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Summary. Neutron stars contain matter in one of the densest forms found in the
Universe. This feature, together with the unprecedented progress in observational
astrophysics, makes such stars superb astrophysical laboratories for a broad range
of exciting physical studies. This paper gives an overview of the phases of dense
matter predicted to make their appearance in the cores of neutron stars. Particular
emphasis is put on the role of strangeness. Net strangeness is carried by hyperons,
K-mesons, H-dibaryons, and strange quark matter, and may leave its mark in the
masses, radii, moment of inertia, dragging of local inertial frames, cooling behavior,
surface composition, and the spin evolution of neutron stars. These observables play
a key role for the exploration of the phase diagram of dense nuclear matter at high
baryon number density but low temperature, which is not accessible to relativistic
heavy ion collision experiments.

1 Introduction

Neutron stars are dense, neutron-packed remnants of stars that blew apart in
supernova explosions. Many neutron stars form radio pulsars, emitting radio
waves that appear from the Earth to pulse on and off like a lighthouse beacon
as the star rotates at very high speeds. Neutron stars in x-ray binaries ac-
crete material from a companion star and flare to life with a burst of x-rays.
Measurements of radio pulsars and neutron stars in x-ray binaries comprise
most of the neutron star observations. Improved data on isolated neutron
stars (e.g. RX J1856.5-3754, PSR 0205+6449) are now becoming available,
and future investigations at gravitational wave observatories focus on neutron
stars as major potential sources of gravitational waves (see Ref. [1] for a re-
cent overview). Depending on star mass and rotational frequency, the matter
in the core regions of neutron stars may be compressed to densities that are
up to an order of magnitude greater than the density of ordinary atomic nu-
clei. This extreme compression provides a high-pressure environment in which
numerous subatomic particle processes are likely to compete with each other
[2, 3]. The most spectacular ones stretch from the generation of hyperons and
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Fig. 1. Neutron star compositions predicted by theory.

baryon resonances (Σ,Λ,Ξ,∆), to quark (u, d, s) deconfinement, to the for-
mation of boson condensates (π−, K−, H-matter) [2, 3, 4, 5, 6, 7] (see Fig. 1).
In the framework of the strange matter hypothesis [8, 9, 10], it has also been
suggested that 3-flavor strange quark matter–made of absolutely stable u, d,
and s quarks–may be more stable than ordinary atomic nuclei. In the latter
event, neutron stars should in fact be made of such matter rather than ordi-
nary (confined) hadronic matter [11, 12, 13]. Another striking implication of
the strange matter hypothesis is the possible existence of a new class of white-
dwarfs-like strange stars (strange dwarfs) [14]. The quark matter in neutron
stars, strange stars, or strange dwarfs ought to be in a color superconduct-
ing state [15, 16, 17, 18]. This fascinating possibility has renewed tremendous
interest in the physics of neutron stars and the physics and astrophysics of
(strange) quark matter [6, 15, 16]. This paper discusses the possible phases
of ultra-dense nuclear matter expected to exist deep inside neutron stars and
reviews selected models derived for the equation of state (eos) of such matter
[2, 3, 4, 5, 6, 7].

2 Neutron Star Masses

In 1939, Tolman, Oppenheimer and Volkoff performed the first neutron star
calculations, assuming that such objects are entirely made of a gas of non-
interacting relativistic neutrons [19, 20]. The eos of such a gas is extremely
soft, i.e. very little additional pressure is gained with increasing density, as
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Fig. 2. Models for the equation of state (pressure versus energy density) of
neutron star matter [6]. The notation is as follows: RMF=relativistic mean-field
model; DD-RBHF=density dependent relativistic Brueckner-Hartree-Fock model;
n=neutrons; p=protons; H=hyperons, K=K−[u, s̄] meson condensate; Q=u, d, s
quarks; H-matter=H-dibaryon condensate.

can be seen from Fig. 2, and predicts a maximum neutron star mass of just
0.7 M⊙ (Fig. 3) at an unrealistically high density of 17 times the density
of nuclear matter (Fig. 4). In is interesting to note that the inclusion of
interactions among the neutrons increases the star’s maximum mass from
0.7 M⊙ to around 3 M⊙ (Figs. 3 and 4). However, the radii of the latter
are so big that mass shedding from the star’s equator occurs at rotational
frequencies that are considerably smaller than those observed for PSR J1748-
2446ad, 716 Hz (1.39 ms) [21], or B1937+21, 630 Hz (1.58 ms) [22]. An in-
teracting neutron gas thus fails to accommodate the observed rapidly ro-
tating neutron stars. The other extreme, a non-interacting relativistic neu-
tron gas, fails too since it does not accommodate the Hulse-Taylor pul-
sar (M = 1.44M⊙) [23], and also conflicts with the average neutron star
mass of 1.350 ± 0.004M⊙ derived by Thorsett and Chakrabarty [24] from
observations of radio pulsar systems. More than that, recent observations
indicate that neutron star masses may be as high as around 2 M⊙. Ex-
amples of such very heavy neutron stars are MJ0751+1807 = 2.1 ± 0.2 M⊙

[25], M4U1636+536 = 2.0 ± 0.1 M⊙ [26], MVelaX−1 = 1.86 ± 0.16M⊙ [27],
MCyg X−2 = 1.78 ± 0.23M⊙ [28, 29]. Large masses have also been reported
for the high-mass x-ray binary 4U1700–37 and the compact object in the
low-mass x-ray binary 2S0921–630, M4U1700−37 = 2.44 ± 0.27 M⊙ [30] and
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M2S0921−630 = 2.0 − 4.3M⊙ [31]. respectively. The latter two objects may
be either massive neutron stars or low-mass black holes with masses slightly
higher than the maximum possible neutron star mass of ∼ 3M⊙. This value
follows from a general, theoretical estimate of the maximal possible mass of
a stable neutron star as performed by Rhoades and Ruffini [32] on the basis
that (1) Einstein’s theory of general relativity is the correct theory of grav-
ity, (2) the eos satisfies both the microscopic stability condition ∂P/∂ǫ ≥ 0
and the causality condition ∂P/∂ǫ ≤ c2, and (3) that the eos below some
matching density is known. From these assumptions, it follows that the maxi-
mum mass of the equilibrium configuration of a neutron star cannot be larger
than 3.2M⊙. This value increases to about 5M⊙ if one abandons the causal-
ity constraint ∂P/∂ǫ ≤ c2 [33, 34], since it allows the eos to behave stiffer at
asymptotically high nuclear densities. If either one of the two objects 4U 1700–
37 or 2S0921–630 were a black hole, it would confirm the prediction of the
existence of low-mass black holes [35]. Conversely, if these objects were mas-
sive neutron stars, their high masses would severely constrain the eos of dense
nuclear matter.

3 Composition of Cold and Dense Neutron Star Matter

A vast number of models for the equation of state of neutron star matter has
been derived in the literature over the years. These models can roughly be
classified as follows:

• Thomas-Fermi based models [36, 37]
• Schroedinger-based models (e.g. variational approach, Monte Carlo tech-

niques, hole line expansion (Brueckner theory), coupled cluster method,
Green function method) [4, 38, 39, 40]

• Relativistic field-theoretical treatments (relativistic mean field (RMF),
Hartree-Fock (RHF), standard Brueckner-Hartree-Fock (RBHF), density
dependent RBHF (DD-RBHF) [41, 42, 43, 44, 45, 46]

• Nambu-Jona-Lasinio (NJL) models [47, 48, 49, 50, 51, 52]
• Chiral SU(3) quark mean field model [53].

