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Abstract
The dispersion coefficients of a number of the low-lying states of Li are determined for the homo-

nuclear case. The Li wave functions and energies were computed in a frozen core Hamiltonian with

a semi-empirical polarization potential. Besides computing the dispersion coefficients, the scalar

and tensor polarizabilities, and oscillator strengths are computed and generally seen to be in good

agreement with other accurate calculations.
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I. INTRODUCTION

The recent of upsurge of interest in cold atom physics means that it has become more
important to precisely define the interaction potential between pairs of alkali atoms [1–5].
For example, the stability and structure of Bose Einstein Condensates (BECs) depends on
the sign (and magnitude) of the scattering length, and the scattering length depends on
the precise values of the dispersion constants [1, 3]. One part of the interaction potential
is the long range van der Waals interaction. For two spherically symmetric atoms in their
respective ground states, this can be written in the general form

V (R) = −C6

R6
− C8

R8
− C10

R10
− . . . . (1)

The Cn parameters are the van der Waals dispersion coefficients. In recent years there have
been a number of studies aimed at determining the dispersion coefficients between various
combinations of alkali and alkaline-earth atoms [6–14]. One approach evaluated the sum
rules explicitly using states that were derived by diagonalizing a fixed core Hamiltonian
[15, 16] in a very large basis of square integrable functions [17–19].

The present paper reports the values of the Cn coefficients between different combinations
of the low lying states of a pair of homo-nuclear lithium atoms. In addition, the array of
oscillator strengths between the lowing lying values are computed and the polarizabilities of
a number of low-lying states are given.

II. RESULTS OF THE CALCULATIONS

A. Methodology

All the dispersion coefficients computed in this paper were computed by first diagonalizing
the semi-empirical Hamiltonian for the valence electron [15–19] in a large Laguerre Type
Orbital (LTO) basis set [19]. The details are very similar to those reported in [17, 19, 20].

The initial step was to perform a Hartree-Fock calculation of the Li ground state. The
core 1s2 wave function was then frozen, giving the working Hamiltonian for the valence
electron

H = −1

2
∇2 + Vdir(r) + Vexc(r) + Vp(r) (2)

The direct and exchange interactions of the valence electron with the core were calculated
exactly. The `-dependent polarization potential, Vp, was semi-empirical in nature with the
functional form

Vp(r) = −
∑

`m

αdg
2
` (r)

2r4
|`m〉〈`m|. (3)

The factor αd = 0.1925 a3
0 [21, 22] is the static dipole polarizability of the core and g2

` (r) =
1−exp

(

−r6/ρ6
`

)

is a cutoff function designed to make the polarization potential finite at the
origin. The cutoff parameters, ρ` were tuned so that they reproduced the binding energies
of the ns ground state and the np, nd and nf excited states. The energies of the states with
` ≥ 1 were assigned to the statistical average of their respective spin-orbit doublets. The
Hamiltonian was diagonalized in a very large orbital basis with 50 Laguerre type orbitals for
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TABLE I: Theoretical and experimental energy levels (in Hartree) of some of the low-lying states

of the Li atom. The energies are given relative to the energy of the ionized core. The experimen-

tal energies for the doublet states are averages with the usual (2J + 1) weighting factors. The

experimental data were derived from the energy levels of [27] and the ionization potential of [28].

Level Theory Experiment 〈r2〉
2s -0.198141 -0.198142 17.47

2p -0.130239 -0.130235 27.06

3s -0.074168 -0.074182 117.41

3p -0.057228 -0.057236 168.69

3d -0.055611 -0.055606 125.63

4s -0.038610 -0.038615 426.31

4p -0.031970 -0.031975 571.98

4d -0.031277 -0.031274 502.95

4f -0.031254 -0.031251 359.87

each `-value. Although the wave functions are constructed as linear combinations of LTOS,
all matrix element evaluations were done using Gaussian quadratures and are accurate to
close to machine precision. The cutoff parameters were different for each ` ≤ 2. The
parameters for ` > 2 were set to ρ2. The oscillator strengths (and other multipole expectation
values) were computed with operators that included polarization corrections [16, 19, 23, 24].

The model potential is quite realistic since the direct and exchange interactions with
the core were computed without approximation from a Hartree-Fock (HF) wave function,
and only the core polarization potential is described with a model potential. The resulting
oscillator strengths and polarizabilities, for small atoms like Li or Be are generally within
1% of the best variational calculations [14, 19, 25].

Diagonalizing the Hamiltonian results in a set of states that describes the low lying states
and in addition gives a discretization of the infinity of states that make up the positive
energy continuum. The polarizabilities are dispersion coefficients are all evaluated by means
of sum rules. The polarizabilities are evaluated using eqs. (8), (13) and (14) using the real
and pseudo-states arising from the diagonalization in the intermediate state summation.
Similarly, the van der Waals constants are also given by the sum rules, eqs. (B14) and
(B15). Finite dimension sums over pseudo-states provide a rapidly convergent expansion of
the continuum of intermediate states provided all the pseudo-states are retained [21, 22, 26].

B. Energy levels

The energy levels of the present calculations are given in Table I and compared with
experiment. The agreement with experiment is excellent since the polarization cut-off pa-
rameters were tuned to reproduce the experimental binding energy of the lowest states of
each symmetry.

The agreement between the theoretical and experimental energy levels is sufficiently close
to discount the possibility that energy level considerations might make a significant contri-
bution to the uncertainty in the radial matrix elements. Values of mean square distance of
the valence electron from the nucleus, 〈r2〉, are given for each level in Table I since these are
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TABLE II: Absorption oscillator strengths for various dipole transition lines of Li.

Transition Present work HF [31] Other

f(2s − 2p) 0.7475 0.7655 0.74695 [32], 0.74706 [33]

f(2s − 3p) 0.00469 0.0337 0.00471 [33] , 0.00482 [34]

f(2s − 4p) 0.00424 0.0350 0.00428 [34]

f(2p − 3s) 0.1106 0.1129 0.11053 [33]

f(2p − 4s) 0.01284 0.0129 0.01283 [33]

f(2p − 3d) 0.6388 0.6534 0.63857 [32], 0.63850 [33]

0.6385 [35]

f(2p − 4d) 0.1227 0.1228 0.1232 [35]

f(3s − 3p) 1.2153 1.231 1.21523 [33]

f(3s − 4p) 4.24×10−5 8.8×10−6

f(3p − 3d) 0.07378 0.0552 0.0741 [33]

f(3p − 4s) 0.2232 0.2275 0.22315 [33]

f(3p − 4d) 0.5227 0.5452

f(3d − 4p) 0.01807 0.0162

f(3d − 4f) 1.0153 1.017 1.0153 [36]

f(4s − 4p) 1.6410 1.659

f(4p − 4d) 0.1343 0.1021

f(4d − 4f) 0.00234

needed in the determination of the LeRoy radius which determines the smallest distance at
which the dispersion interaction is accurate [29, 30].

