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The Configuration Interaction (CI) method using a very large Laguerre orbital basis is applied
to the calculation of the He ground state. The largest calculations included a minimum of 35
radial orbitals for each ` ranging from 0 to 12 resulting in basis sets in excess of 400 orbitals. The
convergence of the energy and electron-electron δ-function with respect to J (the maximum angular
momenta of the orbitals included in the CI expansion) were investigated in detail. Extrapolations
to the limit of infinite in angular momentum using expansions of the type ∆XJ = AE(J + 1

2
)−p +

BE(J + 1

2
)−p−1 + . . ., gave an energy accurate to 10−7 Hartree and a value of 〈δ〉 accurate to about

0.5%. Improved estimates of 〈E〉 and 〈δ〉, accurate to 10−8 Hartree and 0.01% respectively, were
obtained when extrapolations to an infinite radial basis were done prior to the determination of the
J → ∞ limit. Round-off errors were the main impediment to achieving even higher precision since
determination of the radial and angular limits required the manipulation of very small energy and
〈δ〉 differences.

PACS numbers: 31.10.+z, 31.15.Pf, 31.25.Eb

I. INTRODUCTION

Large configuration interaction (CI) calculations of the
helium ground state are performed here in order to more
precisely elucidate the convergence properties of the CI
expansion for this atom. The general properties of the
CI expansion have been known since the seminal work of
Schwartz [1], which provided the underlying foundation
for the later analytic and computational investigations
[2–8]. The CI expansion using single center orbitals is
slowly convergent with respect to J , the maximum an-
gular momentum of any orbital included in the CI ex-
pansion. In particular, the leading term to the energy
increment is expected to behave at high J as:

∆EJ = 〈E〉J − 〈E〉J−1 ≈
AE

(J + 1

2
)4

. (1)

Although there have been a number of very large CI
calculations performed on helium, all of the earlier calcu-
lations using analytic basis sets treat the higher J con-
tributions to the energy with less precision than the low
J contributions. Typically, the number of radial orbitals
for the high ` are smaller than the number of low `. The
justification for this is that the high ` partial waves make
a smaller contribution to the energy and other expecta-
tion values of than the low ` orbitals. At first sight this
approach would seem reasonable for obtaining estimates
of the total energy. However, this approach does lead
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to problems when studying the convergence properties of
CI expansion itself. Here it is necessary to ensure that
the successive contributions to the energy are obtained
with the same relative accuracy and this can hardly be
guaranteed with a radial basis that decreases in size as `
increases. Indeed, the evidence suggests that the dimen-
sion of the radial basis should be increased as J increases
if the relative accuracy of the energy is to be maintained
[9, 10].

The convergence problems present in CI calculations
of atomic and molecular structure are also present in a
much severe manner in CI calculations of the positron-
atom problem. The CI method has recently been ap-
plied to the study of positronic atoms (electronically sta-
ble states consisting of a positron bound to an atom)
[11–20] and also to positron-atom scattering states [21–
23]. The attractive electron-positron interaction leads
to the formation of a Ps cluster (i.e. something akin to
a positronium atom) in the outer valence region of the
atom [12, 19, 24, 25].

The accurate representation of a Ps cluster using only
single particle orbitals centered on the nucleus requires
the inclusion of orbitals with much higher angular mo-
menta than a roughly equivalent electron-only calcula-
tion [11, 12, 26, 27]. In the most extreme case so far
considered, namely e+Li, a calculation with J = 30
was required before the energy had decreased enough
to establish binding. Given that helium is described
as slowly convergent [1], one struggles to find an adjec-
tive that could characterize the convergence properties of
positronic systems!

The two most important expectation values for
positronic systems are the energy, and the rate for
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electron-positron annihilation. The annihilation rate,
which is proportional to the expectation of the electron-
positron δ-function, has the inconvenient property that it
is even more slowly convergent than the energy with re-
spect to orbital angular momentum. One has successive
increments decreasing at high J according to [7, 15, 28]:

∆ΓJ = 〈Γ〉J − 〈Γ〉J−1 ≈
AΓ

(J + 1

2
)2

, (2)

To put this in perspective, it would take a calculation
with J ≈ 250 to recover 99% of the PsH annihilation
rate [10]. In addition to the slow convergence with J , the
δ-function operator also exhibits very slow convergence
with respect to the radial basis [10].

In the present work, large basis CI calculations of the
He ground state are performed in order to more exactly
understand the convergence of the CI expansion. Since
the properties of the He ground state are known to high
precision it is a very useful laboratory system with which
to test methods of extrapolating the radial and partial
wave expansions to completion. The insights obtained
from helium should then be applicable to positronic sys-
tems and also possibly give additional guidance about
how to approach purely electronic systems. Besides look-
ing at the energy, the convergence of the CI expansion of
the electron-electron δ-function expectation value is also
studied due to its relation with the electron-positron an-
nihilation operator (which is also a δ-function). It should
be noted that the δ-function operator also appears in the
Breit-Pauli relativistic correction as the two-body Dar-
win interaction [7, 29]. The present work builds on an
earlier investigation that studied the convergence of the
radial basis in a simplified model of the helium atom
which only included l = 0 orbitals [30].