A collection of equations of state computed for several of these models is shown
in Fig. 2. Mass–radius relationships of neutron stars based on these equations
of state are shown in Fig. 3. Any acceptable nuclear many-body calculation
must correctly reproduce the bulk properties of nuclear matter at saturation
density, n0 = 0.16 fm−3. These are the binding energy, E/A = −16.0 MeV,
effective nucleon mass, m∗

N = 0.79mN, incompressibility, K ≃ 240 MeV, and
the symmetry energy, as = 32.5 MeV.

3.1 Hyperons and baryon resonances

At the densities in the interior of neutron stars, the neutron chemical potential,
µn, is likely to exceeds the masses, modified by interactions, of Σ, Λ and pos-
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sibly Ξ hyperons [56]. Hence, in addition to nucleons, neutron star matter may
be expected to contain significant populations of strangeness carrying hyper-
ons. The thresholds of the lightest baryon resonances (∆−, ∆0, ∆+, ∆++) are
not reached in relativistic mean-field (Hartree) calculations. This is different
for many-body calculations performed at the relativistic Brueckner-Hartree-
Fock level, where ∆’s appear very abundantly [57]. In any event, pure neutron
matter constitutes an excited state relative to hyperonic matter which, there-
fore, would quickly transform via weak reactions like

n→ p+ e− + ν̄e (1)

to the lower energy state. The chemical potentials associated with reaction
(1) in equilibrium obey the relation

µn = µp + µe−

, (2)

where µν̄e = 0 since the mean free path of (anti) neutrinos is much smaller
than the radius of neutron stars. Hence (anti) neutrinos do not accumulate
inside neutron stars. This is different for hot proto-neutron stars [58]. Equa-
tion (2) is a special case of the general relation

µχ = Bχµn − qχµe−

, (3)

which holds in any system characterized by two conserved charges. These are
in the case of neutron star matter electric charge, qχ, and baryon number
charge, Bχ. Application of Eq. (3) to the Λ hyperon (BΛ = 1, qΛ = 0), for
instance, leads to
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µΛ = µn . (4)

Ignoring particle interactions, the chemical potential of a relativistic particle
of type χ is given by

µχ = ω(kFχ
) ≡

√

m2
χ + k2

Fχ
, (5)

where ω(kFχ
) is the single-particle energy of the particle and kFχ

its Fermi
momentum. Substituting (5) into (4) leads to

kFn
≥

√

m2
Λ −m2

n ≃ 3 fm−1 ⇒ n ≡ kFn

3

3π2
≃ 2n0 , (6)

where mΛ = 1116 MeV and mn = 939 MeV was used. That is, if interactions
among the particles are ignored, neutrons are replaced with Λ’s in neutron
star matter at densities as low as two times the density of nuclear matter.
This result is only slightly altered by the inclusion of particle interactions
[56]. Densities of just ∼ 2n0 are easily reached in the cores of neutron stars.
Hence, in addition to nucleons and electrons, neutron stars may be expected to
contain considerable populations of strangeness-carrying Λ hyperons, possibly
accompanied by smaller populations of the charged states of the Σ and Ξ
hyperons [56]. Depending on the star’s mass, the total hyperon population
can be very large [56], which is illustrated graphically in Figs. 5 and 6 for
rotating neutron stars whose equation of state is computed in the framework
of the relativistic DD-RBHF formalism [44]. Aside from chemical equilibrium,
the condition of electric charge neutrality of neutron star matter,

∑

χ=p,Σ±,Ξ−,∆++,...;e−,µ−

qχ k3
Fχ

+ 3 π2 nM Θ(µM −mM ) ≡ 0 , (7)
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where M stands for π− or K− mesons, plays a key role for the particle com-
position of neutron star matter too. The last term in (7) accounts for the
possible existence of either a π− or a K− meson condensate in neutron star
matter, which will be discussed in more detail in Sect. 3.2. Before, however, we
illustrate the importance of Eqs. (2) and (7) for the proton-neutron fraction
of neutron star matter. The beta decay and electron capture processes among
nucleons, n → p + e− + ν̄e and p + e− → n + νe respectively, also known
as nucleon direct Urca processes, are only possible in neutron star matter
if the proton fraction exceeds a certain critical value [59]. Otherwise energy
and momentum can not be conserved simultaneously for these reactions so
that they are forbidden. For a neutron star made up of only nucleons and
electrons, it is rather straightforward to show that the critical proton frac-
tion is around 11%. This follows from kFn

= kFp
+ kFe

combined with the
condition of electric charge neutrality of neutron star matter. The triangle
inequality then requires for the magnitudes of the particle Fermi momenta
kFn

≤ kFp
+ kFe

, and charge neutrality dictates that kFp
= kFe

. Substituting
kFp

= kFe
into the triangle inequality leads to kFn

≤ 2kFp
so that for the

particle number densities of neutrons and protons nn ≤ 8np. Expressed as a
fraction of the system’s total baryon number density, n ≡ np + nn, one thus
arrives at np/n > 1/9 ≃ 0.11, which is the figure quoted just above. Medium
effects and interactions among the particles modify this value only slightly
but the presence of muons raises it to about 0.15. Hyperons, which may exist
in neutron star matter rather abundantly, produce neutrinos via direct Urca
processes like Σ− → Λ + e− + ν̄e and Λ + e− → Σ− + νe [60]. The direct
Urca processes are of key importance for neutron star cooling (see D. Page’s
contribution elsewhere in this volume). In most cases, the nucleon direct Urca
process is more efficient than the ones involving hyperons [61, 62].



8 Fridolin Weber, Rodrigo Negreiros, and Philip Rosenfield

3.2 Meson condensation

The condensation of negatively charged mesons in neutron star matter is
favored because such mesons would replace electrons with very high Fermi
momenta. Early estimates predicted the onset of a negatively charged pion
condensate at around 2n0 (see, for instance, Ref. [63]). However, these esti-
mates are very sensitive to the strength of the effective nucleon particle-hole
repulsion in the isospin T = 1, spin S = 1 channel, described by the Landau
Fermi-liquid parameter g′, which tends to suppress the condensation mecha-
nism. Measurements in nuclei tend to indicate that the repulsion is too strong
to permit condensation in nuclear matter [64, 65]. In the mid 1980s, it was
discovered that the in-medium properties of K−[us̄] mesons may be such that
this meson rather than the π− meson may condense in neutron star matter
[66, 67, 68].

The condensation is initiated by the schematic reaction e− → K− + νe.
If this reaction becomes possible in neutron star matter, it is energetically
advantageous to replace the fermionic electrons with the bosonic K− mesons.
Whether or not this happens depends on the behavior of the K− mass, m∗

K− ,
in neutron star matter. Experiments which shed light on the properties of
the K− in nuclear matter have been performed with the Kaon Spectrometer
(KaoS) and the FOPI detector at the heavy-ion synchrotron SIS at GSI [69,
70, 71, 72, 73]. An analysis of the early K− kinetic energy spectra extracted
from Ni+Ni collisions [69] showed that the attraction from nuclear matter
would bring the K− mass down to m∗

K− ≃ 200 MeV at densities ∼ 3n0. For
neutron-rich matter, the relation m∗

K−/mK− ≃ 1 − 0.2n/n0 was established
[74, 75, 76], with mK = 495 MeV the K− vacuum mass. Values of around
m∗

K− ≃ 200 MeV may be reached by the electron chemical potential, µe, in
neutron star matter [3, 56] so that the threshold condition for the onset of K−

condensation, µe = m∗
K might be fulfilled for sufficiently dense neutron stars,

provided other negatively charged particles (Σ−, ∆−, d and s quarks) are not
populated first and prevent the electron chemical potential from increasing
with density.