C. Oscillator strengths of low-lying transitions

The oscillator strengths for the transitions between the low manifolds of states are given
in Table II. The absorption oscillator strength from state ψ0 is calculated according to the
identity [14, 19]

fk
0n =

2|〈ψ0;L0 ‖ rkCk(r̂) ‖ ψn;Ln〉|2εn0

(2k + 1)(2L0 + 1)
. (4)

In this expression, εn0 = (En − E0) is energy difference between the initial state and final
state, while k is the multipolarity of the transition, and Ck(r̂) is a spherical tensor. The
comparison with available high accuracy ab-initio data of Yan and Drake [32] and Froese-
Fischer [33] is uniformly good. In no instance is there a difference exceeding 0.8% with
these calculations. This level of agreement attests to the accuracy of the underlying model
potential and in addition the numerical integrity of the computations.

The comparison with the fixed core model potential data of Qu et al [34–36] cannot
verify the accuracy of the model potential, since the underlying assumptions of the Qu et

al work are almost identical to the present calculation. However, the 1% level of agreement
does indicate the present results are reliable within the confines of the underlying model
potentials.
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D. Scalar and tensor polarizabilities

This analysis is done under the premise that spin-orbit effects are small and the radial
parts of the wave functions are the same for the states with different J . The Stark energy
shifts for the different L0 levels in an electric field F are written as [37]

∆E = −1

2
αL0M0F

2 . (5)

The Stark shifts for the different M0 states of the 2P o level are different and the polariz-
ability is written as

αL0M0 = α0 +
3M2

0 − L0(L0 + 1)

L0(2L0 − 1)
α2 . (6)

where α2 is taken from the state with M0 = L0. The total polarizability is written in terms
of both a scalar and tensor polarizability. The scalar polarizability represents the average
shift of the different M levels while the tensor polarizability gives the differential shift.

In terms of second order perturbation theory, the energy shift from an electric field, F
pointing in the z-direction is

∆E = −1

2

∑

n

2〈ψ0;L0M0| rC1
0 (r̂)|ψn;LnM0〉

(En − E0)

× 〈ψn;LnM0|rC1
0 (r̂)|ψ0;L0M0〉F 2 . (7)

The polarizability can therefore be written

αL0M0 =
∑

n

(

L0 1 Ln

−M0 0 M0

)2

× 2|〈ψ0;L0 ‖ rC1(r̂) ‖ ψn;Ln〉|2
εn0

(8)

where the Wigner-Eckart theorem has been used to isolate the M -dependent terms. Using
the definition of the oscillator strength, eq. (4) and taking the average of the energy shifts
leads to the usual definition as a sum rule over the oscillator strengths. It is

α0 =

L0
∑

M0=−L0

αL0M0/(2L0 + 1) =
∑

n

f0n

ε2n0

, (9)

where the sum includes both valence and core excitations. The energy distribution of the
oscillator strengths originating from core excitations was estimated using a semi-empirical
technique [19]. In this approach, we utilize the fact that the f -value distribution for the core
must obey the sum rule,

αcore =
∑

i∈core

Ni

(εi + ∆)2
, (10)

where Ni is the number of electrons in a core orbital, εi is the Koopman energy, and ∆ is an
energy shift parameter. The energy shift parameter, ∆ was chosen so that eq. (10) reproduces
accurate estimates of the core polarizabilities determined by close to exact calculations
[19, 21, 22].
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Since the M -dependent part of the polarizability is a tensor of rank 2 and it is easiest to
define it in terms of α2,L0L0 .

α2,L0M0 = α2,L0L0(−1)L0−M0

(

L0 2 L0

−M0 0 M0

)

(

L0 2 L0

−L0 0 L0

)

= α2,L0L0 ×
3M2

0 − L0(L0 + 1)

L0(2L0 − 1)
, (11)

where α2,L0L0 is

α2,L0L0 =
∑

n

[

(

L0 1 Ln

−L0 0 L0

)2

− 1

3(2L0 + 1)

]

× 2|〈ψ0;L0 ‖ rC1(r̂) ‖ ψn;Ln〉|2
(E0 − En)

. (12)

This equation can be expressed in terms of an f -value sum, for an L0 = 1 initial state, as

α2,L0L0 = −
(

∑

n,Ln=0

f0n

ε2n0

+
1

10

∑

n,Ln=2

f0n

ε2n0

)

. (13)

If the initial state is a d-state, the f -value sum is

α2,L0L0 = −
(

∑

n,Ln=1

f0n

ε2n0

+
2

7

∑

n,Ln=3

f0n

ε2n0

)

. (14)

The core does not make a contribution to the tensor polarizability since it has an equal
impact on all the different M -levels.

The development above is for LS coupled states, but it is common to give the tensor
polarizability for LSJ states. These can be related to the LS states by geometric factors
arising from the application of Racah algebra. The polarizability can be expanded

αJ0M0 = α0 +
3M2

0 − J0(J0 + 1)

J0(J0 − 1)
α2,J0J0 . (15)

where α2,J0J0 is the tensor polarizability of the state with M0 = J0. The scalar polarizability
for the different J levels are the same (if spin-orbit splitting is neglected) and equal to the
scalar polarizability in the L representation. The tensor polarizabilities between the L and
J representations can be related by

α2,J0J0 = α2,L0L0(2J0 + 1)(−1)S+L0+J0+2

{

S L0 J0

2 J0 L0

}

×
(

J0 2 J0

−J0 0 J0

)

/

(

L0 2 L0

−L0 0 L0

)

. (16)

When L0 = 1 and J0 = 3/2 this reduces to α2,J0J0 = α2,L0L0 . When L0 = 2 the J0 = 3/2
case gives α2,J0J0 = 7 × α2,L0L0/10 while the J0 = 5/2 case gives α2,J0J0 = α2,L0L0 .
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1. Results of calculations

Table III gives the polarizabilities of the lowest eight states of Li and reports polariz-
abilities from a variety of other sources. For the ground 2s state, the comparison with the
close to exact Hylleraas calculation of Yan et al [14] could hardly be better. The level of
agreement is at the 0.1% level of accuracy.

The most stringent test of the 2p state is with the experiment of Windholz et al [41] with
gave polarizabilities for both the 7 Li and 6 Li [41] isotopes. The numbers reported in Table
III are the average of the two polarizabilities. The present α1 and α2,L0L0 agree with the
experiment to within experimental error.

The experiment of Ashby et al [43] gives a stringent test of our calculations for the 3d
level. Ashby et al gives polarizabilities for the LSJ coupling scheme. These were converted
into LS coupling by making a weighted of the 3d3/2 and 3d5/2 polarizabilities with a (2J+1)
weighting factor. The agreement with the experimental polarizabilities is better than 1%.

The comparisons with the model potential results of Magnier and Aubrey-Frecon [39]
and the Coulomb Approximation (CA) of Ashby and van Wijngaarden [42] do not provide
particularly stringent tests of our calculations since the approximations made in these two
calculations render them less accurate than the present calculations. These calculations are
mainly useful in determining whether there are any gross errors in the present results, and
this is not the case. The largest differences occur for the 4d state. However, it can be seen
from Table I that the 4d-4f energy difference is very small, so even a minor error in the
energy of these levels can lead to a major error in the polarizability. While the present 4d-4f
energy difference is accurate to 1.4%, it is not clear whether a similar degree of accuracy
has been achieved in Refs. [39, 42] since they do not give an energy tabulation.

III. THE VAN DER WAALS COEFFICIENTS

This section reports the van der Waals coefficients for the different configurations and
compares them with other data where available. Most of the dispersion coefficients presented
here involved pairs of atoms with at least one of the electrons in the 2s or 2p states. This
was done to reduce the amount of numerical data in the Tables.

