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The existence and structure of positronic atoms with a total angular momentum of L = 1 is
studied with the configuration interaction method. Evidence is presented that there is a 2Po state
of e+Ca and 2,4Po states of e+Be(3Po) that are electronically stable with binding energies of 45
meV and 2.6 meV respectively. These predictions rely on the use of an asymptotic series analysis
to estimate the angular L → ∞ limit of the energy. Incorporating corrections that compensate for
the finite range of the radial basis increased the binding energies of e+Ca and e+Be to 71 meV and
42 meV respectively.

PACS numbers: 36.10.-k, 36.10.Dr, 34.85.+x, 71.60.+z

I. INTRODUCTION

The existence of positron-atom bound states is now
firmly established and about ten atoms have been iden-
tified as being able to bind a positron [1]. Beside their
intrinsic interest, the knowledge that positrons can form
bound states has been crucial to recent developments in
understanding the very large annihilation rates that oc-
cur when positrons annihilate with various molecules in
the gas phase [2–9]. One common feature of the atomic
calculations is that binding only occurs to atoms with an
ionization energy close to 6.80 eV (the Ps binding energy)
and the binding energies are largest for those atoms with
ionization energies closest to 6.80 eV [1].

The existence of positronic bound states with non-zero
angular momentum was an open question until the recent
identification of the 2Po state of e+Ca as electronically
stable [10]. There are two types of excited state that
can be considered. In one case, the positron is bound
to an excited state of the parent atom. An example of
such a state (with zero orbital angular momentum) is the
metastable e+He(3Se) state [11]. The other type of state
could be regarded as a positron, in an excited orbital,
bound to the ground state of the parent atom. The re-
cently discovered 2Po state e+Ca can be regarded as such
a state since it has same dissociation channel as the lower
lying 2Se e+Ca ground state [10].

The present article describes some very large configu-
ration interaction (CI) calculations of the 2Po states of
e+Ca and e+Sr that indicate the presence of a 2Po bound
state for e+Ca with a binding energy of 45 meV. The sit-
uation for e+Sr is less clear and the best that can be said
is that there may be a 2Po state that is just bound with a
binding energy of 5 meV or smaller. Since the ionization
energies of the Ca and Sr atoms are less than 6.80 eV,
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the thresholds for a stable positron complex are those of
the [Ca+(4s), Sr+(5s)] + Ps(1s) dissociation channels.

The other state that is investigated is the 2,4Po state
of e+Be with the metastable Be 2s2p 3Po state being the
dominant configuration of the parent atom. The result-
ing e+Be state is stable with a binding energy of at least
2.6 meV with respect to the Be+(2p) + Ps(1s) dissocia-
tion channel.

II. DESCRIPTION OF THE CALCULATIONS

A. The model Hamiltonian

The CI method as applied to positron-atomic sys-
tems with two valence electrons and a positron has been
discussed previously [12–14], but a short description is
worthwhile. The model Hamiltonian is initially based on
a Hartree-Fock (HF) wave function for the neutral atom
ground state. One and two-body semi-empirical polar-
ization potentials are added to the potential field of the
HF core and the parameters of the core-polarization po-
tentials defined by reference to the spectrum of the singly
ionized parent atom [12, 13].

All calculations were done in the frozen-core approxi-
mation. The effective Hamiltonian for the system with 2
valence electrons and a positron was

H = −
1

2
∇2

0 −

2
∑

i=1

1

2
∇2

i − Vdir(r0) + Vp1(r0)

+

2
∑

i=1

(Vdir(ri) + Vexc(ri) + Vp1(ri)) −

2
∑

i=1

1

ri0

+
2
∑

i<j

1

rij

−
2
∑

i<j

Vp2(ri, rj) +
2
∑

i=1

Vp2(ri, r0) . (1)

The potential, Vdir, represents the direct part of the in-
teraction with the HF electron core. It is attractive for
electrons and repulsive for the positron. The exchange
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potential (Vexc) between the valence electrons and the
HF core was computed without approximation.

The one-body polarization potentials (Vp1) are semi-
empirical in nature and are derived from an analysis of
the singly ionized parent atoms. They have the func-
tional form

Vp1(r) = −
∑

`m

αdg
2
` (r)

2r4
|`m〉〈`m|. (2)

The factor αd is the static dipole polarizability of the
core and g2

` (r) is a cut-off function designed to make the
polarization potential finite at the origin. The same cut-
off function has been adopted for both the positron and
electrons due to lack of information that can be used to
tune the positron cutoff. This will tend to lead to an un-
derestimation of the strength of the positron polarization
potential since the electron-atom polarization potential is
weaker than the positron-atom polarization potential for
closed shell targets [1, 15, 16]. The error should be small
since the core polarizabilities for all the systems studied
are at least 30 times smaller than the valence polarizabil-
ities. In this work, g2

` (r) was defined to be

g2
` (r) = 1 − exp

(

−r6/ρ6
`

)

, (3)

where ρ` is an adjustable parameter. The two-body po-
larization potential (Vp2) is defined as

Vp2(ri, rj) =
αd

r3
i r3

j

(ri · rj)gp2(ri)gp2(rj) . (4)

where gp2(r) is chosen to have a cut-off parameter ob-
tained by averaging the ρ`. The core dipole polarizabil-
ities and the ρ` were set to the values in Refs. [12, 13].
This model has been used to describe many of the fea-
tures of neutral Be, Ca and Sr to quite high accuracy
[12, 13, 17]. All energies reported here are given relative
to the energy each doubly-ionized core.