We also note that K− condensation allows the conversion reaction n →
p + K−. By this conversion the nucleons in the cores of neutron stars can
become half neutrons and half protons, which lowers the energy per baryon
of the matter [77]. The relative isospin symmetric composition achieved in
this way resembles the one of atomic nuclei, which are made up of roughly
equal numbers of neutrons and protons. Neutron stars are therefore referred
to, in this picture, as nucleon stars. The maximum mass of such stars has been
calculated to be around 1.5M⊙ [78]. Consequently, the collapsing core of a
supernova, e.g. 1987A, if heavier than this value, should go into a black hole
rather than forming a neutron star, as pointed out by Brown et al. [35, 74, 75].
This would imply the existence of a large number of low-mass black holes
in our galaxy [35]. Thielemann and Hashimoto [79] deduced from the total
amount of ejected 56Ni in supernova 1987A a neutron star mass range of
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1.43 − 1.52 M⊙. If the maximum neutron star mass should indeed be in this
mass range (∼ 1.5 M⊙), the existence of heavy neutron stars with masses
around 2 M⊙ (Sect. 2) would be ruled out. Lastly, we mention that meson
condensates lead to neutrino luminosities which are considerably enhanced
over those of normal neutron star matter. This would speed up neutron star
cooling considerably [78, 62].

3.3 H-matter and exotic baryons

A novel particle that could be of relevance for the composition of neutron star
matter is the H-dibaryon (H=([ud][ds][su])), a doubly strange six-quark com-
posite with spin and isospin zero, and baryon number two [80]. Since its first
prediction in 1977, the H-dibaryon has been the subject of many theoretical
and experimental studies as a possible candidate for a strongly bound exotic
state. In neutron star matter, which may contain a significant fraction of Λ
hyperons, the Λ’s could combine to form H-dibaryons, which could give way
to the formation of H-dibaryon matter at densities somewhere above ∼ 4n0

[81, 82, 83]. If formed in neutron stars, however, H-matter appears to unstable
against compression which could trigger the conversion of neutron stars into
hypothetical strange stars [82, 84, 85].

Another particle, referred to as exotic baryon, of potential relevance for
neutron stars, could be the pentaquark, Θ+([ud]2s̄), with a predicted mass
of 1540 MeV. The pentaquark, which carries baryon number one, is a hy-
pothetical subatomic particle consisting of a group of four quarks and one
anti-quark (compared to three quarks in normal baryons and two in mesons),
bound by the strong color-spin correlation force (attraction between quarks
in the color 3̄c channel) that drives color superconductivity [86, 87]. The pen-
taquark decays according to Θ+(1540) → K+[s̄u] + n[udd] and thus has the
same quantum numbers as the K+n. The associated reaction in chemically
equilibrated matter would imply µΘ+

= µK+

+ µn.

3.4 Quark deconfinement

It has been suggested already many decades ago [88, 89, 90, 91, 92, 93, 94, 95]
that the nucleons may melt under the enormous pressure that exists in the
cores of neutron stars, creating a new state of matter know as quark matter.
From simple geometrical considerations it follows that for a characteristic
nucleon radius of rN ∼ 1 fm, nucleons may begin to touch each other in nuclear
matter at densities around (4πr3N/3)−1 ≃ 0.24 fm−3 = 1.5n0, which is less
than twice the density of nuclear matter. This figure increases to ∼ 11n0 for
a nucleon radius of rN = 0.5 fm. One may thus speculate that the hadrons of
neutron star matter begin to dissolve at densities somewhere between around
2−10n0, giving way to unconfined quarks. Depending on rotational frequency
and neutron star mass, densities greater than two to three times n0 are easily
reached in the cores of neutron stars so that the neutrons and protons in the
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cores of neutron stars may indeed be broken up into their quarks constituents
[2, 3, 6, 96]. More than that, since the mass of the strange quark is only ms ∼
150 MeV, high-energetic up and down quarks will readily transform to strange
quarks at about the same density at which up and down quark deconfinement
sets in. Thus, if quark matter exists in the cores of neutron stars, it should
be made of the three lightest quark flavors. A possible astrophysical signal of
quark deconfinement in the cores of neutron stars was suggested in Ref. [97].
The remaining three quark flavors (charm, top, bottom) are way to massive
to be created in neutron stars. For instance, the creation of charm quark
requires a density greater than 1017 g/cm

3
, which around 100 times greater

than the density reached in neutron stars. A stability analysis of stars with a
charm quark population reveals that such objects are unstable against radial
oscillations and, thus, can not exist stably in the universe [3, 6]. The same is
true for ultra-compact stars with unconfined populations of top and bottom
quarks, since the pulsation eigen-equations are of Sturm-Liouville type.

The phase transition from confined hadronic (H) matter to deconfined
quark (Q) matter is characterized by the conservation of baryon charge and
electric charge. The Gibbs condition for phase equilibrium then is that the
two associated chemical potentials, µn and µe, and the pressure in the two
phases be equal [2, 96],

PH(µn, µe, {χ}, T ) = PQ(µn, µe, T ) , (8)

The quantity PH denotes the pressure of hadronic matter computed for a
given hadronic Lagrangian LM({χ}), where {χ} denotes the field variables
and Fermi momenta that characterize a solution to the field equations of
confined hadronic matter,

(iγµ∂µ −mχ)ψχ(x) =
∑

M=σ,ω,π,...

ΓMχM(x)ψχ(x) , (9)

(∂µ∂µ +m2
σ)σ(x) =

∑

χ=p,n,Σ,...

Γσχ ψ̄χ(x)ψχ(x) , (10)

plus additional equations for the other meson fields (M = ω, π, ρ, ...). The
pressure of quark matter, PQ, is obtainable from the bag model [98, 99]. The
quark chemical potentials µu, µd, µs are related to the baryon and charge
chemical potentials as

µu =
1

3
µn − 2

3
µe , µd = µs =

1

3
µn +

1

3
µe . (11)

Equation (8) is to be supplemented with the two global relations for con-
servation of baryon charge and electric charge within an unknown volume V
containing A baryons. The first one is given by

n ≡ A

V
= (1 − η)nH(µn, µe, T ) + η nQ(µn, µe, T ) , (12)
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where η ≡ VQ/V denotes the volume proportion of quark matter, VQ, in
the unknown volume V , and nH and nQ are the baryon number densities of
hadronic matter and quark matter. Global neutrality of electric charge within
the volume V can be written as

0 =
Q

V
= (1 − η) qH(µn, µe, T ) + η qQ(µn, µe, T ) + qL , (13)

with qi the electric charge densities of hadrons, quarks, and leptons. For a
given temperature, T , Eqs. (8) to (13) serve to determine the two independent
chemical potentials and the volume V for a specified volume fraction η of the
quark phase in equilibrium with the hadronic phase. After completion VQ is
obtained as VQ = ηV . Because of Eqs. (8) through (13) the chemical potentials
depend on the proportion η of the phases in equilibrium, and hence so also all
properties that depend on them, i.e. the energy densities, baryon and charge
densities of each phase, and the common pressure. For the mixed phase, the
volume proportion of quark matter varies from 0 ≤ η ≤ 1 and the energy
density is the linear combination of the two phases [2, 96],

ǫ = (1 − η) ǫH(µn, µe, {χ}, T ) + η ǫQ(µn, µe, T ) . (14)

Hypothetical neutron star compositions computed along the lines described
above are shown in Fig. 7. Possible astrophysical signals associated with quark
deconfinement, the most striking of which being “backbending” of isolated
pulsars, are discussed in [2, 3, 6, 101, 102].