The theoretical work leading to the expressions for the van der Waals coefficients followed
the formalism developed by one of the authors (J Y Zhang) for helium [44–47]. A summary
of the theoretical development leading to the determination of the molecular representations
as well as a tabulation of the formulae for C3 and C5 are given in the Appendix. Another
completely independent calculations was undertaken as part of the verification process. This
other calculation used expressions for the Cn coefficients based on those developed by Mari-
nescu and coworkers [7, 8]. These expressions are tabulated in the Appendix. The two
independent calculations of the dispersion coefficients agreed to all significant digits. Some
errors were identified in the published formulae of MSD [7, 8]. In the first case, the A+1

9

coefficient in Table I of [7] was listed as -6/15 when it should have been listed as -6/25. It is
most likely that this error was purely typographical in nature and did not affect any of the
C8 results for the 2s-np states listed in [7]. A second discrepancy for the C8 coefficient of
the 2p-2p configuration was traced back to errors in eqs. (5.15) and eqs. (5.18) of [8]. The
coefficient in front of S9 should be 0 in eq. (5.15) and 192

175
in eq. (5.18). (The same error

was also present in [9] which dealt with hetero-nuclear case. The coefficient for (S14 + S16)
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should be zero in eq. (5.15) and 96
175

for eq. (5.18)).
The most accurate calculations for lithium so far are the close to exact calculations of Yan

et al [14]. However, they only report dispersion coefficients for the 2s-2s case and the 2s-2p
case. The most comprehensive set of calculations were those carried out by Marienscu and
coworkers [6–9], hereafter abbreviated as MSD. The MSD calculations use a model potential,
and they do not do a sum over radial matrix elements, instead they use the Dalgarno-Lewis
technique [49]. An older compilation by Bussery and coworkers exists [50–53], but the results
are not presented here since their description of the radial wave functions is more primitive
than that used for the MSD compilation and the present work. For example, their estimates
of C6 and C8 for two Li atoms in their grounds states underestimate the close to exact values
of Yan et al [14] by 10% and 30% respectively [14].

The comparison with the exact values of Yan et al in Table IV for the 2s-2s case show
agreement at the 0.1% level of accuracy. The dispersion cofficients for the other ns-ms type
cases are reasonably close to the MSD results.

For the other possible combinations of states given in Tables V, VI and VII, there is
some agreement with the model potential calculations of MSD but there are a number
of discrepancies which are too large to be ascribed to differences of detail. As a general
rule, agreement with MSD is best for the lower states and the dispersion coefficients of
smaller polarity. Detailed comparisons have revealed that in some instances the specific sum
rules used by MSD are incorrect, and further there is a lack of accuracy in the numerical
evaluations of the sums and integrals that make up the dispersion coefficient.

The numerical inaccuracies present in the MSD calculations can be demonstrated most
clearly in the C6 coefficients for the 2s - 4d molecule listed in Table VI. The present values
of C6 are all about 40% larger than the MSD values. For this case it is possible to extract
the underlying radial matrix element sums

T1 =
∑

mn

|〈2s|r|mp〉|2|〈4d|r|np〉|2
Emp − E2s + Enp − E4d

T2 =
∑

mn

|〈2s|r|mp〉|2|〈4d|r|nf〉|2
Emp − E2s + Enf − E4d

, (17)

from the published dispersion coefficients of MSD. We get T1 = 1.26×105 and T2 = 5.77×104

from the MSD data. The values obtained from our sum rules are T1 = 1.288 × 105 and
T2 = 1.136 × 105. The source of the discrepancy lies in the dipole matrix elements for the
4d → nf transitions. The |〈4d|r|nf〉|2 matrix elements should be close to the hydrogenic
values for lithium. We get |〈4d|r|4f〉|2 = 252.2 a2

0 which agrees with the hydrogenic value of
252.0 [54]. We also get |〈4d|r|5f〉|2 = 196.5 a2

0 which also agrees with the hydrogenic value
of 197.8 [54]. As another check, the oscillator strength sum rule S0 =

∑

n f(4d → n`) has
been evaluated yielding a value of S0 = 0.99999889. The available information suggests that
the present calculations are correct and it is the results of Marinescu et al [7] that should
be discounted.

Table V gives the Cn coefficients for the 2s-2p cases and the 2p-ns cases, The agreement
with the close to exact C6 calculation of Yan et al for the 2s-2p case is at the level of 0.1%.
The core corrections were small, but did improve the agreement with the Yan C6. For
example, the core correction increased the C6 for the Σ state from 2066.4 to 2076.3, which
is closer to the Yan C6 of 2075.1.

The very high level of agreement with MSD does not carry over to the 2s-3p configuration.
While the values of C6 are in agreement with the MSD results, this is not the case for C8
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where there are large differences with all the MSD values with one exception (which we
suspect is an accident). It is not possible to isolate the reason for the differences since there
are too many sum rules that contribute to the different C8.

The situation for the 2s-nd array of the dispersion coefficients is easily summarized. The
agreement with the MSD compilation is almost perfect for the 2s-3d array. The agreement
with the MSD compilation is uniformly poor for the 2s-4d array. The MSD sum rules
involving excitations to the 4f level are believed to be inaccurate for reasons outlined earlier.

The comparison with MSD for the 2p-2p case listed in Table VII gives very good agree-
ment for all values of C6 with the exception of the 1Σ+

g and 3Σ+
u symmetries with C5 6= 0.

The present results are completely different. This symmetry involves both intermediate exci-
tations in the sum rule occupying ` = 0 orbitals in the sum rules. This sum rule contributes
-16,383 to the value of C6. The negative contribution arises since the largest terms involve
at least one of the intermediate states in the sum rule occupying the 2s level. These terms
make a large negative contribution to C6 since the energy of the 2s level lies below that of
the 2p level. However, this sum rule seems to be making a contribution of about +12,000
in the MSD calculation. Since the present calculation reproduces the experimental dipole
and tensor polarizabilities of the 2p level (see Table III) it is most likely that the value in
[8] is incorrect due to calculation mistake. One interesting aspect of the 2p-2p case is the
large size of the C6 coefficients, the 2p polarizability is smaller than that of the 2s level, yet
the dispersion coefficients for some of the symmetries are an order of magnitude larger. The
reason for this is a fortuitous cancellation of the 2p-2s and 2p-3d energy differences in the
sum over intermediate states.

The C8 values for the 2p-2p configuration in Table VII are in reasonable agreement
with those of MSD with the exception of 1Σ+

g and 3Σ+
u symmetries where there is a 10%

discrepancy for the C5 = 0 case. This is not surprising since these are the cases where there
are errors in the formula of MSD. The difference with MSD can be largely removed if the
incorrect MSD expressions are used to evaluate these dispersion coefficients.

The dispersion coefficients for the 2p-3p configuration are also given in Table VII. The
C6 values might seem to be rather small when compared with the 2p-2p values. However, as
explained earlier, it is the 2p-2p system that has anomalously large dispersion coefficients.