B. The trial wave function

The trial wave function adopted for the variational cal-
culations consists of a linear combination of states which
are anti-symmetric in the interchange of the two elec-
trons,

|Ψ;LS〉a =
∑

i

ci|Φi;LS〉A . (5)

Each anti-symmetrized state is constructed as a linear
combination of coupled states. Two electrons (particles
1 and 2) are coupled first to each other, then the positron
(particle 0) is coupled to form a state with total angular

and spin angular momentum, L and S,

|Φi; [a1b2]LISIp0LS〉 =
∑

ma,mb,mp,MLI
µa,µb,µp,MSI

〈`ama`bmb|LIMLI
〉

× 〈LIMLI
`pmp|LML〉

× 〈SIMSI
1

2
µp|SMS〉|a1`amaµa〉

× |b2`bmbµb〉|p0`pmpµp〉 . (6)

The subscript by each orbital denotes the electron occu-
pying that particular orbital. The anti-symmetric states
are written as

|Φi; [ab]LISIpLS〉A =
1

√

2(1 + δab)

(

|[a1b2]LISIp0〉

+ (−1)la+lb+LI+SI |[a2b1]LISIp0〉
)

(7)

The CI basis was constructed by letting the two elec-
trons and the positron form all the possible total angular
momentum LT = 1 configurations, with the two elec-
trons in a spin-singlet state (for Ca and Sr), subject to
the selection rules,

max(`0, `1, `2) ≤ J , (8)

min(`1, `2) ≤ Lint , (9)

(−1)(`0+`1+`2) = −1 (10)

In these rules `0, `1 and `2 are respectively the orbital
angular momenta of the positron and the two electrons.
We define 〈E〉J to be the energy of the calculation with
a maximum orbital angular momentum of J .

The main technical problem afflicting CI calculations
of positron-atom interactions is the slow convergence of
the energy with J [1, 14, 18, 19]. One way to determine
the J → ∞ energy, 〈E〉∞, is to make use of an asymptotic
analysis. It has been shown that successive increments,
∆EJ = 〈E〉J − 〈E〉J−1, to the energy can written as an
inverse power series [14, 20–23], viz

∆EJ ≈
AE

(J + 1

2
)4

+
BE

(J + 1

2
)5

+
CE

(J + 1

2
)6

+ . . . . (11)

The J → ∞ limit, has been determined by fitting sets
of 〈E〉J values to asymptotic series with either 1, 2 or
3 terms. The linear factors, AE , BE and CE for the 3-
term expansion are determined at a particular J from 4
successive energies (〈E〉J−3, 〈E〉J−2, 〈E〉J−1 and 〈E〉J ).
Once the linear factors have been determined it is trivial
to sum the series to ∞ and thus obtain the variational
limit. Application of asymptotic series analysis to helium
has resulted in CI calculations reproducing the ground
state energy to an accuracy of ∼10−8 hartree [23, 24].

III. THE 2Po STATE OF e+Ca

The ionization potential of Ca is 0.2247 hartree [25], so
the condition for stability of a e+Ca state is that its en-
ergy be less than that of the Ca+(4s) + Ps(1s) threshold.
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TABLE I: Results of CI calculations for the e+Ca 2Po state as a function of J , and for Lint = 3. The total number of
configurations is denoted by NCI while the number of electron and positron orbitals are denoted by Ne and Np. The 3-body
energy of the state, relative to the energy of the Ca2+ core, is given in hartree. The threshold for binding is −0.68628653 hartree,
and 〈ε〉J gives the binding energy against dissociation into Ps + Ca+(4s). The mean electron-nucleus distance 〈re〉 and the
mean positron-nucleus distance 〈rp〉, are given in units of a0. The 〈Γv〉 and 〈Γc〉 columns give the valence and core annihilation
rates respectively (in units of 109 sec−1). The entries in the row labeled 14∗ were computed with Lint = 2. The extrapolated
results used eq. (11) to estimate the J → ∞ corrections. The largest values of 〈X〉J were used in the extrapolations.

J Ne Np NCI 〈E〉J 〈ε〉J 〈re〉 〈rp〉 〈Γc〉 〈Γv〉

10 158 154 576184 −0.67981518 −0.00647135 4.70225 7.62604 0.0062905 0.655314

11 172 168 650860 −0.68106444 −0.00522209 4.74800 7.63988 0.0061615 0.705043

12 186 182 725536 −0.68207134 −0.00421520 4.78940 7.66182 0.0060370 0.749092

13 200 196 800212 −0.68289035 −0.00339618 4.82683 7.68815 0.0059205 0.788275

14 214 210 874888 −0.68356185 −0.00272468 4.86006 7.71578 0.0058158 0.823311

14∗ 214 210 556192 −0.68313606 −0.00315047 4.86933 7.74778 0.0056885 0.816812

J → ∞ extrapolations

1-term eq. (11) −0.68648706 0.0002005 5.00481 7.83614 0.005359 1.31422

2-term eq. (11) −0.68739784 0.0011113 5.08759 7.96357 0.005079 1.41897

3-term eq. (11) −0.68763826 0.0013517 5.11457 8.02355 0.005021 1.42395

The threshold for binding is −0.68628653 hartree since
the energy of the Ca+(4s) state is −0.43628653 hartree
in the present model potential (relative to the energy of
the doubly ionized Ca2+ core).