3.5 Color-superconductivity

There has been much recent progress in our understanding of quark matter,
culminating in the discovery that if quark matter exists it ought to be in a
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color superconducting state [15, 16, 17, 18]. This is made possible by the strong
interaction among the quarks which is very attractive in some channels. Pairs
of quarks are thus expected to form Cooper pairs very readily. Since pairs of
quarks cannot be color-neutral, the resulting condensate will break the local
color symmetry and form what is called a color superconductor. The phase
diagram of such matter is expected to be very complex [15, 16]. The complexity
is caused by the fact that quarks come in three different colors, different
flavors, and different masses. Moreover, bulk matter is neutral with respect to
both electric and color charge, and is in chemical equilibrium under the weak
interaction processes that turn one quark flavor into another. To illustrate
the condensation pattern briefly, we note the following pairing ansatz for the
quark condensate [103],

〈ψα
fa
Cγ5ψ

β
fb
〉 ∼ ∆1ǫ

αβ1ǫfafb1 +∆2ǫ
αβ2ǫfafb2 +∆3ǫ

αβ3ǫfafb3 , (15)

where ψα
fa

is a quark of color α = (r, g, b) and flavor fa = (u, d, s). The
condensate is a Lorentz scalar, antisymmetric in Dirac indices, antisymmetric
in color, and thus antisymmetric in flavor. The gap parameters ∆1, ∆2 and
∆3 describe d-s, u-s and u-d quark Cooper pairs, respectively. The following
pairing schemes have emerged. At asymptotic densities (ms → 0 or µ → ∞)
the ground state of QCD with a vanishing strange quark mass is the color-
flavor locked (CFL) phase (color-flavor locked quark pairing), in which all
three quark flavors participate symmetrically. The gaps associated with this
phase are

∆3 ≃ ∆2 = ∆1 = ∆, (16)

and the quark condensates of the CFL phase are approximately of the form

〈ψα
fa
Cγ5ψ

β
fb
〉 ∼ ∆ǫαβXǫfafbX , (17)

with color and flavor indices all running from 1 to 3. Since ǫαβXǫfafbX =

δα
fa
δβ
fb

− δα
fb
δβ
fa

one sees that the condensate (17) involves Kronecker delta
functions that link color and flavor indices. Hence the notion color-flavor lock-
ing. The CFL phase has been shown to be electrically neutral without any
need for electrons for a significant range of chemical potentials and strange
quark masses [104]. If the strange quark mass is heavy enough to be ignored,
then up and down quarks may pair in the two-flavor superconducting (2SC)
phase. Other possible condensation patterns are CFL-K0 [105], CFL-K+ and
CFL-π0,− [106], gCFL (gapless CFL phase) [103], 1SC (single-flavor-pairing)
[103, 107, 108], CSL (color-spin locked phase) [109], and the LOFF (crys-
talline pairing) [110, 111, 112] phase, depending on ms, µ, and electric charge
density. Calculations performed for massless up and down quarks and a very
heavy strange quark mass (ms → ∞) agree that the quarks prefer to pair in
the two-flavor superconducting (2SC) phase where

∆3 > 0 , and ∆2 = ∆1 = 0 . (18)
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In this case the pairing ansatz (15) reduces to

〈ψα
fa
Cγ5ψ

β
fb
〉 ∝ ∆ǫabǫ

αβ3 . (19)

Here the resulting condensate picks a color direction (3 or blue in the exam-
ple (19) above), and creates a gap ∆ at the Fermi surfaces of quarks with the
other two out of three colors (red and green). The gapless CFL phase (gCFL)
may prevail over the CFL and 2SC phases at intermediate values of m2

s/µ
with gaps given obeying the relation ∆3 > ∆2 > ∆1 > 0. For chemical po-
tentials that are of astrophysical interest, µ < 1000 MeV, the gap is between
50 and 100 MeV. The order of magnitude of this result agrees with calcu-
lations based on phenomenological effective interactions [18, 113] as well as
with perturbative calculations for µ > 10 GeV [114]. We also note that super-
conductivity modifies the equation of state at the order of (∆/µ)2 [115, 116],
which is even for such large gaps only a few percent of the bulk energy. Such
small effects may be safely neglected in present determinations of models for
the equation of state of quark-hybrid stars. There has been much recent work
on how color superconductivity in neutron stars could affect their properties
[15, 16, 110, 117, 118, 119]. These studies reveal that possible signatures in-
clude the cooling by neutrino emission, the pattern of the arrival times of
supernova neutrinos, the evolution of neutron star magnetic fields, rotational
stellar instabilities, and glitches in rotation frequencies.

4 Strange Quark Matter

It is most intriguing that for strange quark matter made of more than a few
hundred up, down, and strange quarks, the energy of strange quark matter
may be well below the energy of nuclear matter [8, 9, 10], E/A = 930 MeV,
which gives rise to new and novel classes of strange matter objects, rang-
ing from strangelets at the low baryon-number end to strange stars at the
high baryon number end [3, 6, 11, 13, 120]. A simple estimate indicates that
for strange quark matter E/A = 4Bπ2/µ3, so that bag constants of B =

57 MeV/fm
3

(i.e. B1/4 = 145 MeV) and B = 85 MeV/fm
3

(B1/4 = 160 MeV)
would place the energy per baryon of such matter at E/A = 829 MeV and
915 MeV, respectively, which correspond obviously to strange quark matter
which is absolutely bound with respect to nuclear matter [13, 121].

4.1 Nuclear crust on strange stars

Strange quark matter is expected to be a color superconductor which, at
extremely high densities, should be in the CFL phase [15, 16]. This phase is
rigorously electrically neutral with no electrons required [104]. For sufficiently
large strange quark masses, however, the low density regime of strange quark
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Fig. 8. Illustration of the eos of strange stars with nuclear crusts (from Ref. [122]).

matter is rather expected to form other condensation patterns (e.g. 2SC, CFL-
K0, CFL-K+, CFL-π0,−) in which electrons are present [15, 16]. The presence
of electrons causes the formation of an electric dipole layer on the surface of
strange matter, with huge electric fields on the order of 1019 V/cm, which
enables strange quark matter stars to be enveloped in nuclear crusts made of
ordinary atomic matter [11, 12, 55, 123].4 The maximal possible density at the
base of the crust (inner crust density) is determined by neutron drip, which

occurs at about 4 × 1011 g/cm3 or somewhat below [55]. The eos of such
a system is shown in Fig. 8. Sequences of compact strange stars with and
without (bare) nuclear crusts are shown in Fig. 3. Since the nuclear crust is
gravitationally bound to the quark matter core, the mass-radius relationship
of strange stars with crusts resembles the one of neutron stars and even that of
white dwarfs [14]. Bare strange stars obey M ∝ R3 because the mass density
of quark matter is almost constant inside strange stars.