II. THE CI METHOD AND CONVERGENCE

PROPERTIES

The CI wave function in a single-center basis is a linear
combination of anti-symmetrised two-electron states with
the usual Clebsch-Gordan coupling coefficients,

|Ψ;LS〉 =
∑

i,j

cij Aij 〈`imi`jmj |LML〉 〈 1

2
µi

1

2
µj |SMS〉

× φi(r1)φj(r2) . (3)

The functions φ(r) are single electron orbitals written as
a product of a radial function and a spherical harmonic:

φ(r) = P (r)Y`m(r̂) . (4)

All observable quantities can be defined symbolically as

〈X〉J =

J
∑

L=0

∆XL , (5)

where ∆XJ is the increment to the observable that oc-
curs when the maximum orbital angular momentum is
increased from J − 1 to J , e.g.

∆XJ = 〈X〉J − 〈X〉J−1 . (6)

Hence, one can write formally

〈X〉∞ = 〈X〉J +
∞
∑

L=J+1

∆XL . (7)

The first term on the right hand side will be determined
by explicit computation while the second term must be
estimated. The problem confronting all single center cal-
culations is that part of 〈X〉∞ arises from terms with
`-values that are not included in the largest explicit cal-
culation. The two expectation values that were inves-
tigated were that of the energy 〈E〉∞ and the electron-
electron δ-function, 〈δ〉∞ = 〈δ(r1 − r2)〉

∞. For helium,
terms with ` > 2 contribute only 0.033% of the total en-
ergy. For purely electronic systems these higher ` terms
make a small (but slowly convergent) correction to the
total energy and other expectation values.

The extrapolation schemes used later in this paper
have their basis in the work of Schwartz [1], Hill [3] and
Kutzelnigg and associates [4, 7]. Analytic work indicates
that the energy increments are given by

∆EJ =
AE

(J + 1

2
)4

+
BE

(J + 1

2
)5

+
CE

(J + 1

2
)6

+ . . . (8)

where

AE = −6π2

∫

|Ψ(r, r, 0)|2r5dr = −0.074226 (9)

BE = −
48π

5

∫

|Ψ(r, r, 0)|2r6dr = −0.030989 (10)

given a two-body wave function Ψ(r1, r2, (r1 − r2)). No
expressions for CE have been presented. At large J , one
expects the energy increments to be well described by
eq. (1).

For the δ-function one can write

∆δJ =
Aδ

(J + 1

2
)2

+
Bδ

(J + 1

2
)3

+
Cδ

(J + 1

2
)4

+ . . . (11)

where Aδ is believed [7] to be

Aδ = −4π

∫

|Ψ(r, r, 0)|2r3dr = −0.04287 (12)

(Ottschofski and Kutzelnigg give a formula similar to
this for the leading relativistic contribution to the en-
ergy of two-electron atoms. We have assumed the slow
Aδ/(J + 1

2
)2 convergence is due to the two-electron Dar-

win term). It should be noted that Gribakin and Ludlow
[28] have also derived an expression equivalent to eq. (12)
in the context of positron annihilation. The numerical
value was taken from a variational wave function of the
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TABLE I: Results of the present set of 20LTO and 35LTO CI calculations of He giving the energy 〈E〉J and delta-function
〈δ〉J expectation values as a function of J (all energies are given in Hartree, while 〈δ〉J is in a3

0). The total number of electron
orbitals is Norb while the LTO exponent for ` = J is listed in the λ column. The results in the three 〈E〉∞ rows use inverse
power series of different length to estimate the J → ∞ extrapolation.

20LTO 35LTO

J λ Norb 〈E〉J 〈δ〉J λ Norb 〈E〉J 〈δ〉J

0 4.8 20 -2.879 028 507 0.155 789 346 8.6 44 -2.879 028 760 0.155 766 769

1 7.8 40 -2.900 515 873 0.128 501 540 11.6 80 -2.900 516 228 0.128 460 082

2 10.1 60 -2.902 766 378 0.120 923 186 14.4 115 -2.902 766 823 0.120 862 126

3 12.1 80 -2.903 320 527 0.117 264 315 17.2 150 -2.903 321 045 0.117 183 496

4 14.0 100 -2.903 517 973 0.115 104 494 19.2 185 -2.903 518 552 0.115 004 651

5 15.5 120 -2.903 605 022 0.113 681 991 21.2 220 -2.903 605 654 0.113 563 078

6 17.1 140 -2.903 649 142 0.112 676 622 22.8 255 -2.903 649 820 0.112 539 353

7 18.7 160 -2.903 673 821 0.111 930 245 24.8 290 -2.903 674 539 0.111 775 243

8 20.1 180 -2.903 688 677 0.111 355 981 26.5 325 -2.903 689 430 0.111 183 690

9 21.5 200 -2.903 698 142 0.110 901 652 28.0 360 -2.903 698 926 0.110 712 681

10 22.9 220 -2.903 704 451 0.110 534 160 29.5 395 -2.903 705 263 0.110 329 155

11 24.2 240 -2.903 708 815 0.110 231 642 31.0 430 -2.903 709 652 0.110 011 117

12 25.5 260 -2.903 711 927 0.109 978 870 32.5 465 -2.903 712 786 0.109 743 369

Exact [31] -2.903 724 377 034 0.106 345 371

〈E〉∞ and 〈δ〉∞ extrapolations

Method 1 -2.903 723 421 0.106 943 -2.903 724 362 0.106 527

Method 2 -2.903 723 252 0.107 178 -2.903 724 249 0.106 630

Method 3 -2.903 723 205 0.107 334 -2.903 724 240 0.106 698

He ground state with a basis of 250 explicitly correlated
gaussians and an energy of -2.9037243752 Hartree.