The Hamiltonian for the e+Ca 2Po state was diagonal-
ized in a CI basis constructed from a very large number
of single particle orbitals, including orbitals up to ` = 14.
The two electrons were in a spin singlet state. There was
a minimum of 14 radial basis functions for each `. The
largest calculation was performed with J = 14, Lint = 3
and the CI basis had a dimension of 874888. The pa-
rameter Lint does not have to be large since it is mainly
concerned with electron-electron correlations [13]. The
resulting Hamiltonian matrix was diagonalized with the
Davidson algorithm [26], and a total of 10000 iterations
were required for some of the most slowly convergent
cases.

The energy and other expectation values of the e+Ca
2Po state as a function of J is given in Table I. The
binding energy is defined as 〈ε〉J = −〈E〉J − 0.68628653.
None of the explicit calculations listed in Table I formally
bind the positron.

Figure 1 shows the running estimates of 〈E〉∞ with
the J → ∞ extrapolations as a function of J . The
two-term and three-term extrapolations both give ener-
gies below the dissociation threshold and indicate that
the e+Ca 2Po state is electronically stable. The three-
term extrapolation seems to have stabilized at a binding
energy of ≈0.00135 hartree. The two-term binding en-
ergy is slightly smaller but does seem to be approaching
the three-term estimate. The one-term estimate of 〈E〉∞
is also absolutely bound, although its binding energy is
somewhat smaller. The precise estimates of 〈E〉∞ evalu-
ated at J = 14 for the different extrapolations are given
in Table I.

With a very small binding energy it is desirable to
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FIG. 1: The binding energy (units of hartree) of the 2Po

state of e+Ca as a function of J . The directly calculated
energy is shown as the solid line while the J → ∞ limits
using eq. (11) with 1, 2 or 3 terms are shown as the dashed
lines. The Ca+(4s) + Ps(1s) dissociation threshold is shown
as the horizontal solid line.

look at the areas of uncertainty in the model and com-
putation to determine whether they could invalidate the
prediction of binding. The impact of variations in the
core polarization potentials have been discussed previ-
ously [10], and are unlikely to invalidate the prediction
of the bound state.

The lack of completeness in the finite dimension radial
basis is also not an issue since this is expected to lead to
the binding energy being underestimated. Previous CI
investigations have revealed that accurate prediction of
the ∆EJ energy increments required a larger basis as J
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increases [14, 23]. This results in the typical CI partial
wave expansion, with a fixed dimension radial basis for
the different L-values, having an inherent tendency to
underestimate the binding energy [14, 23]. There will be
more discussion about this point later.

The choice of Lint = 3 leads to some underestimation
in the binding energy. Table I gives the energy for the
J = 14, Lint = 2 calculation. A 1-term form of eq. (11) is
used to extrapolate the J = 14 energy to the Lint → ∞
limit. The resultant e+Ca energy was E = −0.68388476
hartree, a decrease of 0.00032 hartree. Adding this to
the 3-term 〈E〉∞ energy would result in a total binding
energy of 〈ε〉 = 0.00167 hartree, an increase of about
24%. This energy can be regarded as a giving a better
estimate than 0.00135 hartree.

The spin-averaged valence annihilation rate is the most
important of the other expectation values listed in table
I. The convergence in J is even worse than the energy
since the successive increments to Γ scale as 1/J2 as J
increases. The extrapolation to the J → ∞ limits were
done using a series almost the same as eq. (11) but with
the first term starting as AΓ/(J + 1/2)2. The running
estimates of 〈Γ〉∞ are shown in Figure 2. The estimate
using 3-terms in eq. (11) should be the best. However, the
3-term curve in Figure 2 shows fluctuations for J > 10
that are caused by the imprecision in the eigenvector ob-
tained from the Davidson algorithm. Similar fluctuations
(although smaller in magnitude) were present in an in-
vestigation of the convergence of the electron-electron δ
function for the helium ground state [23].

The trends shown in Figure 2 indicate that a converged
calculation would give an annihilation rate of Γ ≈ 1.5 ×
109 s−1. The large value of the annihilation rate suggests
that a large fraction of the wave function consists of the
positron attached to the electron in a Ps(1s) cluster.
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FIG. 2: The annihilation rate (in units of 109 s−1) of the
2Po state of e+Ca as a function of J . The directly calculated
annihilation rate is shown as the solid line while the J → ∞
limits using eq. (11) with 1, 2 or 3 terms are shown as the
dashed lines.

Table I also gives other expectations such as the mean
positron and electronic distances, and the core annihi-
lation rate. The J → ∞ limits are once again com-
puted using an asymptotic series. The leading term of
the asymptotic series for these other operators have not
yet been established by perturbation theory, but a lead-
ing order term of A/(J + 1/2)4 is assumed to be valid
in the present analysis. For the most part the J → ∞
corrections lead to 5% changes in the expectation values.