4.2 Strange dwarfs

For many years only rather vague tests of the theoretical mass-radius rela-
tionship of white dwarfs were possible. Recently the quality and quantity of
observational data on the mass-radius relation of white dwarfs has been re-
analyzed and profoundly improved by the availability of Hipparcos parallax
measurements of several white dwarfs [125]. In that work Hipparcos paral-
laxes were used to deduce luminosity radii for 10 white dwarfs in visual bi-

4 Depending on the surface tension of blobs of strange matter and screening effects,
a heterogeneous crust comprised of blobs of strange quark matter embedded in
an uniform electron background may exist in the surface region of strange stars
[124]. This heterogeneous strange star surface would have a negligible electric
field which would make the existence of an ordinary nuclear crust, which requires
a very strong electric field, impossible.
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naries of common proper-motion systems as well as 11 field white dwarfs.
Complementary HST observations have been made to better determine the
spectroscopy for Procyon B [126] and pulsation of G226-29 [127]. Procyon B
at first appeared as a rather compact star which, however, was later confirmed
to lie on the normal mass-radius relation of white dwarfs. Stars like Sirius B
and 40 Erin B, fall nicely on the expected mass-radius relation too. Several
other stars of this sample (e.g. GD 140, G156–64, EG 21, EG 50, G181–B5B,
GD 279, WD2007–303, G238–44) however appear to be unusually compact
and thus could be strange dwarf candidates [128]. The situation is graphically
summarized in Fig. 9.

4.3 Surface properties of strange matter

The electrons surrounding strange quark matter are held to quark matter elec-
trostatically. Since neither component, electrons and quark matter, is held in
place gravitationally, the Eddington limit to the luminosity that a static sur-
face may emit does not apply, and thus the object may have photon luminosi-
ties much greater than 1038 erg/s. It was shown by Usov [129] that this value
may be exceeded by many orders of magnitude by the luminosity of e+e−

pairs produced by the Coulomb barrier at the surface of a hot strange star.
For a surface temperature of ∼ 1011 K, the luminosity in the outflowing pair
plasma was calculated to be as high as ∼ 3 × 1051 erg/s. Such an effect may
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Fig. 11. Same as Fig. 10, but for stan-
dard neutron star matter [134].

be a good observational signature of bare strange stars [129, 130, 131, 132].
If the strange star is enveloped by a nuclear crust however, which is gravita-
tionally bound to the strange star, the surface made up of ordinary atomic
matter would be subject to the Eddington limit. Hence the photon emissivity
of such a strange star would be the same as for an ordinary neutron star. If
quark matter at the stellar surface is in the CFL phase the process of e+e−

pair creation at the stellar quark matter surface may be turned off, since cold
CFL quark matter is electrically neutral so that no electrons are required and
none are admitted inside CFL quark matter [104]. This may be different for
the early stages of a hot CFL quark star [133].

5 Proto-Neutron Star Matter

Here we take a brief look at the composition of proto-neutron star matter.
The composition is determined by the requirements of charge neutrality and
equilibrium under the weak processes, B1 → B2 + l+ ν̄l and B2 + l → B1 +νl,
where B1 and B2 are baryons, and l is a lepton, either an electron or a muon.
For standard neutron star matter, where the neutrinos have left the system,
these two requirements imply that Q =

∑

i qinBi
+

∑

l=e,µ qlnl = 0 (electric
charge neutrality) and µBi

= biµn − qiµl (chemical equilibrium), where qi/l

denotes the electric charge density of a given particle, and nBi
(nl) is the

baryon (lepton) number density. The subscript i runs over all the baryons
considered. The symbol µBi

refers to the chemical potential of baryon i, bi
is the particle’s baryon number, and qi is its charge. The chemical potential
of the neutron is denoted by µn. When the neutrinos are trapped, as it is
the case for proto-neutron star matter, the chemical equilibrium condition is
altered to µBi

= biµn − qi(µl − µνl
) and µe − µνe

= µµ − µνµ
, where µνl

is
the chemical potential of the neutrino νl. In proto-neutron star matter, the
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electron lepton number YL = (ne + nνe
)/nB is initially fixed at a value of

around YLe
= Ye + Yνe

≃ 0.3− 0.4 as suggested by gravitational collapse cal-
culations of massive stars. Also, because no muons are present when neutrinos
are trapped, the constraint YLµ

= Yµ + Yνmu = 0 can be imposed. Figures 10
and 11 show sample compositions of proto-neutron star matter and standard
neutron star matter (no neutrinos) computed for the relativistic mean-field ap-
proximation. The presence of the ∆ particle in (proto) neutron star matter at
finite temperature is striking. This particle is generally absent in cold neutron
star matter treated in the relativistic mean-field approximation [2, 3, 135].

6 Rotational Instabilities

An absolute limit on rapid rotation is set by the onset of mass shedding
from the equator of a rotating star. However, rotational instabilities in ro-
tating stars, known as gravitational radiation driven instabilities, set a more
stringent limit on rapid stellar rotation than mass shedding. These insta-
bilities originates from counter-rotating surface vibrational modes which at
sufficiently high rotational star frequencies are dragged forward. In this case
gravitational radiation, which inevitably accompanies the aspherical transport
of matter, does not damp the instability modes but rather drives them. Vis-
cosity plays the important role of damping these instabilities at a sufficiently
reduced rotational frequency such that the viscous damping rate and power
in gravity waves are comparable. The most critical instability modes that are
driven unstable by gravitational radiation are f -modes and r-modes. Figure
12 shows the stable neutron star frequencies if only f -modes were operative
in neutron star. One sees that hot as well as cold neutron stars can rotate
at frequencies close to mass shedding, because of the large contributions of
shear and bulk viscosity, respectively, for this temperature regime. The more
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Fig. 14. Critical rotation frequen-
cies versus stellar temperature for CFL
strange stars [141].

Fig. 15. Same as Fig. 14, but for 2SC
quark stars [141].

recently discovered r-mode instability [138, 139] may change the picture com-
pletely, as can be seen from Fig. 13. These modes are driven unstable by
gravitational radiation over a considerably wider range of angular velocities
than the f -modes (cf. dashed curve labeled (m = 2) r-mode instability). In
stars with cores cooler than ∼ 109 K, on the other hand, the r-mode instability
may be completely suppressed by the viscosity originating from the presence
of hyperons in neutron star matter, so that stable rotation would be limited
by the f -mode instability again [137].

Figures 14 and 15 are the counterparts to Figs. 12 and 13 but calculated
for strange stars made of CFL and 2SC quark matter, respectively [140, 141].
The r-mode instability seems to rule out that pulsars are CFL strange stars, if
the characteristic time scale for viscous damping of r-modes are exponentially
increased by factors of ∼ ∆/T as calculated in [140]. An energy gap as small
as ∆ = 1 MeV was assumed. For much larger gaps of ∆ ∼ 100 MeV, as
expected for color superconducting quark matter (see section 3.5), the entire
diagram would be r-mode unstable. The full curve in Fig. 14 is calculated for
a strange quark mass of ms = 200 MeV, the dotted curve for ms = 100 MeV.
The box marks the positions of most low mass X-ray binaries (LMXBs) [142],
and the crosses denote the most rapidly rotating millisecond pulsars known.
All strange stars above the curves would spin down on a time scale of hours
due to the r-mode instability, in complete contradiction to the observation of
millisecond pulsars and LMXBs, which would rule out CFL quark matter in
strange stars (see, however, Ref. [143]). Figure 15 shows the critical rotation
frequencies of quark stars as a function of internal stellar temperature for 2SC
quark stars. For such quark stars the situation is less conclusive. Rapid spin-
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down, driven by the r-mode gravitational radiation instability, would happen
for stars above the curves.