As can be imagined there have been a number of very
large CI calculations upon the helium ground state that
have addressed the convergence issue [2, 4–6, 8, 32].
These calculations can be roughly divided into two
classes, those that represented the radial wave function
on a grid or used piecewise polynomials [2, 5, 32], and
those that describe the radial wave function as a linear
combination of analytic basis functions [4, 6, 8]. The first
systematic calculation was the seminal investigation by
Carroll, Silverstone and Metzger (CSM) [2] who used a
piece-wise polynomial basis to construct a natural orbital
expansion. Besides performing some very large calcula-
tions they also estimated the completeness limit of their
radial basis. The largest explicit calculation by CSM
will be termed the CSM calculation while the extrapo-
lated calculation will be denoted as CSM∞. Despite their
importance, these calculations have been largely super-
seded by the grid-based calculation of Salomonson and
Oster (SO) [32] and the B-spline calculation of Decleva,
Lisini and Venuti (DLV) [5]. The SO calculation obtained
energies, 〈E〉J accurate to about 10−8 Hartree by extrap-
olating the radial basis to the variational limit. This ex-
treme level of accuracy has not been achievable with the
three calculations that used Slater Type Orbitals (STO)
to represent the radial wave function [4, 6, 8]. Linear de-

pendence problems become severe as the basis set is ex-
panded toward completeness. Indeed, recourse was made
to very high precision (REAL*24) arithmetic in the Sims
and Hagstrom (SH) calculation [8] which is the largest
calculation of this type so far reported.

III. THE PRESENT CI CALCULATIONS

The present calculations use a basis set consisting of
Laguerre Type Orbitals (LTOs) [15, 16, 33, 34]. The
LTOs of a given ` are chosen to have a common exponen-
tial parameter which means they are automatically or-
thogonal. Hence, the basis can be expanded toward com-
pleteness without causing any linear dependence prob-
lems. The CI basis can be characterized by the index
J , the maximum orbital angular momentum of any sin-
gle electron orbital included in the expansion of the wave
function. It should be noted that all matrix elements
were evaluated using gaussian quadrature even though
the basis functions have an analytical form [15].

Three sets of calculations have been performed for the
He ground state. In the first set, there were 20 LTOs
per ` with the largest calculation including orbitals up
to ` = 12. The LTO exponents for a given ` were the
same and the values of the exponents were optimized in
a quasi-perturbative fashion. The exponents for ` = 0, 1
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TABLE II: Results of the 35LTO∗ and 35LTO∗
∞ CI calculations of He for the 〈E〉J and 〈δ〉J expectation values as a function of

J (all energies are given in Hartree, while 〈δ〉J is in a3

0). The total number of electron orbitals is Norb while the LTO exponent
for ` = J is listed in the λ column. The results in the three 〈E〉∞ rows use inverse power series of different lengths to estimate
the J → ∞ extrapolation.

35LTO∗ 35LTO∗
∞

J λ Norb 〈E〉J 〈δ〉J 〈E〉J 〈δ〉J

0 4.8 35 -2.879 028 716 0.155 774 273 -2.879 028 766 0.155 763 804

1 7.8 70 -2.900 516 172 0.128 472 171 -2.900 516 246 0.128 451 020

2 10.1 105 -2.902 766 757 0.120 878 722 -2.902 766 852 0.120 845 876

3 12.1 140 -2.903 320 971 0.117 204 759 -2.903 321 084 0.117 159 843

4 14.0 175 -2.903 518 472 0.115 030 202 -2.903 518 601 0.114 973 165

5 15.5 210 -2.903 605 568 0.113 593 010 -2.903 605 710 0.113 523 543

6 17.1 245 -2.903 649 729 0.112 573 360 -2.903 649 884 0.112 491 488

7 18.7 280 -2.903 674 443 0.111 813 216 -2.903 674 609 0.111 719 074

8 20.1 315 -2.903 689 330 0.111 225 558 -2.903 689 506 0.111 119 165

9 21.5 350 -2.903 698 823 0.110 758 273 -2.903 699 007 0.110 639 719

10 22.9 385 -2.903 705 157 0.110 378 300 -2.903 705 349 0.110 247 727

11 24.2 420 -2.903 709 543 0.110 063 722 -2.903 709 741 0.109 921 236

12 25.5 455 -2.903 712 675 0.109 799 333 -2.903 712 882 0.109 645 079

〈E〉∞ and 〈δ〉∞ Extrapolations

Method 1 -2.903 724 243 0.106 881 -2.903 724 476 0.106 328

Method 2 -2.903 724 123 0.106 757 -2.903 724 378 0.106 341

Method 3 -2.903 724 109 0.106 847 -2.903 724 384 0.106 334

and 2 orbitals were optimized in a CI calculation with all
60 orbitals. The exponents for ` > 2 were optimized sep-
arately for each ` with CI calculations that also included
the ` = 0, 1, 2 orbitals. Once the exponents were opti-
mized, a sequence of calculations to give the 〈E〉J and
〈δ〉J for successive J were carried out. The basis is de-
noted the 20LTO basis and the results of the calculations
with this basis are reported in Table I.

The second set of calculations were much larger. Here
there were 35 LTOs per ` with the exception of ` = 0 and
1 where respectively 44 and 36 LTOs were used respec-
tively. The orbital exponents were optimized for each `
in a manner similar to that described above and the cal-
culations were taken to J = 12. A total of 465 single
electron orbitals were included in the largest calculation,
which required the diagonalization of a hamiltonian ma-
trix of dimension 8586. This calculation was an example
of a very large explicit calculation. The basis is denoted
the 35LTO basis and the results of the calculations with
this basis are reported in Table I.