The mean positron radius, 〈rp〉 is estimated to be
about 8.0 a0. The system is compact despite its small
binding energy (the e+Ca 2Se ground state with a bind-
ing energy 10 times larger has 〈rp〉 ≈ 6.9 a0 [27]). The
large r form of the wave function must have a Ca+(4s)
+ Ps(1s) structure with the Ps(1s) center of mass being
in an L = 1 state with respect to the residual ion. The
centrifugal barrier associated with the non-zero angular
momentum acts to confine the positron probability dis-
tribution.
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0.4

0 10 20

ρ(
r)
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electrons 

positron

e+Ca 2Po

FIG. 3: Electron and positron probability densities (ρ(r)) as
a function of r. The electron density is normalized to 2 while
the positron density is normalize to 1.

The electron and positron probability densities are de-
picted in Figure 3. As expected, the peak of positron den-
sity is outside the electron density peak. One expects the
electron and positron densities to approach each other as
r → ∞ since the lowest energy breakup is into the Ca+ +
Ps(1s) channel. However, the positron density is signifi-
cantly larger than the electron density at r = 12 a0. This
indicates a considerable degree of polarization in the Ps
cluster which seems to be orientated with the electron
closest to the nucleus.

IV. THE 2Po STATE OF e+Sr

Since the ionization potential of strontium is 0.2093
hartree [28], the lowest energy dissociation channel is that
of Sr+(5s) + Ps(1s). The calculations carried out on the
e+Sr 2Po state (with the two electrons in a spin singlet
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TABLE II: Results of CI calculations for the 2Po state of
e+Sr for a series of J , with fixed Lint = 3. The threshold
for binding is -0.65534976 hartree, and 〈ε〉J gives the binding
energy against dissociation into Ps + Sr+(5s). Other aspects
of the Table are similar to those of Table I.

J Ne Np NCI 〈E〉J 〈ε〉J

10 159 154 590590 −0.64373343 −0.01161633

11 173 168 666834 −0.64528075 −0.01006902

12 187 182 743078 −0.64653069 −0.00881908

13 201 196 819322 −0.64755027 −0.00779949

14 215 210 895566 −0.64838906 −0.00696071

14* 215 210 576870 −0.64790288 −0.00744688

J → ∞ extrapolations

1-term eq. (11) −0.65204302 −0.0033067

2-term eq. (11) −0.65322302 −0.0021267

3-term eq. (11) −0.65356839 −0.0017714

state) were very similar to those discussed for e+Ca. The
only difference in the dimensionality was that there was
an additional ` = 2 electron orbital. Even the exponents
of the Laguerre orbitals were almost identical.

The energies for the sequence of calculations are given
in Table II. The current sequence of calculation does not
result in binding even when the J → ∞ extrapolation are
included. Figure 4 shows the running estimates of 〈ε〉∞
as a function of J . The 3-term extrapolation asymptotes
to an energy that is 0.00177 hartree away from binding.
The system still remains unbound when the Lint → ∞
correction of 0.00037 hartree is added to the energy.

An unbound system would be expected to have an 〈ε〉∞
that asymptotes to zero. The present calculation does
not asymptote to zero, and this indicates that the ba-
sis is not large enough to properly represent the Sr+ +
Ps(1s) dissociation channel at ε = 0. Usage of a finite
dimension, and consequently a finite range basis results
in the diagonalization of the Hamiltonian in soft-sided
box. The question of whether enlargement of the radial
basis would result in a bound state is addressed later.

V. POSITRON BINDING TO THE Be 3Po STATE

The ionization potential of the Be(3Po) state is 6.598
eV and, therefore, it had been earlier identified as a state
that could possible bind a positron [1, 29, 30]. The 2s2p
3Po states are metastable with the 3Po

2 and 3Po
0 states

having lifetimes exceeding an hour [31, 32]. Recently, a
large CI calculation (334,248 configurations) attempted
to determine whether a positron could be bound to the
Be(3Po) state [29]. The results of this calculation are
best described as inconclusive. There are two different
spin states of the positronic complex, namely 2Po and
4Po, due to the triplet nature of the two electron parent,
and the annihilation rates reported in Table III are spin-
averaged.
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FIG. 4: The binding energy of the e+Sr system as a function
of J . The directly calculated energy is shown as the solid
line while the 〈ε〉∞ limits using eq. (11) are shown as the
dashed lines. The Sr+(5s) + Ps(1s) dissociation threshold is
at 〈ε〉 = 0.

In the present calculation the dimension of the radial
basis has been increased to 14 LTOs per ` and the re-
sults of the CI calculations are tabulated in Table III
as a function of J . Once again, none of the explicit CI
calculations give an energy that is below the Be+(2s) +
Ps(1s) threshold. The largest calculation gave an energy
that was 0.00162 hartree away from threshold.

A demonstration of binding is again reliant on the
asymptotic analysis. Figure 5 shows the running esti-
mates of 〈ε〉∞ as a function of J . Only the 3-term extrap-
olation gives evidence of binding, and even here binding
is not achieved until J = 12. The final 3-term estimate
of the binding energy is only 8.64× 10−5 hartree, i.e. 2.4
meV.