7 Net Electric Fields and Compact Star Structure

Here we consider the possibility that the electric charge density inside com-
pact stars (neutron stars, strange stars) is not identically zero. This may be
the case, for example, for compact stars accreting ionized hydrogen. Another
example are strange quark stars. They could have electric charge distribu-
tions on their surfaces that generate electric fields on the order of 1018 V/cm
[3, 6, 11, 123] for ordinary quark matter, and 1019 V/cm [144] if quark matter
is a color-superconductor. Although the electric field on strange stars exists
only in a very narrow region of space, it is interesting to study the effects of
such ultra-high electric fields on the structure of the star.

It has already been shown that the energy densities of ultra-high elec-
tric fields can substantially alter the structure (mass–radius relationship) of
compact stars [145], depending on the strength of the electric field. In con-
trast to electrically uncharged stars, the energy-momentum tensor of charged
stars has two key contributions, the usual matter-energy term plus the energy
density term that originates from the electric field. The latter plays a dual
role for compact star physics. Firstly, it acts as an additional source of grav-
ity and, secondly, it introduces Coulomb interactions inside the star. Both
features can alter the properties of compact stars significantly, as we shall
demonstrate below.

We will restrict ourselves to spherically symmetric compact stars. The
metric of such objects is given by

ds2 = eν(r)c2dt2 − eλ(r)dr2 − r2(dθ2 + sin2 θdφ2) . (20)

The energy-momentum tensor consists of the usual perfect fluid term supple-
mented with the electromagnetic energy-momentum tensor,

Tν
µ = (p+ ρc2)uνu

µ + pδν
µ +

1

4π

[

FµlFνl +
1

4π
δν

µFklF
kl

]

, (21)

where uµ is the fluid’s four-velocity, p and ρc2 ≡ ǫ are the pressure and energy
density, respectively, and Fµν satisfies the covariant Maxwell equation,

[(−g)1/2F νµ],µ = 4πJν(−g)1/2. (22)

The quantity Jν denotes the four-current which represents the electromagnetic
sources in the star. For a static spherically symmetric system, the only non-
zero component of the four-current is J1, which implies that the only non-
vanishing component of F νµ is F 01. We therefore obtain from Eq. (22)

F 01(r) = E(r) = r−2 e−(ν+λ)/2

∫ r

0

4πj0e(ν+λ)/2dr , (23)
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which is nothing other than the electric field. This relation can be identified
as the relativistic version of Gauss’ law. In addition we see that the electric
charge of the system is given by

Q(r) =

∫ r

0

4πj0e(ν+λ)/2dr . (24)

With the aid of Eq. (24) the energy-momentum tensor of the system can be
written as

Tν
µ =













−
(

ǫ+ Q2(r)
8πr4

)

0 0 0

0 p− Q2(r)
8πr4 0 0

0 0 p+ Q2(r)
8πr4 0

0 0 0 p+ Q2(r)
8πr4













. (25)

Using the energy-momentum tensor (25), Einstein’s field equation leads to

e−λ

(

− 1

r2
+

1

r

dλ

dr

)

+
1

r2
=

8πG

c4

(

p− Q2(r)

8πr4

)

, (26)

e−λ

(

1

r

dν

dr
+

1

r2

)

− 1

r2
= −8πG

c4

(

ǫ+
Q2(r)

8πr4

)

. (27)

At this point we define the radial component of the metric g11, in analogy to
the exterior solution of Reissner-Nordström, as [146]

e−λ(r) = 1 − Gm(r)

rc2
+
GQ2(r)

r2c4
. (28)

From equations (26), (27) and (28), we derive an expression for m(r), which is
interpreted as the total mass of the star at a radial distance r. This expression
reads

dm(r)

dr
=

4πr2

c2
ǫ+

Q(r)

c2r

dQ(r)

dr
, (29)

which reveals that, in addition to the standard term originating from the eos
of the stellar fluid, the electric field energy contributes to the star’s total mass
too. Next, we impose the vanishing of the divergence of the energy-momentum
tensor, T µ

ν;µ = 0, which leads to the Tolman-Oppenheimer-Volkoff (TOV)
equation of electrically charged stars,

dp

dr
= −

2G
[

m(r) + 4πr3

c2

(

p− Q2(r)
4πr4c2

)]

c2r2
(

1 − 2Gm(r)
c2r + GQ2(r)

r2c4

) (p+ ǫ) +
Q(r)

4πr4
dQ(r)

dr
. (30)

Summarizing the relevant stellar structure equations, we end up with the
following set of equations:
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dλ

dr
=

8πG

c4

(

ǫ+
Q2(r)

8πr4

)

reλ −
(

e−λ − 1

r

)

, (31)

dν

dr
=

2G
[

m(r) + 4πr3

c2

(

p− Q2(r)
4πr4c2

)]

c2r2
(

1 − 2Gm(r)
c2r + GQ2(r)

r2c4

) . (32)

dm(r)

dr
=

4πr2

c2
ǫ+

Q(r)

c2r

dQ(r)

dr
, (33)

dQ(r)

dr
= 4πr2j0e−(ν+λ)/2 . (34)

dp

dr
= −

2G
[

m(r) + 4πr3

c2

(

p− Q2(r)
4πr4c2

)]

c2r2
(

1 − 2Gm(r)
c2r + GQ2(r)

r2c4

) (p+ ǫ) +
Q(r)

4πr4
dQ(r)

dr
. (35)

Equations (31) and (32) arise from Einstein’s field equation, Eq. (33) is the
mass continuity equation, Eq. (34) comes from the Maxwell equations, and
Eq. (35) is the TOV equation. This system of coupled differential equations
is subject to the following boundary conditions

p(0) = pc , eλ = 0 , Q(0) = 0 , m(0) = 0 . (36)

In addition to these conditions, one needs to specify the star’s central density
(or, equivalently, the central pressure) for a given equation of state and a given
electric charge distribution. This will be discussed in more details in the next
sections.

As already mentioned at the beginning of this section, strange stars may
be expected to carry huge electric fields on their surfaces [3, 6, 11, 123, 144].
We want to study the effects of such fields on the overall structure of strange
stars. To this aim, we model the charge distribution by superimposing two
Gaussian functions. The first Gaussian is chosen to be positive, representing
the accumulation of a net positive charge. The second Gaussian, slightly dis-
placed from the first one, is chosen negative to represent the accumulation of
a net negative charge. Mathematically, we thus have

j(r) =
σ

b
√
π

(

e−( r−r1
b )

2

− e−( r−r2
b )

2)

, (37)

where σ is a constant that controls the magnitude of the Gaussians and b the
widths of the Gaussians. The graphical illustration of Eq. (37) is shown in
Fig. 16. To obtain a noticeable impact of the electric field on the structure of
strange stars, one needs to have Gaussians with a width of at least around
0.05 km. For such widths we find the mass–radius relationships shown in Fig.
17. The deviations from the mass-radius relationships of uncharged strange
stars are found to increase with mass, and are largest for the maximum-mass
star of each stellar sequence.