The idea behind the third calculation was to exploit
extrapolation techniques to estimate the variational limit
for each partial wave. A sequence of calculations with 32,
33, 34 and 35 LTOs per ` was done for a basis that was de-
fined with the same exponential parameters as the 20LTO
calculation. The number of basis functions were varied
so that all partial waves had the same basis dimension.
Optimizing the LTO basis for the largest radial basis has

been shown to result in distortions in the convergence
pattern with respect to the number of radial basis func-
tions. This can be avoided if the basis is optimized in a
basis that has at least 10 fewer LTOs per ` than the ac-
tive calculation [30]. The variational limit for the radial
basis can be estimated by fitting the increments to 〈E〉
and 〈δ〉 to the inverse series [30]

∆EN =
aE

N7/2
+

bE

N8/2
+

cE

N9/2
+ . . . (13)

∆δN =
aδ

N5/2
+

bδ

N6/2
+

cδ

N7/2
+ . . . (14)

It is possible to estimate the N → ∞ limits for the radial
basis once the aE , aδ, bE , . . . coefficients have been de-
termined. A two-term series was used for both eqs. (13)
and (14). It would have been preferable to use three-
term series but the impact of round-off error rendered
this impractical. The basis for this set of calculations is
denoted the 35LTO∗ basis, while the basis including the
N → ∞ correction is termed the 35LTO∗

∞ basis. The en-
ergies and expectation values for these two calculations
are listed in Table II.
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TABLE III: Comparison of different CI calculations of the He atom ground state energy 〈E〉J as a function of J . To aid
interpretation, the ∆EJ energy differences are also tabulated. The energies of the SO∞, CSM∞ and 35LTO∗

∞ are the estimated
energies in an infinite radial basis. The 35LTO∗

∞ 〈E〉J and ∆EJ are the smoothed values. The DLV energies for J ≥ 5 are
obtained by adding the ∆EJ from Table IV of Ref. [5] to their estimate of 〈E〉4.

J 35LTO 35LTO∗
∞ SH [8] CSM∞ [2] SO∞ [32] DLV [5]

〈E〉0 -2.879 028 760 -2.879 028 766 -2.879 028 757 -2.879 028 765 -2.879 028 77 -2.879 028 767

〈E〉1 -2.900 516 228 -2.900 516 246 -2.900 516 220 -2.900 516 220 -2.900 516 25 -2.900 516 245

〈E〉2 -2.902 766 823 -2.902 766 853 -2.902 766 805 -2.902 766 822 -2.902 766 85 -2.902 766 849

〈E〉3 -2.903 321 045 -2.903 321 084 -2.903 321 016 -2.903 321 079 -2.903 321 09 -2.903 321 079

〈E〉4 -2.903 518 552 -2.903 518 601 -2.903 518 465 -2.903 518 598 -2.903 518 60 -2.903 518 600

〈E〉5 -2.903 605 654 -2.903 605 710 -2.903 605 515 -2.903 605 71 -2.903 605 72 -2.903 605 97

〈E〉6 -2.903 649 820 -2.903 649 884 -2.903 649 644 -2.903 649 88 -2.903 649 89 -2.903 650 24

〈E〉7 -2.903 674 539 -2.903 674 609 -2.903 674 328 -2.903 674 59 -2.903 674 62 -2.903 675 01

〈E〉8 -2.903 689 430 -2.903 689 505 -2.903 689 193 -2.903 689 47 -2.903 689 52 -2.903 689 93

〈E〉9 -2.903 698 926 -2.903 699 006 -2.903 698 656 -2.903 698 95 -2.903 699 02 -2.903 699 44

〈E〉10 -2.903 705 263 -2.903 705 349 -2.903 704 974 -2.903 705 27 -2.903 705 37 -2.903 705 79

〈E〉11 -2.903 709 652 -2.903 709 742 -2.903 709 325 -2.903 709 64 -2.903 710 19

〈E〉12 -2.903 712 786 -2.903 712 882 -2.903 712 433 -2.903 713 33

∆EJ increments

∆E1 -0.021 487 468 -0.021 487 480 -0.021 487 463 -0.021 487 455 -0.021 487 48 -0.021 487 478

∆E2 -0.002 250 594 -0.002 250 606 -0.002 250 585 -0.002 250 662 -0.002 250 61 -0.002 250 604

∆E3 -0.000 554 223 -0.000 554 232 -0.000 554 211 -0.000 554 197 -0.000 554 23 -0.000 554 230

∆E4 -0.000 197 507 -0.000 197 516 -0.000 197 449 -0.000 197 519 -0.000 197 52 -0.000 197 521

∆E5 -0.000 087 102 -0.000 087 109 -0.000 087 050 -0.000 087 112 -0.000 087 11 -0.000 087 37

∆E6 -0.000 044 166 -0.000 044 174 -0.000 044 129 -0.000 044 17 -0.000 044 18 -0.000 044 27

∆E7 -0.000 024 719 -0.000 024 725 -0.000 024 683 -0.000 024 71 -0.000 024 73 -0.000 024 77

∆E8 -0.000 014 891 -0.000 014 896 -0.000 014 866 -0.000 014 88 -0.000 014 90 -0.000 014 92

∆E9 -0.000 009 496 -0.000 009 501 -0.000 009 463 -0.000 009 48 -0.000 009 50 -0.000 009 51

∆E10 -0.000 006 337 -0.000 006 342 -0.000 006 318 -0.000 006 32 -0.000 006 35 -0.000 006 35

∆E11 -0.000 004 389 -0.000 004 394 -0.000 004 351 -0.000 004 37 -0.000 004 40

∆E12 -0.000 003 134 -0.000 003 139 -0.000 003 108 -0.000 003 14

IV. INVESTIGATION OF THE PARTIAL WAVE

SEQUENCE

The validity of these results can be tested by exami-
nation of the energy increments of large CI calculations
of helium. Besides the present calculations, data from a
number of previous CI calculations have been used.