System limitations prevented us from performing a
larger calculation, and thus establishing more firmly the
stability of e+Be(3Po). It is worth noting that the inclu-
sion of the two extra LTOs per ` (from the calculation
in [29]) was responsible for increasing 〈ε〉∞ at J = 12 by
0.000151 hartree.

The difference between the Lint = 2 and Lint = 3 en-
ergies is very small, 2.76 × 10−5 hartree. The two elec-
trons are in a triplet state and the energy is known to
converge as AE/(J + 1/2)6 for such configurations [33].
The Lint → ∞ energy correction was 9.1× 10−6 hartree.
When this was added to 〈ε〉∞ the resultant binding en-
ergy was increased to 9.55 × 10−5 hartree, i.e. 2.6 meV.

Even though the binding energy is very small, the re-
liability of the prediction is high since the underlying
model potential is very accurate. The main area of un-
certainty in the model potential lies in the definition of
the core-polarization potential potential. However, the
Be2+ core polarizability of 0.0523 a3

0 [12, 17], is very small
and therefore variations in the polarization potential will
not have much of an impact on the energies. The polar-
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TABLE III: Results of CI calculations for e+Be(3Po) for a series of J , with fixed Lint = 3. The 3-body energy of the e+-Be(3Po)
system, relative to the energy of the Be2+ core, is denoted by 〈E〉J (in hartree). The threshold for binding is -0.91920815 hartree,
and 〈ε〉J gives the binding energy against dissociation into Ps + Be+(2s). Other aspects of the Table design identical to Table
I.

J Ne Np NCI 〈E〉J 〈ε〉J 〈re〉 〈rp〉 Γc Γv

10 155 154 546252 −0.91631571 −0.00289245 3.04262 9.48204 0.0011911 0.294592

11 169 168 617988 −0.91671760 −0.00249055 3.08253 9.30895 0.0011977 0.324838

12 183 182 689724 −0.91705780 −0.00215035 3.11971 9.18345 0.0011985 0.352413

13 197 196 761460 −0.91734642 −0.00186174 3.15408 9.09058 0.0011960 0.377551

14 211 210 833196 −0.91759179 −0.00161636 3.18556 9.02154 0.0011915 0.400439

14* 211 210 515284 −0.91756437 −0.00164378 3.18605 9.02290 0.0011903 0.400400

J → ∞ extrapolations

1-term eq. (11) −0.91866071 −0.0005474 3.32270 8.72078 0.001172 0.72114

2-term eq. (11) −0.91912365 −0.0000850 3.41455 8.73278 0.001130 0.82847

3-term eq. (11) −0.91928460 0.0000865 3.46732 8.78791 0.001103 0.81860
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FIG. 5: The binding energy (in hartree) of the 2Po state of
e+Be as a function of J . The directly calculated energy is
shown as the solid line while the J → ∞ limits are shown as
the dashed lines. The Be+(2s) + Ps(1s) dissociation thresh-
old is shown as the horizontal solid line.

ization potential used in the present work is capable of
reproducing the neutral Be static dipole and quadrupole
polarizabilities to an accuracy of 0.1% [17].

The 〈rp〉∞ and 〈Γc〉∞ estimates are not that reliable.
The typical behavior of 〈rp〉J for systems with a A + Ps
dissociation limit is for 〈rp〉J to initially decrease as J
increases from 1, and then to start increasing again some
higher J value (this behaviour is seen in the 2Se states of
e+Ca, PsH, CuPs and e+Sr [12, 27, 34]). Since 〈rp〉J is
still decreasing at J = 14 it seems probable that 〈rp〉J is
not yet in the asymptotic region. The core annihilation
is determined by the radial distribution of the positron,
and this affects the reliability of 〈Γc〉∞.

VI. ZERO POINT ENERGY CORRECTIONS

Since the basis being used is of finite dimension, it also
has a finite-range. Consequently, the diagonalization of
the Hamiltonian is performed in what is effectively a soft
sided box which will have a zero point energy (ZPE). It
is necessary to determine this ZPE in order to get better
estimates of the binding energies, and in the case of e+Sr,
determine whether the system is bound or not. We note
that Dzuba et al [19, 35] examined the application of ZPE
energy corrections to e+Cu and e+Ag.

The ideas used here are based in effective range the-
ory and quantum defect theory [36–38]. Essentially, the
impact of the interactions that lead to binding on the
large r form of the wave function can be represented by
a couple of short-range parameters. Once these parame-
ters has been determined, it is a simple matter to extend
the range of the wave function to ∞.

The first step in the procedure was to determine the
effective range of the asymptotic part of the CI basis.
This is done by an initial CI calculation of the electron
and positron basis sets. The complete single particle or-
bital basis, as used for the 3-particle CI calculation, is
used to form a two-particle electron-positron basis cou-
pled to have L = 1. The basis is diagonalized for the free
positronium Hamiltonian

HPs = −
1

2
∇2

0 −
1

2
∇2

1 −
1

r01
. (12)

The resulting energy, which is computed using an asymp-
totic analysis to get the J → ∞ limit, is termed E0.

The next step involved treating Ps as a point particle
with mass M = 2me. The L = 1 Hamiltonian for the
free Ps center of mass,

H = −
1

2M
∇2

M , (13)

was diagonalized in a hard-walled finite sized cavity of
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radius R to give Ebox. The box radius, Rbox was then
tuned until Ebox = E0 + 0.250.