The radial distribution of the electric charge over the surface of a strange
star is particularly interesting. The reason being the occurrence of the metric
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functions in Eq. (24), which defines the star’s total net charge. Since the metric
functions are not symmetric in the radial distance, the charge distribution is
rendered asymmetric and stars that are strictly electrically charge neutral in
flat space-time become electrically charged and thus possess non-zero electric
fields. Figures 18 shows the electric field at the surface of strange stars. Figure
19 shows the net electric charge at the surface of strange stars. Both plots
account for the general relativistic charge separation effect.



Neutron Star Interiors and the eos of Superdense Matter 23

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 9.8  10  10.2  10.4  10.6  10.8  11  11.2  11.4  11.6  11.8

E
 x

 1
019

 V
/c

m

R(km)

σ = 0
σ = 1.0
σ = 2.0
σ = 3.0
σ = 5.0

Fig. 18. Electric fields at the surface of strange stars.

-140

-120

-100

-80

-60

-40

-20

 0

 9.8  10  10.2  10.4  10.6  10.8  11  11.2  11.4  11.6  11.8

Q
 x

 1
017

 C

R(km)

σ = 0
σ = 1.0
σ = 2.0
σ = 3.0
σ = 5.0

Fig. 19. Electric charge on strange quark stars.

8 Conclusions and Outlook

It is often stressed that there has never been a more exciting time in the
overlapping areas of nuclear physics, particle physics and relativistic astro-
physics than today. This comes at a time where new orbiting observatories
such as the Hubble Space Telescope (HST), Rossi X-ray Timing Explorer,
Chandra X-ray satellite, and the X-ray Multi Mirror Mission (XMM New-
ton) have extended our vision tremendously, allowing us to observe compact
star phenomena with an unprecedented clarity and angular resolution that
previously were only imagined. On the Earth, radio telescopes like Arecibo,
Green Bank, Parkes, VLA, and instruments using adaptive optics and other
revolutionary techniques have exceeded previous expectations of what can
be accomplished from the ground. Finally, the gravitational wave detectors
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LIGO, LISA, VIRGO, and Geo-600 are opening up a window for the de-
tection of gravitational waves emitted from compact stellar objects such as
neutron stars and black holes. This unprecedented situation is providing us
with key information on neutron stars, which contain cold and ultra-dense
baryonic matter permanently in their cores. As discussed in this paper, a key
role in neutron star physics is played by strangeness. It alters the masses, radii,
moment of inertia, frame dragging of local inertial frames, cooling behavior,
and surface composition of neutron stars. Other important observables influ-
enced by strangeness may be the spin evolution of isolated neutron stars and
neutron stars in low-mass x-ray binaries. All told, these observables play a key

Table 1. Past, present, and future search experiments for strange quark matter [6].

Experiment References

Cosmic ray searches for strange nuggets:
AMS-02a [147, 148]

CRASHb [149, 150, 151]
ECCOc [152]
HADRON [153]

IMBd [154]
JACEEe [155, 156]

MACROf [157, 158, 159, 160]
Search for strangelets in terrestrial matter: [161]

Tracks in ancient mica [162, 163]
Rutherford backscattering [164, 165]

Search for strangelets at accelerators:
Strangelet searches E858, E864, E878, E882-B, [166, 167, 168]
E896-A, E886
H-dibaryon search [169, 170]
Pb+Pb collisions [171, 172, 173, 174]

a AMS: Alpha Magnetic Spectrometer (scheduled for 2005-2008).
b CRASH: Cosmic Ray And Strange Hadronic matter.
c ECCO: Extremely-heavy Cosmic-ray Composition Observer.
d IMB: Irvine Michigan Brookhaven proton-decay detector (1980-1991).
e JACEE: Japanese-American Cooperative Emulsion Chamber Experiment.
f MACRO: Monopole, Astrophysics and Cosmic Ray Observatory (1989-2000).

role for the exploration of the phase diagram of dense nuclear matter at high
baryon number density but low temperature [175], which is not accessible to
relativistic heavy ion collision experiments.

Obviously, our understanding of neutron stars has changed dramatically
since their first discovery some 40 years ago. In what follows, I briefly sum-
marize what we have learned about the internal structure of these fascinating
object since their discovery. I will address some of the most important open
questions regarding the composition of neutron star matter and its associated
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equation of state, and will mention new tools, telescopes, observations, and
calculations that are needed to answer these questions:

• There is no clear picture yet as to what kind of matter exists in the cores of
neutron stars. They may contain significant hyperon populations, boson
condensates, a mixed phase of quarks and hadrons, and/or pure quark
matter made of unconfined up, down, and strange quarks.

• Pure neutron matter constitutes an excited state relative to many-baryon
matter and, therefore, will quickly transform via weak reactions to such
matter.

• Neutron stars made up of pure, interacting neutron matter cannot rotate
as rapidly as the very recently discovered pulsars PSR J1748-2446ad, which
spins at 716 Hz. The equation of state of such matter, therfore, imposes
an upper bound on the equation of state of neutron star matter that is
tighter than the usual P = ǫ constraint (see Fig. 2).

• Charm quarks do not play a role for neutron star physics, since they be-
come populated at densities which are around 100 times higher than the
densities encountered in the cores of neutron stars. While hydrostatically
stable, “charm” stars are unstable against radial oscillations and, thus,
cannot exist stably in the universe [123].

• Multi-quark states like the H-particle appear to make neutron stars un-
stable.

• Significant populations of ∆’s are predicted by relativistic Brueckner-
Hartree-Fock calculations, but not by standard mean-field calculations.

• The finite temperatures of proto neutron stars favors the population of
∆’s already at the mean-field level.

• The r-modes are of key interest for several reasons: 1. they may explain
why young neutron stars spin slowly, 2. why rapidly accreting neutron
stars (LMXB) spin slowly and within a narrow band, and 3. they may
produce gravitational waves detectable by LIGO. Knowing the bulk vis-
cosity originating from processes like n+n− > p++Σ− and the superfluid
critical temperature of Σ−, both are poorly understood at present, will be
key.

• The loss of pressure resulting from the appearance of additional hadronic
degrees of freedom at high densities reduces the (maximum) mass of neu-
tron stars. This feature may serve as a key criteria to distinguish between,
and eliminate certain, classes of equations of state [2, 3, 176].

• Heavy neutron stars, with masses of around two solar masses, do not au-
tomatically rule out the presence of hyperons or quarks in the cores of
neutron stars [177].

• Depending on the densities reached in the cores of neutron stars, both
Schroedinger-based models as well as relativistic field-theoretical models
may be applicable to neutron star studies.

• The density dependence of the coupling constants of particles in ultra-
dense neutron star matter needs be taken into account in stellar structure
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calculations. Density dependent relativistic field theories are being devel-
oped which account for this feature..

• The models used to study the quark-hadron phase transition in the cores
of neutron stars are extremely phenomenological and require considerable
improvements.

• If quark matter exists in the cores of neutron stars, it will be a color
superconductor whose complex condensation pattern is likely to change
with density inside the star. The exploration of the numerous astrophysical
facets of (color superconducting) quark matter is therefore of uppermost
importance. What are the signatures of color superconducting quark mat-
ter in neutron stars? So far is has mostly been demonstrated that color
superconductivity is compatible with observed neutron star properties.

• A two-step quark-hadron phase transition (1. from nuclear matter to reg-
ular quark matter, 2. from regular quark matter to color superconducting
quark matter) may explain long quiescent gamma-ray bursts due to the
two phase transitions involved.