IV. CONCLUSIONS

A systematic study of the dispersion parameters of the low-lying states of Li is presented.
The present results reproduce all known high accuracy data from experiment or close to
exact calculations using correlated basis sets. However, the comparison with the extensive
MSD compilation which used a model potential formalism [6–8] is mixed. There is agreement
at the 1% level for about 80% of the distinct C6 and C8 coefficients. However, for about 20%
of the cases there are differences exceeding 10%. These discrepancies are simply too large to
be be ascribed to the differences in the underlying model Hamiltonian or in the construction
of the wave functions. The most likely explanation is that some of the dispersion coefficients
presented in the MSD compilation [6–8] contaminated by calculation error. Although we
do not discuss the heavier alkalis here, it should be noted that we have also performed
calculations on these systems as well. We also find serious discrepancies with the MSD
compilation for the heavier alkali atoms for more or less the same configurations that are
problematic in Li. Despite all these problems, it should be noted that the overall level of
agreement is better with the MSD compilation than with the earlier compilation by Bussery
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and coworkers [51–53].
One novel aspect of the present work is that a prescription for including the core into

the calculation of dispersion parameters is presented. For lithium, the impact of the core
never exceeds 0.6%. However, it is likely to be more important for the heavier alkali atoms
[11, 19].

One general aspect about the calculation of van der Waals coefficients must be noted. The
expressions for the different symmetries were essentially derived individually by reduction
of the matrix elements of electron-electron operator, namely eq. (B2) (e.g. eq. (7) of [55]).
The nature of this expression is such that it is not a convenient form for a reduction in the
general case. The net result is a process that is susceptible to human error and it is not
surprising that the accuracy of the MSD compilation was marred by the occasional error.
We tried to minimize human error in the present work by essentially having two independent
calculations of most of the dispersion coefficients. This proved valuable since there were a
number of instances where this helped us to catch programming mistakes that otherwise
would have gone undetected. It also highlights the need to develop an algorithm that can be
used to mechanically churn out dispersion coefficients regardless of the angular momentum
symmetries of the two atoms. The recent work by Santra and Greene [56, 57] obviously
represents a step toward this goal.
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APPENDIX A: THE MOLECULAR WAVE FUNCTIONS

1. The S-L case

For two identical atoms a and b, where one is in an S state and the other in a state with
orbital angular momentum Lb and magnetic quantum number Mb, the zeroth-order wave
function for the combined system a-b can be written in the form:

Ψ(0)(Mb, β) =
C√
2

[

Ψna
(σ)Ψnb

(LbMb; ρ)

+ βΨna
(ρ)Ψnb

(LbMb; σ)
]

, (A1)

where Ψna
is the S-state wave function with the energy eigenvalue Ena

, Ψnb
is the Lb-state

wave function with the energy eigenvalue Enb
, σ and ρ represent the coordinates of the two

atoms, C is the normalization factor, and β describes the symmetry due to the exchange
of two atoms. The parameter β is related to the total spin, S, and the individual orbital
angular momemtum of the two atoms by β = (−1)S+La+LbP , where P = +1 for gerade
states and P = −1 for ungerade states [8, 58]. If two atoms in the same S state, C is

√
2

and β is zero. If they are in different states, C is 1 and β is ±1. The complete specification
of the wave functions is give in Table VIII.
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2. The P-P case

The zero-order wave function for two identical atoms in P state and with the a-b combined
system in a ∆ state can be written in the form:

Ψ(0)(∆, β) =
C√
2

[

Ψna(11; σ)Ψnb
(11; ρ)

+ βΨna(11; ρ)Ψnb
(11; σ)

]

, (A2)

If two atoms are in the same P state, then C is equal to
√

2 and β = 0. If they are in
different P states, then C is 1 and β = ±1.

For the Π state, the zeroth-order wave function is

Ψ(0)(Π, β, γ) =
C

2
Ψna

(1Ma; σ)Ψnb
(1Mb; ρ)

+
Cγ

2
Ψna

(1Mb; σ)Ψnb
(1Ma; ρ)

+
Cβ

2
Ψna

(1Ma; ρ)Ψnb
(1Mb; σ)

+
Cβγ

2
Ψna

(1Mb; ρ)Ψnb
(1Ma; σ) , (A3)

where Ma = 0, Mb = 1, and γ = ±1. In the above, β reflects the exchange symmetry of
two atoms and γ = ±1 is related to the exchange symmetry of the projected components of
atomic angular momenta Ma and Mb. If na = nb, C is equal to

√
2 and β is zero. If na 6= nb,

then C = 1 and β is equal to ±1. The states are identified as Π(β, γ).
The zeroth-order wave functions for the Σ states are written in two kinds of form

Ψ(0)(Σ, β) =
C√
2
Ψna

(10; σ)Ψnb
(10; ρ)

+
Cβ√

2
Ψna

(10; ρ)Ψnb
(10; σ) , (A4)

and

Ψ(0)(Σ, β, γ) =
C

2
Ψna

(1Ma; σ)Ψnb
(1Mb; ρ)

+
Cγ

2
Ψna

(1Mb; σ)Ψnb
(1Ma; ρ)

+
Cβ

2
Ψna

(1Ma; ρ)Ψnb
(1Mb; σ)

+
Cβγ

2
Ψna

(1Mb; ρ)Ψnb
(1Ma; σ) , (A5)

where Ma = −Mb = 1 and γ = ±1. In the first case, the magnetic quantum numbers of both
atomic states are zero. In the second case, their magnetic quantum numbers are non-zero
and equal and opposite. For Ψ(0)(Σ, β) and Ψ(0)(Σ, β, γ), β is equal to zero and C is equal
to

√
2 when na = nb. However, the condition na 6= nb leads to β = ±1 and C = 1.
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For Ψ(0)(Σ, β, γ), γ indicates the reflection of the wave functions on a plane containing

the molecular axis [8]. If Q̂ is the reflection operator, then

Q̂Ψna
(1Ma; σ) = (−1)MaΨna

(1 −Ma; σ) , (A6)

leading to

Q̂Ψ(0)(Σ, β) = Ψ(0)(Σ, β) , (A7)

and

Q̂Ψ(0)(Σ, β, γ) = γΨ(0)(Σ, β, γ) . (A8)

The degeneracy between the state Ψ(0)(Σ, β,−1) and other two states can be removed by
the reflection symmetry and this state is identified as the Σ− state. However, the degeneracy
between Ψ(0)(Σ, β) and Ψ(0)(Σ, β, 1) states with positive reflection symmetry still remains.
This is removed by diagonalizing the first order interaction in a basis containing these two
states. The (normalized) eigenvectors are

Ψ(0)(Σ, β, λ1)=
−1√

3
Ψ(0)(Σ, β) +

√

2

3
Ψ(0)(Σ, β, 1) , (A9)

and

Ψ(0)(Σ, β, λ2)=

√

2

3
Ψ(0)(Σ, β) +

1√
3
Ψ(0)(Σ, β, 1). (A10)

The first state, e.g. eq. (A9) is labeled as the Σ+
1 state. The second state, eq. (A10) is

labeled as the Σ+
2 state.