The third step involved using a Hamiltonian with a
semi-empirical model potential to represent the interac-
tion of Ps in an L = 1 state with the atomic ion. This
Hamiltonian was defined as

Hmp = −
1

2M
∇2

M −
36R2

2(R6 + 66)
−

V0

1 + exp(2r − 14)
.

(14)
This potential has the correct long-range interaction be-
tween positronium and a charged particle since the po-
larizability of the Ps ground state is 36 a3

0. The energy
expectation of this Hamiltonian is denoted Emp and the
wave function Ψmp. The strength of the short range part
of the interaction, V0 was tuned until the energy shift of
the semi-empirical Hamiltonian, i.e. E1 − Ebox, was the
same as εCI −E0 where εCI is the binding energy of the
3-body positronic atom.

The rather complicated form of eq. (14) was adopted to
ensure the radial expectation of the model potential wave
function, 〈Ψmp|R|Ψmp〉 = Rmp was roughly compatible
with that of the 3-body CI wave function. Calculations
with simpler forms of eq. (14) (i.e. there was no short-
range term and the cutoff parameter in the polarization
potential was tuned to the energy) gave Rmp ≈ 6 a0

which was very small for such a weakly bound Ps com-
plex. The Ps radial expectation values for the CI wave
function was taken as

RPs =
1

2
〈rp〉 +

1

2

(

2〈re〉 − 〈rion〉
)

(15)

where 〈rion〉 is the mean electron radius of the one elec-
tron ion that binds the Ps, e.g. Ca+(4s). The data in
Tables I, II and III gave RPs ≈ 9 a0.

Once each model potential was constructed, it was a
simple matter to determine the energy as R → ∞. The
results of these calculations upon e+Ca, e+Sr and e+Be
are summarized in Table IV. The binding energy of the
e+Ca 2Po state is now 0.00260 hartree, i.e. 71 meV.
The very small binding energy of the e+Be 2Po state
has increased to 0.00175 hartree, i.e. 42 meV. The ZPE
correction is largest for e+Be since this is the orbital basis
with the smallest radial extension. The e+Sr 2Po state
becomes bound, with a binding energy of 0.00020 hartree
(5.4 meV) once the ZPE analysis is performed.

The uncertainties associated with this process are of
the order of 40%. Numerical experimentation with other
forms of the short-range potentials gave significant vari-
ations in the final energy. The quoted uncertainty is a
reflection of those variations. States with a small Rmp

tend to give a smaller ZPE energy correction than states
with a larger Rmp. The system that was most affected
by these the uncertainties was e+Sr which was unbound
for some tuning potentials.

TABLE IV: The key parameters for the zero point energy
correction analysis described in the text. The entry in the
εR→∞ row gives the final energy with the ZPE energy correc-
tion. The uncertainty in εR→∞ assumes a ±40% uncertainty
in the ZPE correction.

Parameter e+Ca e+Sr e+Be

E0 + 0.250 0.0184 0.0180 0.0204

εCI 1.67×10−3 −1.40×10−3 9.55×10−5

Rbox 16.54 16.75 15.74

V0 0.04843 0.04284 0.04607

εR→∞ 2.60(24)×10−3 20(64)×10−5 1.55(58)×10−3

VII. MOTIVATION IN TERMS OF THE (m2+,
2e−, e+) SYSTEM

The (m2+, 2e−, e+) system can be regarded as an ana-
log of the e+A system where A corresponds to a member
of the group II or IIB iso-electronic series [39, 40]. In
particular, any group II or IIB atoms is described by the
(m2+, 2e−) system with the same ionization potential.
It is instructive to look at the stability properties of the
2Po symmetry of the (m2+, 2e−, e+) system.

Table V gives the lowest energy fragmentation channels
for the (m2+, 2e−, e+) system as a function of the Xm =
m2+/me mass ratio. The L = 1 angular momentum is
carried by the relative motion of the different two-body
breakup channels.

TABLE V: The (m2+, 2e−, e+) system dissociation limits and
energies for different ranges of the Xm = m2+/me mass ra-
tio. These limits and mass ratios do not depend on the total
angular momentum of the system.

Dissociation Threshold Xm = m2+/me

products energy mass limits

(m2+,2e−) + e+ E(m2+, 2e−) Xm > 0.2907

(m2+, e−) + Ps
−2Xm

1 + Xm

− 0.25 0.006039 < Xm < 0.2907

m2+ + Ps− -0.26200507 Xm < 0.006039

At the smallest values of Xm, namely Xm < 0.006039,
the lowest energy dissociation channel is that into the
m2+ + Ps− fragments. However, the attractive Coulomb
interaction between the two fragments can support an in-
finite number of electronically stable bound states. Ac-
cordingly, one concludes that the (m2+, 2e−, e+) system
has a 2Po bound state for Xm < 0.006039.