Table III gives the energies of the present 35LTO and
35LTO∗

∞ basis sets, along with the SH, CSM∞, SO∞ and
DLV calculations. These same sets of data are also pre-
sented as energy differences between consecutive calcu-
lations ∆EJ . The energies of the SH calculation, which
used the even-tempered STO basis, are consistently the
worst, and are 3 × 10−7 Hartree larger than the 35LTO
calculation at J = 12. Even though CSM∞ does attempt
to achieve the variational limit for each J , in reality it is
only about as good as the 35LTO calculation. Indeed for
J > 7, the CSM∞ values of ∆EJ were smaller than those
of the 35LTO calculation. The present 35LTO∗

∞, SO∞

and DLV calculations are in agreement to 10−8 Hartree
(or better) for J ≤ 4. This is expected, since all three
calculations are large and use extrapolation techniques
to achieve the variational limit. The energy difference
between the 35LTO and 35LTO∗

∞ energies gives an indi-
cation of the incompleteness of the 35LTO basis and by
J = 12 the difference is 0.96 × 10−7 Hartree.

The good agreement between the 35LTO∗
∞, SO∞ and

DLV energies is not present for J ≥ 5. Although the
35LTO∗

∞ and SO∞ energies generally agree at the level
of 10−8 Hartree, it is seen the DLV ∆EJ increments are
larger than these two other calculations. For example,
DLV give ∆E5 = 8.737 × 10−5 Hartree which is about
2 × 10−7 Hartree larger than the 35LTO∗

∞ and SO∞ in-
crements. It has also been noticed that DLV do overstate
the accuracy of their calculation, they assert an accuracy
of 7.8×10−8 Hartree. However, this accuracy is based on
a calculation which gives 〈E〉3 = −2.903319811 Hartree
(2nd column of Table IV of [5]), and this energy is in
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FIG. 1: The exponents pE as a function of J for the different
CI calculations of the He ground state energy as listed in
Table III.

error by 1.3 × 10−6 Hartree!

A. Scrutiny of the partial wave increments

A useful way to scrutinize the partial wave series is to
assume a power law decay of the form

∆XJ ≈
AE

(J + 1

2
)p

, (15)

and determine the value of p for a succession of three
〈X〉J values using

p = ln

(

∆XJ−1

∆XJ

) /

ln

(

J + 1

2

J − 1

2

)

. (16)

The exponent derived from the energy increments is pE

while the exponent derived from the δ-function incre-
ments is pδ. One expects pE → 4 [1] and pδ → 2 as
J → ∞ [7, 28], in agreement with eqs. (8) and (11).

The values of pE for the He energies presented in Ta-
ble III are plotted in Figure 1 as a function of J . One of
the noticeable features of Figure 1 are the irregularities
in some of the calculations, e.g. the SO∞, CSM∞ and
35LTO∗

∞ calculations. The fluctuations in the present
35LTO∗

∞ curve are due to the impact of round-off error on
the radial extrapolations. The determination of the coef-
ficients in eq. (13) involves the subtraction of the energies
for calculations that differ by a single LTO. The resulting
energy differences are very small and therefore are sus-
ceptible to the essentially random errors resulting from
round-off that gradually accumulate during the course of
the computations. The irregularities in the CSM∞ and
SO∞ curves are a consequence of the number of digits at

2.00

2.05

2.10

2.15

2.20

2 4 6 8 10 12
J

pδ

20LTO

35LTO

35LTO∞*

FIG. 2: The exponents pδ as a function of J for the LTO
calculations of the He ground state 〈δ〉.

which the energies were published [2, 32]. Plots of pE vs
J were examined (but not plotted in Figure 1) for some
calculations [6, 8] that used an STO basis set. These
plots of pE showed much larger fluctuations than any of
the calculations depicted in Figure 1.

The smaller 20LTO and CSM∞ calculations had plots
of pE vs J that tended to level out at pE ≈ 4.05. Indeed,
the tendency for 20LTO trajectory to curve up indicates
that the successive ∆EJ increments are decreasing too
quickly at the higher J values. The larger SO∞, DLV,
35LTO and 35LTO∗

∞ calculations have pE versus J tra-
jectories that steadily decrease with increasing J and ap-
pear to be approaching the expected limit of pE = 4
although this is obscured somewhat for the SO∞ and
35LTO∞ curves. It will be demonstrated later that the
behavior of the 20LTO and CSM∞ curves is due to slower
convergence of the radial basis at high `.

The tendency for pE to approach the limiting value of
4 from above is a consequence of the fact that the AE

and BE coefficients of eq. (8) have the same sign. The
coefficients AE and BE are derived from second and third
order perturbation theory respectively [3, 7] and have the
same sign due to repulsive nature of the electron-electron
interaction. One surmises that a mixed electron-positron
system, with its attractive electron-positron interaction
should have pE → 4 from below, and this is indeed the
case [10, 15–18].