APPENDIX B: THE VAN DER WAALS INTERACTION

The interaction between two non-overlapping charge distributions a and b, V can be
expanded as an infinite series in powers of 1/R [55],

V =
∞

∑

`=0

∞
∑

L=0

V`L

R`+L+1
, (B1)

where
V`L = 4π(−1)L(`, L)−1/2

∑

µ

Kµ
`L T

(`)
µ (σ) T

(L)
−µ (ρ) . (B2)

The position vector σ points from the origin of atom a (O1) to the active electron. Similarly,
ρ points from the origin of atom b (O2) to the second active electron. The vector R points

from O1 to O2. In the above, T
(`)
µ (σ) and T

(L)
−µ (ρ) are the multipole tensor operators of two

charge distributions. In atomic units (e = 1) these can be written

T (`)
µ (σ) = σ`Y`µ(σ̂) , (B3)

and
T

(L)
−µ (ρ) = ρLYL−µ(ρ̂) . (B4)

The coefficient Kµ
`L is

Kµ
`L =

[(

`+ L

`+ µ

)(

`+ L

L+ µ

)]
1
2

(B5)

and (`, L, . . .) = (2`+ 1)(2L+ 1) · · · .
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1. The First-Order Energy Correction for the S-L case

The first-order energy is given by

V (1) = 〈Ψ(0)|V |Ψ(0)〉 = −C2Lb+1(Mb, β)

R2Lb+1
, (B6)

where C2Lb+1(Mb, β) is the long-range interaction coefficient

C2Lb+1(Mb, β) =β(−1)1+Lb−Mb
4π

(2Lb + 1)2

(

2Lb

Lb +Mb

)

×|〈Ψna
(σ)‖σLbYLb

(σ̂)‖Ψnb
(Lb; σ)〉|2 . (B7)

2. The First-Order Energy Correction for the P-P case

For Ψ(0)(∆, β), the first-order energy is given by

V (1)(∆, β) = 〈Ψ(0)(∆)|V |Ψ(0)(∆)〉

= −C5(∆, β)

R5
, (B8)

where

C5(∆, β) = −(A1 + βA2) . (B9)

In eq. (B9), A1 and A2 are

A1 =
4π

25
〈Ψna

(1; σ)||σ2Y2(σ̂)||Ψna
(1; σ)〉

× 〈Ψnb
(1; ρ)||ρ2Y2(ρ̂)||Ψnb

(1; ρ)〉 , (B10)

and

A2 =
4π

25
|〈Ψna

(1; σ)||σ2Y2(σ̂)||Ψnb
(1; σ)〉|2 . (B11)

The first-order energy correction V (1)(Π, β, γ) gives

C5(Π, β, γ) = −C2(1 + 2γ + γ2)C5(∆, β) . (B12)

The dispersion coefficient, C5 is zero for both the Σ+
1 and Σ− states. For the Σ+

2 , C5 is

C5(Σ
+
2 , β) = 6C5(∆, β). (B13)

3. The Second-Order Energy Correction

The second-order energy is

V (2) =−
∑

nsnt

′ ∑

LsMs
LtMt

|〈Ψ(0)|V |χns
(LsMs; σ)ωnt

(LtMt; ρ)〉|2

Ensnt
− E

(0)
nanb

, (B14)
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where χns
(LsMs; σ)ωnt

(LtMt; ρ) is one of the intermediate states with the energy eigenvalue
Ensnt

= Ens
+ Ent

, and the prime in the summation indicates that the terms with Ensnt
=

E
(0)
nanb should be excluded. It should be noted that the molecular states in eq. (B14) do allow

for the exchange of the two atomic states, Ψna
and Ψnb

making up Ψ(0). Expressions for
van der Waals matrix elements for various states of helium expressed in terms of reduced
matrix elements have been given by Zhang and coworkers [44–47]. These expressions can be
adapted to single electron atoms, but they are not reproduced here due to their complexity.

Instead expressions are presented for the second order matrix elements written in terms
of sums over products of radial matrix elements multiplied by an angular factor, Ai and also
by an energy denominator, viz

V
(2)
i = −Ai

∑

nsnt

′ ∑

k1k2k3k4

〈nala|rk1 |nsls〉〈nsls|rk2 |nala〉
Ensnt

− E
(0)
nanb

× 〈nblb|rk3 |ntlt〉〈ntlt|rk4 |nblb〉
Rk1+k2+k3+k4+2

(B15)

The Ai are coefficients that result from the angular integrations and sums over magnetic
quantum numbers. The dispersion coefficients are obtained by multiplying eq. (B15) by
−1 and omitting the Rk1+k2+k3+k4+2 factor. These Ai coefficients were determined by using
the formalism presented in [44–46]. With one or two exceptions the coefficients reproduced
those listed in the MSD compilations [7, 9].

Expressions for C6, C8 and C10 for the case `a = `b = 0 have been given in [7]. That
article also gave C6 and C8 for the `a = 0, `b = 1 configuration and C6 for the `a = 0,
`b = 2 case. We note that, the coefficient, A+1

9 coefficient in Table I of [7] that contributes
to C8 for the (`a = 0, `b = 1) configuration was listed as -6/15 when it should have been
listed as -6/25. As noted earlier, some of the coefficients presented in [8, 9] for the np-np
configuration were incorrect.

The approach adopted here is to mainly present the angular coefficients and expressions
for those cases which have not been given previously. Table X gives the expressions used to
determine C6 and C8 for the ns-md case. Table XI gives the expressions used to determine
C6 and C8 for the np-mp case. When n = m, one can set β = 1 and divide by 2 (setting
β = 0 also works). If n 6= m then β is ±1. Explicit expressions are not given for C10 since
they are somewhat unwieldy.

Care must be taken in evaluating eq. (B15) in cases where both of the atoms are in excited
states. It is possible that the energy spectrum of the pseudo state continuum could result
in an energy denominator that was accidentally very close to zero. However, the adverse
consequences of this can be largely eliminated by using LTO basis sets of different dimension
to evaluate the dispersion coefficients and checking whether this leads to large changes in
the coefficients.

4. Treatment of core

It is desirable to add the contribution of the core into the van der Waals coefficients.
Although, the effect is small for Li, for the heavier alkali atoms the core can contribute more
than 5% to the dispersion coefficients for the ground state.

The key to including the core is to examine how the core will affect the oscillator strength
sum rules. The initial state of the alkali atom can be regarded as a simple product of the
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core ( |00〉) multiplied by the state of the valence electron ( |LM〉),
Ψinit = |00:LM〉. (B16)

Now consider an excitation out of the core with the valence electron remaining a spectator,
the wave function for this final state is

Ψfin = |`m :LM〉. (B17)

This state is an uncoupled state, but it can can be written in a coupled representation as

|`m :LM〉 =
∑

LT MT

〈`mLM |LTMT 〉|`L :LTMT 〉 , (B18)

The oscillator strength for a transition to |`m :LM〉 can be decomposed in terms of transi-
tions to the |`L :LTMT 〉 coupled states as,

f `(00LM → `mLM) =
∑

LT MT

|〈`mLM |LTMT 〉|2

×f `(0L :LM → `L :LTMT ) . (B19)

Similarly, the oscillator strength in the coupled representation can be decomposed

f `(0L :LM→`L :LTMT ) =
∑

m′M ′

f `(00 :LM ′→`m′ :LM ′)

× |〈`m′LM ′|LTMT 〉|2 . (B20)

We are interested in the contribution that the core oscillator strength, f `(00 :LM ′ =M→
`m′ :LM ′ =M) makes to f `(0L :LM → `L :LTMT ). The excitations from the core occur
independently of the valence spectator state |00 : LM〉, so f `(00LM → `mLM) does not
depend on M (or L), e.g.

