po-
tentials are then added to the potential. The adjustable
parameters of the core-polarization potential are defined
by reference to the spectrum of Mg+ [25].

The e+Mg CI basis was constructed by letting the two
electrons and the positron form all the possible configu-
ration with a total angular momentum of LT = 1, with
the two electrons in a spin-singlet state, subject to the
selection rules,

max(`0, `1, `2) ≤ L , (7)

min(`1, `2) ≤ Lint , (8)

(−1)(`0+`1+`2) = −1 . (9)

In these rules `0, `1 and `2 are respectively the orbital
angular momenta of the positron and the two electrons.

The Hamiltonian for the e+Mg 2Po state was diago-
nalized in a CI basis constructed from a large number of
single particle orbitals, including orbitals up to ` = 14.
The two electrons were in a spin singlet state. There
was a minimum of 14 radial basis functions for each `.
There were 20 ` = 1 positron orbitals. The largest cal-
culation was performed with L = 14 and Lint = 3. The
parameter Lint was set to Lint = 3 since this is mainly

TABLE II: Results of CI calculations for the 2Po state of
e
+Mg. The threshold for binding is −0.83285190 Hartree.

Most aspects of the Table follow those of Table I.

L Ne Np NCI 〈E〉L 〈Γ〉L

Ψ0 20 20 -0.82525710 0.029828

11 172 174 651006 -0.82806307 0.12800208

12 186 188 724506 -0.82817969 0.14306354

13 200 202 798006 -0.82827695 0.15662562

14 214 216 871506 -0.82835799 0.16873961

L → ∞ extrapolations

1-term eq. (6) -0.82871101 0.338475

2-term eq. (6) -0.82884022 0.373490

3-term eq. (6) -0.82886332 0.315877

concerned with describing the more quickly converging
electron-electron correlations [25]. The secular equations
were solved with the Davidson algorithm [11].
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FIG. 3: The energy of the 2Po state of e
+Mg as a function of

L. The directly calculated energy is shown as the solid line
while the L → ∞ limits using eq. (6) with 1, 2 or 3 terms
are shown as the dashed lines. The Mg + e

+ dissociation
threshold is shown as the horizontal line.

First, it is necessary to get the Mg ground state energy
in this basis. The limitation Lint = 3 means that only a
single electron in the model atom can have ` > 3. Trans-
lating this to an equivalent CI calculation for the Mg
ground state resulted in an energy of of E = −0.83285190
Hartree (energy given relative to the Mg2+ core).

The energy and annihilation rate of the e+Mg 2Po state
as a function of L are given in Table II. Figure 3 shows
the running estimates of 〈E〉∞ with the L → ∞ extrap-
olations as a function of L. None of calculations indicate
the existence of a bound state, but the energy shift algo-
rithm has to be applied to determine whether this is due
to the finite basis size.

A polarization potential given by eq. (4) with αd =
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FIG. 4: The elastic scattering cross section for e
+-Mg scat-

tering in the energy region below the Ps-formation threshold.
The solid line shows the total cross section while the dashed
curves shows the ` = 1 partial cross section. The curves la-
belled Vp2 and Vp3 give the ` = 1 partial cross section using
alternate forms of the polarization potential.

72 a3
0 [21, 25] (the Mg ground state polarizability) was

added to original Hamiltonian and ρ was tuned until an
energy shift of 0.003588 (= −0.82886332 + 0.82525710)
Hartree was achieved. Figure 4 shows the elastic cross
section for e+-Mg scattering below the Ps formation
threshold (at k ≈ 0.25 a−1

0 ). The cutoff parameters in
eq. (4) were set to ρ = 3.032 a0 for the s-wave [21] and
ρ = 2.573 a0 (derived here) for all the other partial waves.
The elastic cross section in this energy region is almost
completely dominated by a p-wave shape resonance with
its center near k ≈ 0.10 a−1

0 .
The existence and position of the resonance is inde-

pendent of the exact form of Vpol. Alternate calculations
were done using

Vp2 =
−αd

2r4
(1 − exp(−r6/ρ6)) −

αq

2r6
(1 − exp(−r8/ρ8))

Vp3 =
−αdr

2

2(r2 + ρ2)3
, (10)

where αq = 814 a5
0 [26] is the quadrupole polarizabil-

ity. The three different calculations (see Figure 4) give a
resonance at the same position. Using an enhancement
factor of G = 12.5 = 0.3735/0.02983 for valence annihi-
lation gave a value of Zeff ≈ 1500 at the resonance peak.

To summarize, a novel technique has been used to
demonstrate the existence of a shape resonance in e+Mg
scattering which has the virtue of being readily de-
tectable. The phase shift calculations were performed
using a semi-empirical method [21] with a tuned poten-
tial. The tuning of an optical potential to features such
as bound state energies and resonance positions is well
known. The novel feature of the present approach is that
the optical potential is tuned to the energy shift of a
positive energy pseudo-state. This approach to the cal-

culation of phase shifts can be applied to other scattering
systems which are inaccessible with existing techniques.

The calculations upon the e+Mg system were per-
formed on Linux clusters hosted at the SDSU Compu-
tational Sciences Research Center and the South Aus-
tralian Partnership for Advanced Computing. The au-
thors would like to thanks to Grant Ward and Dr.
James Otto for computational assistance and Dr. Bob
McEachran for a critical reading of the manuscript.
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