An estimate of the binding energy of the lowest energy
2Po state can be deduced by regarding the Ps− fragment
as a negative point charge of mass 3me (and internal
energy equal to E(Ps−)). The binding energy of the m2+
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particle to the Ps− system in a 1s or 2p state is given by

ε1s ≈ 2
3Xm

3 + Xm

; Xm < 0.006039 (16)

ε2p ≈
1

2

3Xm

3 + Xm

; Xm < 0.006039 (17)

At values of Xm above 0.006039, the lowest energy
dissociation channel is (m2+, e−) + Ps. The energy of
the m2+-Ps− system relative to the dissociation limit is

ε ≈
1

2

3Xm

3 + Xm

+ 0.01200507 −
2Xm

1 + Xm

. (18)

The binding energy given by eq. (18) is positive for
Xm < 0.008. This critical value of Xm corresponds to
a (m2+, 2e−) ionization energy of about 0.012 hartree.
So although there is a range of Xm admitting a stable 2Po

state, the range is too restricted to explain the stability
of the e+Ca 2Po state.

The (m2+, 2e−) system, however, is not an exact ana-
log of the calcium atom. The chief difference is that the
4p state of Ca+ is much closer in energy to the Ca+ 4s
ground state than the 2p state of (m2+, e−) is to the
(m2+, e−) 1s ground state. A crude correction can be
made by replacing eq. (18) with

ε ≈
3

2

3Xm

3 + Xm

+ 0.01200507 −
2Xm

1 + Xm

. (19)

The pre-factor of 3/2 arises due to the fact that the
ratio of the 4s:4p energies of Ca+ is almost 3/4. The
binding energy given becomes negative for Xm > 0.024.
The range of binding has been extended, but the ioniza-
tion energy of the (m2+, 2e−) system with Xm = 0.024,
namely 0.036 hartree, is still much smaller than that of
Ca, 0.225 hartree.

In qualitative terms, this extended range indicates
the mechanism for binding. The relatively small energy
penalty associated with one of the electrons having non-
zero angular momentum means that it does not act to
severely inhibit the formation of the Ps− cluster which
is believed to be the structure responsible for binding
positrons to divalent atoms with small ionization poten-
tials [39]. It is noted that the 3d level of Ca+ is more
tightly bound than the 4p level and configurations in-
volving the 3d orbital might play some part in binding
the positron.

VIII. PERSPECTIVES FOR EXPERIMENTAL
DETECTION

The possibilities for experimental verification are best
illustrated by reference to the energy level diagram of
e+Ca and related species shown in Figure 6. One pos-
sible method would be by collision between a Ps beam
and neutral calcium. The following reactions involving
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FIG. 6: Energy level diagram showing some of the states of
Ca+, Ca, Ca− and e+Ca. The energy of the Ca2+ core is set
to zero.

charge transfers are possible (the binding energy of e+Ca
is taken as 0.01912 hartree [27])

Ps + Ca = Ps + Ca E > 0 (20)

Ps + Ca = e+Ca(2Se) + e−; E > 5.619eV (21)

Ps + Ca = e+Ca(2Po) + e−; E > 6.041eV (22)

Ps + Ca = Ca+ + e− + Ps; E > 6.114eV (23)

Ps + Ca = Ca− + e+; E > 6.781eV (24)

Ps + Ca = Ca + e− + e−; E > 6.803eV (25)

The key to a successful experiment would be to discrim-
inate between electrons ejected during the formation of
positronic calcium and those formed by more mundane
reactions. The residual electron left after the formation of
positron calcium would have a well defined energy, while
those arising from the ionization of calcium, or fragmen-
tation of Ps would have an energy spread.

Existing technology for positronium beams gives
beams with a minimum energy of about 10 eV and an
energy spread of about 6 eV FWHM [41]. The existing
energy resolution would make the unambiguous detec-
tion of the 2Se state of e+Ca questionable. Improvements
in beam technology would be needed to detect the for-
mation of the 2Se state. One would look to lower the
minimum energy to 5 eV and reduce the energy width
of the beam by a factor of 5-10. Other positronic atoms
amenable to detection by this method would be those
with the larger binding energies, e.g. e+Mg and e+Sr
[27]. It would be more difficult to detect the 2Pe state
with this method since it has an energy threshold that
lies within 0.1 eV of the Ca ionization threshold.

The existence of the 2Po e+Ca state also means that
optical detection of positronic calcium is now a possibil-
ity. A dipole transition is allowed between the 2Se and
2Po states so detection of a photon with an energy of
approximately 0.42 eV (the energy of the e+Ca ground
state relative to the Ca2+ core is -0.705216 hartree [27])
could be used to flag the formation of positronic calcium.
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IX. SUMMARY

The present calculations indicate that positronic cal-
cium has a 2Po excited state with a binding energy of 45
meV. While the present prediction of binding is reliant
on an asymptotic analysis to estimate the J → ∞ limit
of the orbital basis, the evidence in support of the exis-
tence of the excited state is very strong. Indeed, making
allowance for ZPE energy corrections gave an estimated
binding energy of 71 meV.
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FIG. 7: Energy level diagram showing some of the states of
Be+, Be, Be− and e+Be. The energy of the Be2+ core is at
zero.

The explicit calculation of the 2Po state of e+Sr did not
give any conclusive evidence of binding. Incorporating a
ZPE correction resulted in a bound state with a binding
energy of 5.4 meV. However, the uncertainties associated
with the ZPE correction mean that no definite conclusion
about binding can be made.