f `(`L :LM→`L :LTMT ) =
∑

m′M ′

|〈`m′LM ′|LTMT 〉|2

× f `(00 → `m′) . (B21)

So the oscillator strength we are interested in can be written

f `(`LM :LM → `LM :LTMT ) =
1

2L+ 1

×
∑

m′M ′

f `(00 → `m′)|〈`m′LM ′|LTMT 〉|2 . (B22)

Further, the value of f `(00LM → `mLM) does not depend on m since the angular mo-
mentum of the core is zero and summing over the m′ magnetic sub-levels gives the usual
absorption oscillator strength, f `(0 → `)

f `(`LM :LM→`L :LTMT ) =
1

2L+ 1

∑

m′M ′

f `(0 → `)

2`+ 1

× |〈`m′LM ′|LTMT 〉|2

=
f `(0 → `)

(2L+ 1)(2`+ 1)
(B23)
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The absorption oscillator strength for the (0 → `) core excitation with an |LM〉 spectator
is just

f `(`L :L→ `L :LT ) =
(2LT + 1)

(2L+ 1)(2`+ 1)
f `(0→`) (B24)

The oscillator strength is distributed into LT final states according to the (2LT + 1) degen-
eracy factor.

Inclusion of the core into the dispersion sum rules is done quite easily. Any term in a
sum rule with a |〈nl|rk|n′l′〉|2 type structure can be replaced by the corresponding oscillator
strength. The core terms are including by simply adding them to the arrays storing oscillator
strengths and squares of radial matrix elements. For example, the f 1(2p → nd) array is
augmented by an additional f -value of 10/9 (the core f -value is taken as the number of core
electrons) and an excitation energy of 0.745 Hartree [19].

The core was included in the calculation of all Cn dispersion coefficients for the ns-ms
configuration. For the other configurations the core was included in the calculation of C6,
C8 and C10.
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TABLE III: The scaler and tensor polarizabilities of the low lying states of the alkali metal atoms.

The core-polarizabilities from [19] are also listed. All polarizabilities are in atomic units. The

numbers in the square brackets denote powers of ten.

Method α1 α2 α3 α2,L0L0

1s2 core

0.193 0.114 0.168

2s

Present 164.21 1424.4 3.9680[4]

Exact [14] 164.11 1423.4 3.9650[4]

MSD [6] 164.0 1.424[3] 3.969[6]

RKR [38] 164.14 1423.3

Model Pot. [39] 164

Exp. [40] 164.2(11)

2p

Present 126.95 4104.9 3.2135[5] 1.6627

RKR [38] 126.4 1.73

Model Pot. [39] 126.4 1.5

Exp. [41] 126.88(50) 1.64(4)

3s

Present 4134.5 3.5642[5] 3.1594[7]

Model Pot. [39] 4098

CA [42] 4133

3p

Present 2.8454[4] 4.6692[5] 4.2217[8] -2188.0

Model Pot. [39] 2.6637[4] -2016

CA [42] 2.835[4] -2173

3d

Present -1.5044[4] 1.5786[5] -1.3548[8] 1.6414[4]

Model Pot. [39] -1.395[4] 1.5324[4]

CA [42] -1.51[4] 1.645[4]

Exp. [43] −1.513(4)[4] 1.643(6)[4]

4s

Present 3.5303[4] 1.1587[7] 4.5133[9]

Model Pot. [39] 3.504[4]

CA [42] 3.526[4]

4p

Present 2.7617[5] 5.3492[7] 4.3264[10] -2.1000[4]

Model Pot. [39] 2.540[5] 1.88[4]

CA [42] 2.735[5] -2.07[4]

4d

Present 4.1926[6] 6.6239[6] 2.8113[11] -1.0781[6]

Model Pot. [39] 4.680[5] -1.65[5]

CA [42] 3.10[6] -6.749[5]
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TABLE IV: The dispersion coefficients C6, C8, and C10 for Li(ns)−Li(n′s) combinations. The

numbers in the square brackets denote powers of ten. Data by other groups are identified by the

citation in the first column.

Molecule β C6 C8 C10

2s − 2s 0 1394.6 8.3515[4] 7.3811[6]

Exact [14] 0 1393.4 8.3426[4] 7.3721[6]

MSD [6] 0 1388 8.324[4] 7.365[6]

2s − 3s -1 1.3850[4] 3.5489[6] 1.0672[9]

MSD [7] -1 1.381[4] 3.539[6] 1.064[9]

+1 3.1160[4] 4.5232[6] 1.2528[9]

MSD [7] +1 3.110[4] 4.514[6] 1.250[9]

2s − 4s -1 6.7694[4] 5.7126[7] 5.2444[10]

MSD [7] -1 6.575[4] 5.700[7] 5.231[10]

+1 6.7243[4] 5.7038[7] 5.2413[10]

MSD [7] +1 6.712[4] 5.691[7] 5.228[10]

3s − 3s 0 1.9591[5] 8.8534[7] 3.7180[10]

4s − 4s 0 4.6129[6] -9.6796[10] -1.3152[15]

3s − 4s -1 1.0762[6] 4.3114[8] 1.0768[12]

+1 -3.5233[6] -5.9915[10] 2.0824[12]
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TABLE V: The dispersion coefficients C3, C6, C8, and C10 for the interactions between the 2s-np

and 2p-ns states of Li. The numbers in the square brackets denote powers of ten. Data by other

groups are identified by the citation in the first column.

Molecule β C3 C6 C8 C10

Σ(2s − 2p) -1 -11.008 2.0763[3] 9.9202[5] 1.2113[8]

MSD [7] -1 -11.01 2.066[3] 9.880[5]

YD [48] -1 -11.000 2.0751[3]

+1 11.008 2.0763[3] 2.7431[5] 3.0096[7]

MSD [7] +1 11.01 2.066[3] 2.705[5]

YD [48] +1 -11.000 2.0751[3]

Π(2s − 2p) -1 5.5041 1.4074[3] 4.8629[4] 9.1839[5]

MSD [7] -1 5.503 1.401[3] 4.756[4]

YD [48] -1 -5.500 1.4061[3]

+1 -5.5041 1.4074[3] 1.0316[5] 8.9295[6]

MSD [7] +1 -5.5041 1.401[3] 1.021[5]

YD [48] +1 -5.500 1.4061[3]

Σ(2s − 3p) -1 -3.3314[-2] 3.8236[4] 2.3183[7] 1.1180[10]

MSD [7] -1 -3.364[-2] 3.814[4] 2.702[7]

+1 3.3314[-2] 3.8236[4] 2.4870[7] 1.0769[10]

MSD [7] +1 3.364[-2] 3.814[4] 2.533[7]

Π(2s − 3p) -1 1.6657[-2] 2.0282[4] -3.7222[5] 1.3252[8]

MSD [7] -1 1.682[-2] 2.022[4] 3.714[5]

+1 -1.6657[-2] 2.0282[4] 7.8976[5] 1.5536[8]

MSD [7] +1 -1.682[-2] 2.002[4] 1.535[6]

Σ(2s − 4p) -1 -2.5533[-2] 1.2982[5] 2.9926[8] 3.8300[11]

+1 2.5533[-2] 1.2982[5] 2.9918[8] 3.8302[11]

Π(2s − 4p) -1 1.2766[-2] 7.2669[4] 8.2886[6] 4.7487[9]

+1 -1.2766[-2] 7.2669[4] 8.3348[6] 4.7521[9]

Σ(3s − 2p) -1 -5.91546 9.5385[3] 1.6420[7] 4.7116[9]

+1 5.91546 9.5385[3] -1.2272[6] 8.1476[7]

Π(3s − 2p) -1 2.95773 1.4098[4] 3.3706[5] 3.3236[8]

+1 -2.95773 1.4098[4] 3.8905[6] 6.3272[8]

Σ(4s − 2p) -1 -0.42050 4.7234[4] 8.3742[7] 9.0090[10]

+1 0.42050 4.7234[4] 7.0882[7] 9.0968[10]

Π(4s − 2p) -1 0.21025 5.1569[4] 4.5252[7] 4.7677[10]

+1 +0.21025 5.1569[4] 4.9604[7] 4.6483[10]
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TABLE VI: The dispersion coefficients C5, C6, C8, and C10 for the interactions between the 2s

and nd states of Li. The numbers in the square brackets denote powers of ten.