The incremental exponent for the δ-function, pδ, is
shown in Figure 2 for the 20LTO, 35LTO and 35LTO∗

∞

basis sets. It should be noted that the values of pδ were
sensitive to the precision of the calculation. Originally,
the diagonalization of the Hamiltonian was performed us-
ing the Davidson algorithm [35]. However, this method
could not give δ-function expectation values to better
than 8 significant figures (irrespective of the convergence
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FIG. 3: The 35LTO:20LTO and 35LTO∗
∞:20LTO ratios of the

increments to 〈E〉J and 〈δ〉J (refer to eq. (17)) as a function
of J for the calculations of the He ground state.

tolerance for the energy). This lead to noticeable fluctu-
ations in the pδ versus J plot. The diagonalization was
subsequently performed using the EISPACK libraries, re-
ducing the size of the fluctuations. The trajectories of the
20LTO and 35LTO calculations do not appear to be ap-
proaching the pδ → 2 limit as J → ∞. The 20LTO curve
has a pδ trajectory that diverges from 2 for J > 6 while
the 35LTO curve diverges from 2 for J > 7. The 20LTO
basis gives pδ = 2.155 at J = 12 while the 35LTO basis
gives pδ = 2.064 at this J value.

However, the plot of pδ based on the 35LTO∗
∞ se-

quence does exhibit the correct qualitative behavior as
J increases. The N → ∞ corrections have a larger im-
pact on 〈δ〉J than on 〈E〉J since the former converges as
O(N−5/2) while the latter converges as O(N−7/2). The
J = 12 value of pδ was 2.008.

The behavior exhibited in Figures 1 and 2 can be at-
tributed to the convergence of the radial basis. A larger
radial basis is required to predict successive ∆EJ incre-
ments as J increases. The ratios

RJ
E =

(∆EJ )35
(∆EJ )20

(17)

gives a measure of the relative impact of the 20LTO,
35LTO and 35LTO∗

∞ basis sets to a J energy increment.
One can define a similar ratio, RJ

δ , for the δ-function ∆δJ

increments.
The behavior of these ratios versus J are depicted in

Figure 3. Both RJ
E and RJ

δ increase steadily with J . The
slower convergence of the energy at higher J is also ev-
ident in Table I of [7] and explicit comment about this
point has been made previously [9]. The 〈δ〉J expec-
tation value is much more sensitive to the increase in
the dimension of the radial basis and there was a 9.3%
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72
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 x
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J
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35LTO Method 2
35LTO Method 3

35LTO*∞ Method 2

FIG. 4: The extrapolated J → ∞ limit for the He ground
state energy 〈E〉∞ using three different methods to complete
the partial wave series. The input 〈E〉J upon which the ex-
trapolations were based were those of the 35LTO and the
smoothed 35LTO∗

∞ calculations. The horizontal line shows
the exact helium energy [31].

increase in ∆δ12 between the 20LTO and 35LTO∗
∞ cal-

culations. The corresponding increase in the ∆E12 was
only 0.8%. This extra sensitivity of 〈δ〉J is something we
have noticed in calculations of positron annihilation rates
in positron-atom systems [16, 17, 21, 22] even though ex-
plicit mention of this point has not been made.

B. Smoothing of the 35LTO∗
∞ energies

It is apparent from Figures 1 and 3 that including
the radial extrapolations has resulted in irregularities ap-
pearing in the 35LTO∗

∞ energy sequence. These irregu-
larities are of order 10−9 Hartree at J = 12 and should be
removed before the J → ∞ corrections are determined.

Examination of Figure 3 suggested that (RJ
E − 1) ∝

Js. Accordingly a fit of (RJ
E − 1) =

(

∆EJ

35LTO∗

∞

∆EJ

20LTO

− 1

)

to

a G + H × Js functional form was performed over the
J ∈ [5, 12] interval. An adjustment to the 〈E〉J energy
sequence was made once G, H and s were fixed. The
values of s was approximately s ≈ 2.85.

The 35LTO∗
∞ values of 〈E〉J and ∆EJ given in Ta-

ble III are those of the smoothed energy sequence. The
largest change to any of the energies was 2×10−9 Hartree.

C. Extrapolation of the partial wave series

One of the major aims of this paper was to determine
whether it is possible to extract the J → ∞ limit from a
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finite sequence of calculations. To this end, fits of inverse
power series of different lengths are made to sequences
of 〈X〉J data, and then those inverse power series are
summed to infinity.

Equations (8) and (11) are the working equations.
Fits are performed retaining just the leading order term
(Method 1), the first two terms (Method 2), and the first
three terms (Method 3) of these series. The fits of these
equations use the minimum information necessary. So,
method 1, which only retains the first AE term of eq. (8),
only requires two successive values of 〈E〉J to determine
AE . Three successive values of 〈X〉J are used to deter-
mine AX and BX when the two leading terms of eq. (8)
or eq. (11) are used. Four successive values of 〈X〉J are
used to determine AX , BX and CX when the three lead-
ing terms of eq. (8) or eq. (11) are used. The fits to
determine AX and/or BX and/or CX can be done to dif-
ferent sequences of J values as a self-consistency to check
that the two-term fits to the J = 8, 9, 10 or J = 10, 11, 12
sets of 〈X〉J give answers that are numerically close.