The binding energy of the 2Po state of e+Be is very
small, being only 2.6 meV. The position of this state with
respect to other states of Be, Be− and the Be++Ps(1s)
threshold is shown in Figure 7. The small binding en-
ergy means that the electronic stability of this state is
less firmly established than for e+Ca. However, the small
core polarizability of 0.0523 a3

0 means the wave function
is less sensitive to imperfections in the exact definition of
the polarization potential. Incorporating the ZPE correc-
tion increased the binding energy to an estimated value
of 42 meV. It would take only only a modest increase in
the calculation size (say from 14 LTOs to 16 LTOs per `)
to firmly establish the electronic stability of this state.
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APPENDIX A: EVALUATION OF THE
HAMILTONIAN

The Hamiltonian can be written most generally as the
sum of three one-body operators and three two-body op-
erators.

H = T + V

= T1 + T2 + T0 + V12 + V10 + V20. (A1)

1. One-body operators

The Hamiltonian matrix elements for the one-body op-
erators TIJ , can be written

TIJ = 〈φaφb[LS]Aφp;L
T ST |T |φcφd[L

′S′]Aφq;L
T ST 〉

= 2δp,qδL,L′δS,S′NabNcd

[

δb,dδ`a,`c
〈φa|T1|φc〉

+δa,cδ`b,`d
〈φb|T2|φd〉

+(−1)`c+`d+L′+S′

δb,cδ`a,`d
〈φa|T1|φd〉

+(−1)`a+`b+L+Sδa,dδ`b,`c
〈φb|T2|φc〉

]

+δa,cδb,dδL,L′δ`p,`q
〈φp|T0|φq〉 .

(A2)

The two phase factors, arising from electron anti-
symmetrization have the same phase due to the fact that
L = L′ must be true for the scalar one-body operators,
T1 and T2, to have non-zero matrix elements.

2. The two-body operators

The two-body operators consist of one electron-
electron operator and two electron-positron operators.
The V12 electron-electron matrix element is easily written
by treating the positron as a spectator, e.g.

VIJ = 〈φaφb[LS]Aφp;L
T ST |V12|φcφd[L

′S′]Aφq;L
T ST 〉

= δp,qδL,L′δS,S′NabNcd

(

〈φaφb[LS]|V12|φcφd[L
′S′]〉

+(−1)`c+`d+L′+S′

〈φaφb[LS]|V12|φdφc[L
′S′]〉

)

.

(A3)
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These matrix elements are reduced to using standard
techniques, e.g.

〈φaφb[L]|V12|φcφd[L]〉=
∑

k

ck(`a, `b, `c, `d, L)Rk(a, b, c, d)

(A4)

where the radial integral is

Rk(a, b, c, d) =

∫

r2
1 dr1

∫

r2
2 dr2 φa(r1)φb(r2)

×
rk
<

rk+1
>

φc(r1)φd(r2) , (A5)

and r< = min(r1, r0) and r> = max(r1, r0). The angular
factor is

ck(`a, `b, `c, `d, L) = (−1)`a+`c+L ˆ̀
a

ˆ̀
b

ˆ̀
c

ˆ̀
d (A6)

×

{

la lb L

ld lc k

}(

`a k `c

0 0 0

)(

`b k `d

0 0 0

)

.

The electron-electron interaction conserves the interme-
diate two-electron L and S.

The V10 and V20 operators have a more complicated
structure. The two-electron spin S is conserved (i.e. S =
S′) but the electron-positron operator can change the
two-electron angular momentum. Adopting the notation,

〈φaφb[LS]φp;L
T ST |V10|φcφd[L

′S]φq;L
T ST 〉

= 〈abLp|V10|cdL′q〉
(A7)

The matrix element for V10 is written

〈V10〉 = δbdNabNcd〈abLp|V10|cdL′q〉

+ (−1)`c+̀ d+L′+SδbcNabNcd〈ab[L]φp|V10|dcL′q〉

+ (−1)`a+̀ b+L+SδadNabNcd〈baLp|V10|cdL′q〉

+ (−1)`a+̀ b+L+̀ c+̀ d+L′

δacNabNcd〈baLp|V10|dcL′q〉

(A8)

The V20 operator gives an expression identical to 〈V10〉
since the wave function is anti-symmetric with respect to
electron interchange.

The reduction of the first term of eq. (A8) is

〈abLp|V10|cdL′q〉 =
∑

k

Rk(a, p, c, q)δbd

×〈φaφb[LS]φp;L
T ST ‖Ck

1 · Ck
0‖φcφd[L

′S]φq;L
T ST 〉

(A9)

where Rk(a, p, c, q) is the radial integral. The angular
integral is

〈φaφb[LS]φp;L
T ST ‖Ck

1 · Ck
0‖φcφd[L

′S′]φq;L
T ST 〉

= δS,S′δb,d(−1)`b+`p+`q+LT

L̂ L̂′ ˆ̀
a

ˆ̀
c

ˆ̀
p

ˆ̀
q

×

{

L `p LT

`q L′ k

}{

`a L `b

L′ `c k

}(

`a k `c

0 0 0

)(

`p k `q

0 0 0

)

.

(A10)

Reduction of the other terms of eq. (A8) is trivial given
the reduction of the first term.
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