Molecule β C5 C6 C8 C10

Σ(2s − 3d) -1 451.43 2.0396[4] 1.6282[7] 8.6460[9]

MSD [7] -1 449.8 2.039[4]

+1 -451.43 -1.6635[4] 1.2269[7] 8.7395[9]

MSD [7] +1 -449.8 -1.663[4]

Π(2s − 3d) -1 -300.95 -9.7192[3] 5.8684[6] 5.3251[8]

MSD [7] -1 -299.9 -9.718[3]

+1 300.95 1.4968[4] 7.0630[6] 9.1099[7]

MSD [7] +1 299.9 1.496[4]

∆(2s − 3d) -1 75.238 1.1027[4] -7.0083[5] -1.8995[7]

MSD [7] -1 74.97 1.102[4]

+1 -75.238 -1.3170[3] 3.7950[5] -3.1047[7]

MSD [7] +1 -74.97 -1.323[3]

Σ(2s − 4d) -1 79.581 1.0408[5] 2.6590[8] 4.4512[11]

MSD [7] -1 79.19 7.733[4]

+1 -79.581 1.0302[5] 2.6583[8] 4.4505[11]

MSD [7] +1 -79.19 7.626[4]

Π(2s − 4d) -1 -53.054 9.1358[4] 9.1477[7] 2.0677[10]

MSD [7] -1 -52.79 6.641[4]

+1 53.054 9.2063[4] 9.1512[7] 2.0700[10]

MSD [7] +1 52.79 6.712[4]

∆(2s − 4d) -1 13.264 5.6359[4] -1.4539[7] -7.7159[8]

MSD [7] -1 13.20 3.668[4]

+1 -13.264 5.6006[4] -1.4563[7] -7.6738[8]

MSD [7] +1 -13.20 3.650[4]
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TABLE VII: The dispersion coefficients C5, C6, C8, and C10 for the interactions between 2p and

np states for Li. The numbers in the square brackets denote powers of ten.

Molecule β γ C5 C6 C8 C10

2p-2p

Σ+
1 +1 +1 0 2.8463[4] 8.7799[5] 1.3019[8]

MSD [8] +1 +1 0 2.8451[4] 7.8764[5]

Σ+
2 +1 +1 -1.0546[3] -4.0780[2] 8.6071[6] 9.0917[8]

MSD [8] +1 +1 -1.0478[3] 2.4263[4] 8.4351[6]

Σ− +1 -1 0 1.3522[3] -1.0297[4] -1.7416[6]

MSD [8] +1 -1 0 1.3447[3] -1.0569[4]

Π +1 -1 0 3.1979[4] 1.0097[6] 1.1162[8]

MSD [8] +1 -1 0 3.1965[4] 1.0069[6]

Π +1 +1 7.0305[2] 5.2059[3] -4.3753[5] 2.0893[8]

MSD [8] +1 +1 6.9855[2] 5.195[3] -4.3598[5]

∆ +1 -1.7576[2] 1.4739[4] -6.2969[5] 7.7614[6]

MSD [8] +1 -1.7463[2] 1.4730[4] -6.3043[5]

2p-3p

Σ+
1 -1 +1 0 6.8307[3] 1.3017[7] 1.5639[9]

Σ+
1 +1 +1 0 2.6877[4] 5.1316[7] 4.7984[9]

Σ+
2 -1 +1 -5.7690[3] 3.2794[3] 6.0005[6] 1.5758[10]

Σ+
2 +1 +1 -7.3785[3] 4.7820[4] 3.1740[7] 4.0435[10]

Σ− -1 -1 0 1.9168[4] 5.7425[6] -2.9571[7]

Σ− +1 -1 0 1.1218[4] 1.4093[6] 9.6763[6]

Π -1 -1 0 2.9638[4] 5.8203[7] 4.5886[9]

Π -1 +1 3.8460[3] 1.4526[4] 1.1276[7] -7.2649[7]

Π +1 -1 0 7.3344[3] 1.6543[7] 2.0616[9]

Π +1 +1 4.9190[3] 2.6721[4] 2.2359[7] -3.9251[9]

∆ -1 -9.6151[2] 7.6231[3] 3.9224[6] -2.4591[9]

∆ +1 -1.2298[3] 2.0627[4] 1.8111[7] -6.0144[9]

TABLE VIII: The electronic wave functions for Li2 molecules in a ns-m` configuration. The

notation |n`
m〉 indicates the radial quantum number n, the orbital angular momentum ` and its

projection m.

Asymptote M β = 1 β = −1 Representation

ns-ms 0 1Σ+
g -3Σ+

u
1Σ+

u -3Σ+
g

(|n0
0m0

0〉+β|m0
0n0

0〉)√
2(1+δnm)

ns-mp 1 1Πu-3Πg
1Πg-

3Πu
1√
2

(

|n0
0m

1
1〉 + β|m1

1n
0
0〉

)

ns-mp 0 1Σ+
u -3Σ+

g
1Σ+

g -3Σ+
u

1√
2

(

|n0
0m

1
0〉 + β|m1

0n
0
0〉

)

ns-md 2 1∆g-
3∆u

1∆u-3∆g
1√
2

(

|n0
0m

2
2〉 + β|m2

2n
0
0〉

)

ns-md 1 1Πg-
3Πu

1Πu-3Πg
1√
2

(

|n0
0m

2
1〉 + β|m2

1n
0
0〉

)

ns-md 0 1Σ+
g -3Σ+

u
1Σ+

u -3Σ+
g

1√
2

(

|n0
0m

2
0〉 + β|m2

0n
0
0〉

)
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TABLE IX: The electronic wave functions for Li2 molecules in a np-mp configuration. The notation

|n`
m〉 indicates the radial quantum number n, the orbital angular momentum ` and its projection

m. Only states with β = +1 survive for the np-np configuration. The two Σ+ combinations are

distinguished by an additional row entry.