Once the coefficients of the inverse power series have
been determined, the J → ∞ contribution is determined
by a two-step procedure. Firstly, the series (8) and (11)
are summed explicitly up to J+200. The remainder from
≥ J + 201 is determined using the approximate result:

∞
∑

L=J+1

1

(L + 1

2
)p

≈
1

(p − 1)(J + 1)p−1
. (18)

Eq. (18) can be regarded as an approximation to the
∫ ∞

J+1
(L+ 1

2
)−2 dL integral using the mid-point rule. This

approximation is accurate to 0.1% for p = 2 and J = 7.
Figures 4 and 5 show the behavior of the extrapolated

E and δ-function for the three different extrapolations
as a function of J . Tables I and II gives estimates of
〈E〉∞ and 〈δ〉∞ using the calculated values at the largest
possible J values to determine the J → ∞ corrections.

Figure 4 shows that the quality of the 35LTO energy
extrapolation using method 1 is inferior to methods 2
and 3 which give 〈E〉∞ energies in agreement which each
other at the 10−9 Hartree level for J ≥ 8. However,
using the 35LTO energies in conjunction with methods
2 and 3 gives 〈E〉∞ values that are too large by about
10−7 Hartree. This is a consequence of using a large but
not quite complete radial basis. The use of the 35LTO∗

∞

energies results in an energy limit that is an order of mag-
nitude more precise than those of the 35LTO basis. Using
method 2 for the J = 10, 11, 12 35LTO∗

∞ energies gave
〈E〉∞ = -2.903 724 378 Hartree, an energy that is in error
by 10−9 Hartree. The J → ∞ corrections were only made
using method 2 since the more sophisticated method 3 is
more sensitive to the imperfections of the smoothed data
sets. The smoothed energy sequence is probably not a
perfect reproduction of the actual sequence and there is
a tendency for the 〈E〉∞ limit to be more negative than
the exact energy. The method 3 estimate of 〈E〉∞, at
J = 12, namely -2.903 724 384 Hartree, is about 10−8

more negative than the exact energy. A similar level
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0.1070

4 6 8 10 12

〈δ
〉∞

J

35LTO Method 1

35LTO Method 2

35LTO Method 3
35LTO*∞ Method 2

FIG. 5: The extrapolated J → ∞ limit for the He ground
state 〈δ〉∞ using three different methods to complete the par-
tial wave series. The horizontal line shows the value of Drake
[31].

of accuracy was achieved in the earlier SO∞ calculation,
their estimate of the energy in the J to∞ limit was -2.903
724 39 Hartree [32].

The difficulties in obtaining sub 0.1% accuracy in 〈δ〉∞

for the 35LTO sequence are readily apparent from Fig-
ure 5. As one increases J , the estimates of 〈δ〉∞ also
increase and the discrepancy with the accurate value of
Drake [31] gets larger. The ultimate accuracy achievable
for the 35LTO basis is between 0.1 and 0.5%. The ap-
parent superiority of method 1 for the 35LTO basis arises
because errors resulting from a finite dimension radial ba-
sis act to partially cancel errors that arise from this least
sophisticated J → ∞ extrapolation.

However, usage of the 35LTO∗
∞ sequence permitted a

much more accurate extrapolation to the J → ∞ limit.
The 35LTO∗

∞ basis gives estimates of 〈δ〉∞ that are two
orders of magnitude more precise. The method 2 ex-
trapolation was only 6 × 10−6 a3

0 larger than the exact
value [31]. While the radial extrapolations did introduce
fluctuations into the 〈δ〉J values, the relative size of the
individual ∆δJ increments were much larger than the
∆EJ increments and thus did not lead to fluctuations in
〈δ〉∞ as long as method 2 was used for the angular ex-
trapolations. However, the use of method 3 did result in
fluctuations of order 10−5 a3

0 in 〈δ〉∞ so is not depicted
in Figure 5.

D. The coefficients of the inverse power series

The coefficients of the asymptotic forms, (8) and (11)
are known a-priori from eqs. (9), (10) and (12). Esti-
mates of these parameters are also obtained during the
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FIG. 6: The value of AE as extracted from sequences of 〈E〉J

data. The horizontal line shows the value of from eq. (9),
namely -0.074226. Estimates of AE from Method 2 are drawn
with dashed lines while estimates of AE from Method 3 are
drawn with solid lines. The DLV data analyzed here was
solely from their Table IV of Ref.[5], since this avoided the
discontinuity at J = 4 and gave a smooth curve.

fit of the inverse power series to a set of 〈E〉J or 〈δ〉J . An
ideal consistency check would be estimates of AE and Aδ

that steadily approached -0.074226 and -0.04287 as J in-
creased and as the number of terms included in eqs. (8)
and (11) increased. Unfortunately, this has not yet been
achieved. The least squares analysis of the CSM∞ ener-
gies gave AE = −0.0740 and BE = 0.031 [2]. However,
this value of AE is only achieved when using 〈E〉J for
J ∈ [5, 8]. The very large calculations of DLV reported
AE = −0.07415 and BE = 0.0317 [5]. However, a cursory
examination of Figure 6 which depicts values of AE ob-
tained from three successive 〈E〉J energies demonstrates
that their value of AE is not converging to -0.074226
with increasing J . Applying the more sophisticated 3-
term inverse power series to the DLV energies leads to
an AE that exhibits a 4% variation between J = 6 and
J = 13.