• Are there isolated pulsar that are spinning up? Such a (backbending) phe-
nomenon could be caused by a strong first-order-like quark-hadron phase
transitions in the core of a neutron star [97, 178, 179].

• Was the mass of the neutron star created in SN 1987A around 1.5M⊙? And
did SN 1987A go into a black hole or not? If the answer to both questions
were yes, a serious conflict with the observation of heavy neutron stars
would arise. On the other hand, it could also indicate the existence of
two (generically different?) classes of “neutron” stars with very different
maximum masses.

• Sources known to increase the masses of neutron stars are differential ro-
tation, magnetic fields, and electric fields. Some of these sources are more
effective (and plausible) than others though.

• Nuclear processes in non-equilibrium nuclear crusts (e.g. pycnonuclear re-
actions) and/or cores (heating caused by changes in the composition) of
neutron stars can alter the thermal evolution of such stars significantly.
We are just beginning to study these processes in greater detail.

• What is the shell structure for very neutron rich nuclei in the crusts of
neutron stars?

• Do N=50 and N=82 remain magic numbers? Such questions will be ad-
dressed at GSI (Darmstadt) and RIKEN.

• Are there pulsars that rotate below one millisecond? Such objects may be
composed of absolutely stable strange quark matter instead of purely grav-
itationally bound hadronic matter. Experimental physicists have searched
unsuccessfully for stable or quasistable strange matter systems over the
past two decades. These searches fall in three main categories: (a) searches
for strange matter (strange nuggets or strangelets) in cosmic rays, (b)
searches for strange matter in samples of ordinary matter, and (c) at-
tempts to produce strange matter at accelerators. An overview of these
search experiments is given in table 1.
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• Strange stars may be enveloped in a crust. There is a critical surface
tension below which the quark star surfaces will fragment into a crystalline
crust made of charged strangelets immersed in an electron gas [120, 124]

• If bare, the quark star surface will have peculiar properties which distin-
guishes a quark star from a neutron star [129, 130, 180, 181].

• A very high-luminosity flare took place in the Large Magellanic Cloud
(LMC), some 55 kpc away, on 5 March 1979. Another giant flare was
observed on 27 August 1998 from SGR 1900+14. The inferred peak lumi-
nosities for both events is ∼ 107 times the Eddington limit for a solar mass
object, and the rise time is very much smaller than the time needed to drop
∼ 1025 g (about 10−8M⊙) of normal material onto a neutron star. Alcock et

al. [11] suggested a detailed model for the 5 March 1979 event burst which
involves the particular properties of strange matter (see also [181, 182]).
The model assumes that a lump of strange matter of ∼ 10−8M⊙ fell onto
a rotating strange star. Since the lump is entirely made up of self-bound
high-density matter, there would be only little tidal distortion of the lump,
and so the duration of the impact can be very short, around ∼ 10−6 s,
which would explain the observed rapid onset of the gamma ray flash.
The light curves expected for such giant bursts [129, 130, 131, 132] should
posses characteristic features that are well within the capabilities of ESA’s
INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL [183])
launched by the European Space Agency in October of 2002.
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109. T. Schäfer, Phys. Rev. D 62 (2000) 094007.
110. M. Alford, J. A. Bowers, and K. Rajagopal, Phys. Rev. D 63 (2001) 074016.
111. J. A. Bowers and K. Rajagopal, Phys. Rev. D 66 (2002) 065002.
112. R. Casalbuoni and G. Nardulli, Rev. Mod. Phys. 76 (2004) 263.



Neutron Star Interiors and the eos of Superdense Matter 31

113. M. Alford, K. Rajagopal, and F. Wilczek, Nucl. Phys. B537 (1999) 443.
114. D. T. Son, Phys. Rev. D D59 (1999) 094019.
115. M. Alford and S. Reddy, Phys. Rev. D 67 (2003) 074024.
116. M. Alford, J. Phys. G 30 (2004) S441.
117. K. Rajagopal, Acta Physica Polonica B 31 (2000) 3021.
118. M. Alford, J. A. Bowers, and K. Rajagopal, J. Phys. G 27 (2001) 541.
119. D. Blaschke, D. M. Sedrakian, and K. M. Shahabasyan, Astron. & Astrophys.

350 (1999) L47.
120. M. Alford, K. Rajagopal, S. Reddy, and A. W. Steiner, Phys. Rev. D 73 (2006)

114016.
121. J. Madsen, Phys. Rev. Lett. 61 (1988) 2909.
122. G. J. Mathews, I.-S. Suh, B. O’Gorman, N. Q. Lan, W. Zech, K. Otsuki, and

F. Weber, J. Phys. G: Nucl. Part. Phys. 32 (2006) 1.
123. Ch. Kettner, F. Weber, M. K. Weigel, and N. K. Glendenning, Phys. Rev. D

51 (1995) 1440.
124. P. Jaikumar, S. Reddy, A. W. Steiner, Phys. Rev. Lett. 96 (2006) 041101.
125. J. L. Provencal, H. L. Shipman, E. Hog, and P. Thejll, Astrophys. J. 494 (1998)

759.
126. J. L. Provencal, H. L. Shipman, D. Koester, F. Wesemael, and P. Bergeron,

Astrophys. J. 568 (2002) 324.
127. S. O. Kepler et al., Astrophys. J. 539 (2000) 379.
128. G. J. Mathews, B. O’Gorman, K. Otsuki, I. Suh, and F. Weber, Univ. of Notre

Dame preprint (2003).
129. V. V. Usov, Phys. Rev. Lett. 80 (1998) 230.
130. V. V. Usov, Astrophys. J. 550 (2001) L179.
131. V. V. Usov, Astrophys. J. 559 (2001) L137.
132. K. S. Cheng and T. Harko, Astrophys. J. 596 (2003) 451.
133. C. Vogt, R. Rapp, and R. Ouyed, Nucl. Phys. A735 (2004) 543.
134. F. Weber, M. Meixner, R. P. Negreiros, and M. Malheiro, Ultra-Dense Neu-

tron Star Matter, Strange Quark Stars, and the Nuclear Equation of State,
(astro-ph/0606093).

135. N. K. Glendenning, Phys. Lett. 114B (1982) 392;
N. K. Glendenning, Astrophys. J. 293 (1985) 470;
N. K. Glendenning, Z. Phys. A 326 (1987) 57;
N. K. Glendenning, Z. Phys. A 327 (1987) 295.

136. L. Lindblom, Neutron Star Pulsations and Instabilities, in: Gravitational
Waves: A Challenge to Theoretical Astrophysics, edited by V. Ferrari, J. C.
Miller, and L. Rezzolla, ICTP Lecture Notes Series, Vol. III, (ISBN 92-95003-
05-5, May 2001), (astro-ph/0101136).

137. L. Lindblom and B. Owen, Phys. Rev. D 65 (2002) 063006.
138. N. Andersson, Astrophys. J. 502 (1998) 708.
139. J. L. Friedman and S. M. Morsink, Astrophys. J. 502 (1998) 714.
140. J. Madsen, Phys. Rev. Lett. 81 (1998) 3311.
141. J. Madsen, Phys. Rev. Lett. 85 (2000) 10.
142. M. van der Klis, Ann. Rev. Astron. Astrophys. 38 (2000) 717.
143. C. Manuel, A. Dobado, and F. J. Llanes-Estrada, Shear Viscosity in a CFL

Quark Star, (hep-ph/0406058).
144. V. V. Usov, Phys. Rev. D 70 (2004) 067301.
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