Asymptote M β = 1 β = −1 Representation

np-mp 2 1∆g-3∆u
1∆u-3∆g

1√
2(1+δnm)

(

|n1
1m1

1〉 + β|m1
1n1

1〉
)

np-mp 1 1Πg-3Πu
1Πu-3Πg

√
1+δnm

2

(

|n1
0m1

1〉 + β|m1
1n1

0〉 + γ(1 − δnm)[|n1
1m1

0〉 + β|m1
0n1

1〉]
)

np-mp Σ+
1 0 1Σ+

g -3Σ+
u

1Σ+
u -3Σ+

g
1√

3(1+δnm)
[|n1

0m1
0〉 + β|m1

0n1
0〉] + 1√

12(1+δnm)
[|n1

1m1
−1〉 + β|m1

−1n1
1〉 + |n1

−1m1
1〉 + β|m1

1n1
−1〉]

np-mp Σ+
2 0 1Σ+

g -3Σ+
u

1Σ+
u -3Σ+

g
−1√

6(1+δnm)
[|n1

0m1
0〉 + β|m1

0n1
0〉] + 1√

6(1+δnm)
[|n1

1m1
−1〉 + β|m1

−1n1
1〉 + |n1

−1m1
1〉 + β|m1

1n1
−1〉]

np-mp 0 1Σ−
g -3Σ−

u
1Σ−

u -3Σ−
g

1

2
√

(1+δnm)
[|n1

−1m1
1〉 + β|m1

1n1
−1〉 − |n1

1m1
−1〉 − β|m1

−1n1
1〉]

TABLE X: The angular coefficients multiplying the radial sums for the C6 and C8 dispersion

coefficient for the ns-md case. The contribution of each term is obtained by multiplying the radial

sum with the angular coefficient. For reasons of compactness the energy denominator is omitted.

Σ(β) Π(β) ∆(β) Radial sum rule

C6
2
5

1
3

2
15

(na0|r|ns1)2(nb2|r|nt1)2

16
35

3
7

12
35

(na0|r|ns1)2(nb2|r|nt3)2

2
5

−4
15

2
15

(na0|r|ns1)(ns1|r|nb2)(na0|r|nt1)(nt1|r|nb2)

C8
3
5

1
5

0 (na0|r|ns1)2(nb2|r2|nt0)2

2
7

10
49

18
49

(na0|r|ns1)2(nb2|r2|nt2)2

14
25

12
25

6
25

(na0|r2|ns2)2(nb2|r|nt1)2

24
35

146
245

17
49

(na0|r|ns1)2(nb2|r2|nt4)2

117
175

111
175

93
175

(na0|r2|ns2)2(nb2|r1|nt3)2

24
35

−8
35

−4
35

(na0|r|ns1)2(nb2|r|nt1)(nt1|r3|nb2)
88
105

16
45

−244
315

(na0|r|ns1)2(nb2|r|nt3)(nt3|r3|nb2)
24
35

β −8
35

β −4
35

β (na0|r|ns1)(ns1|r|nb2)(na0|r|nt1)(nt1|r3|nb2)
4
7
β −12

35
β 12

35
β (na0|r|ns1)(ns1|r|nb2)(na0|r2|nt2)(nt2|r2|nb2)

24
35

β −8
35

β −4
35

β (na0|r|ns1)(ns1|r|nb2)(na0|r3|nt3)(nt3|r|nb2)
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TABLE XI: The angular coefficients multiplying the radial sums for dispersion coefficients C6 and

C8 for the nap-nbp case. The angular coefficients when na = nb are easily obtained by setting β = 1

and dividing by 2. For reasons of compactness the energy denominator is omitted.

Σ+
1 (β) Σ+

2 (β) Σ−(β) Π(β, +1) Π(β,−1) ∆(β) Radial sum rule

C6

0 2
3 0 0 0 0 (na1|r|ns0)

2(nb1|r|nt0)
2

4
15

2
15 0 1

30
3
10

2
15 (na1|r|ns0)

2(nb1|r|nt2)
2

4
15

2
15 0 1

30
3
10

2
15 (na1|r|ns2)

2(nb1|r|nt0)
2

14
75

38
75

8
25

31
75

1
5

16
75 (na1|r|ns2)

2(nb1|r|nt2)
2

0 2
3β 0 0 0 0 (na1|r|ns0)(ns0|r|nb1)(na1|r|nt0)(nt0|r|nb1)

8
15β 4

15β 0 1
15β −3

5 β 4
15β (na1|r|ns0)(ns0|r|nb1)(na1|r|nt2)(nt2|r|nb1)

14
75β 38

75β −8
25 β 31

75β −1
5 β 16

75β (na1|r|ns2)(ns2|r|nb1)(na1|r|nt2)(nt2|r|nb1)

C8

0 18
25 0 6

25 0 0 (na1|r|ns0)
2(nb1|r2|nt1)

2

0 18
25 0 6

25 0 0 (na1|r2|ns1)
2(nb1|r|nt0)

2

12
25

21
125

9
125

3
25

63
125

27
125 (na1|r2|ns1)

2(nb1|r|nt2)
2

12
25

21
125

9
125

3
25

63
125

27
125 (na1|r|ns2)

2(nb1|r2|nt1)
2

3
7

24
175 0 3

175
3
7

6
35 (na1|r2|ns3)

2(nb1|r|nt0)
2

3
7

24
175 0 3

175
3
7

6
35 (na1|r|ns0)

2(nb1|r2|nt3)
2

36
175

648
875

342
875

3
5

219
875

246
875 (na1|r|ns2)

2(nb1|r2|nt3)
2

36
175

648
875

342
875

3
5

219
875

246
875 (na1|r2|ns3)

2(nb1|r|nt2)
2

0 24
35 0 −8

35 0 −4
35 (na1|r|ns0)

2(nb1|r|nt2)(nt2|r3|nb1)

0 24
35 0 −8

35 0 −4
35 (na1|r|ns2)(ns2|r3|na1)(nb1|r|nt0)

2

0 96
175

−72
175

4
25

36
175

−76
175 (na1|r|ns2)(ns2|r3|na1)(nb1|r|nt2)

2

0 96
175

−72
175

4
25

36
175

−76
175 (na1|r|ns2)

2(nb1|r|nt2)(nt2|r3|nb1)

0 24
35β 0 −8

35 β 0 −4
35 β (na1|r|ns0)(ns0|r|nb1)(na1|r3|nt2)(nt2|r|nb1)

0 24
35β 0 −8

35 β 0 −4
35 β (na1|r|ns0)(ns0|r|nb1)(na1|r|nt2)(nt2|r3|nb1)

0 96
175β 72

175β 4
25β −36

175 β −76
175 β (na1|r|ns2)(ns2|r|nb1)(na1|r|nt2)(nt2|r3|nb1)

0 96
175β 72

175β 4
25β −36

175 β −76
175 β (na1|r|ns2)(ns2|r|nb1)(na1|r3|nt2)(nt2|r|nb1)

24
25β 42

125β −18
125 β 6

25β −126
125 β 54

125β (na1|r2|ns1)(ns1|r2|nb1)(na1|r|nt2)(nt2|r|nb1)
6
7β 48

175β 0 6
175β −6

7 β 12
35β (na1|r|ns0)(ns0|r|nb1)(na1|r2|nt3)(nt3|r2|nb1)

72
175β 1296

875 β −684
875 β 6

5β −438
875 β 492

875β (na1|r|ns2)(ns2|r|nb1)(na1|r2|nt3)(nt3|r2|nb1)

0 36
25β 0 12

25β 0 0 (na1|r|ns0)(ns0|r|nb1)(na1|r2|nt1)(nt1|r2|nb1)

24