Figure 6 also shows the variation in AE when fitting
the 35LTO and 35LTO∗

∞ energy sequences to eq. (8).
Fits were performed with both methods 2 and 3 for the
35LTO energy sets, and only with method 2 (for rea-
sons discussed earlier) to the 35LTO∗

∞ sequence. The
AE coefficients for a given method are computed using
the minimum range of J values that permitted the unique
determination of the coefficients.

Application of method 2 to the 35LTO data reveals
that AE achieves a minimum value of AE = -0.07413
at J = 7 before increasing at larger J . Application of
method 3 results in values of AE that are clearly not
approaching the correct value. This should be expected
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-0.040

-0.038

-0.036
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A
δ

J

35LTO Method 1

35LTO Method 2

35LTO Method 3
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FIG. 7: The value of Aδ as extracted from sequences of 〈δ〉J

data. The horizontal line shows the value of eq. (12), namely
Aδ = −0.04287.

since it has been demonstrated that the 35LTO ∆EJ

are increasingly underestimated as J increases. It would
therefore be hoped that values of AJ

E extracted from
the 35LTO∗

∞ would show better convergence to the ex-
pected limit as J increases. This expectation has only
been partly realized, there are indications that AE may
be converging to the correct value, but the application
of smoothing has probably introduced a systematic bias
that resulted in a tendency to overestimate the magni-
tude of AE .

Figure 7 shows the values Aδ as obtained from the
35LTO basis using Methods 1, 2 and 3 as a function of J .
None of the calculations using the 35LTO basis resulted
in an Aδ vs J curve that approached the correct value
as J increased. This is another manifestation of the very
slow convergence of 〈δ〉J with respect to the dimension of
the radial basis set. There was a significant improvement
when Aδ was extracted from the 35LTO∗

∞ sequence using
method 2. In this case, Aδ does appear to be converging
to the expected value of -0.04287 and at J = 12 one
obtains Aδ = −0.04282

The small irregularities in the 35LTO∗
∞ 〈δ〉J sequence

resulted in irregularities in Aδ when using the more so-
phisticated and sensitive method 3 fit; so this was not
depicted in Figure 7. It is also worth noting that Aδ was
also subject to irregularities of ±2% when the David-
son method was used to diagonalize the hamiltonian and
generate the ground state wave function.

V. SUMMARY AND CONCLUSIONS

Results of a set of very large CI calculations of the He
ground state have been presented. The largest explicit CI
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calculation reported here with a minimum of 35 LTO’s
per ` gave an energy that was accurate to 1.2 × 10−5

Hartree. Including energy corrections obtained from the
2- and 3-term inverse power series in J resulted in a He
ground state energy that was accurate to ≈ 1 × 10−7

Hartree. Improved accuracy required the use of extrap-
olations in the radial basis set to get an estimate of the
variational limit for 〈E〉J . This permitted the He ground
state energy to be predicted to better than 10−8 Hartree,
an improvement of a factor of 1000 over the largest ex-
plicit calculation. The main impediments to more refined
predictions of the He ground state are those due to round-
off errors. Estimating the coefficients of the inverse power
series involves manipulating very small energy differences
which will be sensitive to round-off errors. The fluctu-
ations in the radial extrapolation were about 2 × 10−9

Hartree at J = 12. While this in itself is not that bad,
these fluctuations are magnified by an order of magni-
tude when the angular momentum extrapolation is then
done. The impact of the fluctuations was somewhat mit-
igated by the introduction of a smoothing procedure, at
the cost of introducing a small systematic error.

The prediction of the electron-electron δ-function was
considerably more difficult due to the O(L + 1

2
)2 conver-

gence. In this case, the explicit calculation was accurate
to 3% at J = 12. Application of the inverse power series
(Method 2) to include higher J contributions improved
the accuracy to 0.3%. The main reason for the low accu-
racy was the slow convergence with respect to the num-
ber of radial basis functions. The relative accuracy of
successive ∆δJ increments decreases as J increases if the
number of radial basis functions per ` is kept the same.
Once again, extrapolating the radial basis to the varia-
tional limit lead to an improved prediction of 〈δ〉. The
best CI estimate of 〈δ〉 = 0.106341 a3

0 was within 0.01%
of the close to exact variational estimate [31]. The ex-
trapolations of 〈δ〉 were less susceptible to round-off error
simply because the ∆δJ increments were larger.

While the use of extrapolations did improve the qual-
ity of the calculation, the full potential of the method
has not been realized due to round-off error. The radial
matrix elements are evaluated with gaussian quadratures
and the achievable precision for the larger calculations is
about 10−12 Hartree. This accuracy could be improved
by the either the development of a convenient analytic
form for the electron-electron matrix elements or the us-
age of quadruple precision arithmetic. This would then
permit the use of inverse power series with more terms
leading to improved radial and angular extrapolations.
For example, an accuracy of 10−14 Hartree was achiev-
able for a CI calculation restricted to ` = 0 orbitals [30].

These results have implications for the prediction of
the annihilation rate of positronic atoms from single-
center CI type calculations [10]. Some sort of extrap-
olation in J is needed to determine the energy and more
particularly the annihilation rate. One way to minimize
the impact of the extrapolation in J is to run the calcu-
lation to the highest possible angular momentum. How-
ever, the high J parts of the annihilation rate will tend
to be increasingly underestimated as J increases unless
accurate estimates of the radial variational limit can be
made. Since this can now be achieved for a Laguerre
basis [30], it eminently conceivable that estimates of the
annihilation rate at better than 0.1% accuracies will be
achievable for single-center basis sets.
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