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A new scheme for testing nuclear matter equations of state (EoSs) at high densities using constraints from
neutron star (NS) phenomenology and a flow data analysis of heavy-ion collisions is suggested. An acceptable
EoS shall not allow the direct Urca process to occur in NSs with masses below 1.5M�, and also shall not
contradict flow and kaon production data of heavy-ion collisions. Compact star constraints include the mass
measurements of 2.1 ± 0.2M� (1σ level) for PSR J0751+1807 and of 2.0 ± 0.1M� from the innermost stable
circular orbit for 4U 1636–536, the baryon mass—gravitational mass relationships from Pulsar B in J0737–3039
and the mass-radius relationships from quasiperiodic brightness oscillations in 4U 0614+09 and from the thermal
emission of RX J1856–3754. This scheme is applied to a set of relativistic EoSs which are constrained otherwise
from nuclear matter saturation properties. We demonstrate on the given examples that the test scheme due to the
quality of the newly emerging astrophysical data leads to useful selection criteria for the high-density behavior
of nuclear EoSs.

DOI: 10.1103/PhysRevC.74.035802 PACS number(s): 26.60.+c, 04.40.Dg, 12.38.Mh, 97.60.Jd

I. INTRODUCTION

The investigation of constraints for the high-density be-
havior of nuclear matter (NM) has recently received new
impetus when the plans to construct a new accelerator facility
(FAIR) at GSI Darmstadt were published. Among others
a dedicated experiment for the investigation of the phase
transition from hadronic matter to the quark-gluon plasma
(QGP) in compressed baryon matter (CBM) shall be hosted,
which will study the phenomena of chiral symmetry restoration
and quark (gluon) deconfinement accompanying the transition
to the QGP. A firm theoretical prediction for the critical baryon
densities and temperatures of this transition in the QCD phase
diagram as well as the existence and the position of a critical
point depends sensitively on both the properties of NM at
high densities and the model descriptions of quark-gluon
matter in the nonperturbative regime close to the hadronization
transition.

In the present work we apply recently discovered as-
trophysical bounds on the high-density behavior of NM in
β- equilibrium, i.e., neutron star matter (NSM), from compact
star cooling phenomenology and neutron star mass measure-

*Electronic address: thomas.klaehn@uni-rostock.de
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ments together with information about the elliptical flow in
heavy-ion collisions (HICs) in order to suggest a scheme for
testing NM models. This new test scheme will be applied
to candidates for the equation of state NM equation of state
(EoS) which describe properties at the saturation density
ns ≈ 0.14–0.18 fm−3 such as the binding energy per particle
in symmetric nuclear matter (SNM) av , the compressibility K

and the asymmetry energy J and characteristics of large nuclei,
such as the neutron skin, surface thickness and spin-orbit
splitting probing the domain of subsaturation densities. In this
paper we do not discuss the possibilities of various phase
transitions, like hyperonization, pion and kaon condensations,
quark matter, etc. [1–3]. Corresponding comments on how
their inclusion could affect our results are added at the
appropriate places.

While there are several NM models giving a rather similar
description of the saturation and subsaturation behavior they
differ considerably in their extrapolations to densities above
∼2ns , the regime which is relevant for NS physics and heavy-
ion collisions. Recent progress in astrophysical observations
and new insights into the compact star cooling phenomenology
allow us to suggest in this paper a test scheme for the high
density EoS which consists of five elements.

The first one demands that any reliable nuclear EoS should
be able to reproduce the recently reported high pulsar mass
of 2.1 ± 0.2M� for PSR J0751+1807, a millisecond pulsar
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in a binary system with a helium white dwarf secondary [4].
Extending this value even to 2σ confidence level (+0.4

−0.5M�)
means that masses of at least 1.6M� have to be allowed. Thus
the EoS should be rather stiff at high density to satisfy this
constraint.

The second constraint has recently been suggested in
Ref. [5] and concerns pulsar B in the double pulsar system
J0737–3039 which has the lowest reliably measured mass
for any NS to date, namely M = 1.249 ± 0.001M� [6]. If
this star originates from the collapse of an ONeMg white
dwarf [5] and the loss of matter during the formation of
the NS is negligible, the baryon number, or equivalently
the corresponding free baryon mass for the NS, has been
determined to 1.366M� � MN � 1.375M�. It turns out that
this constraint requires a rather strong binding of the compact
star. A possible baryon loss of up to 1% of M� during the
formation of the compact star broadens the corresponding
baryon mass interval to 1.356M� � MN � 1.375M�.

The next constraint emerges from recent results of NS
cooling calculations [7] and population synthesis models
for young, nearby NSs [8]. Following the arguments in
Refs. [7,9], direct Urca (DU) processes, e.g., the neutron
β-decay n → p + e− + ν̄e, produce neutrinos very efficiently.
The neutrino emissivities for these processes even with
inclusion of nucleon superfluidity effects are large enough that
their occurrence would lead to an unacceptably fast cooling
of NSs in disagreement with modern observational soft X-ray
data in the temperature - age diagram. According to these
recent analyses, the DU process shall not occur in typical
NSs which have masses in the range of Mtyp ∼ 1.0–1.5M�,
obtained from population syntheses scenarios, since this would
result in an overpopulation of X-ray dim isolated neutron
stars in disagreement with the measured Log(N) - Log(S)
distribution [8]. This constrains the density dependence of
the nuclear asymmetry energy which should not be too strong.

The fourth constraint defines an upper bound in the mass-
radius plane for NSs, derived from quasiperiodic oscillations
(QPOs) at high frequencies of the low-mass X-ray binary
(LMXB) 4U 0614+09 [10]. For some LMXBs there is
evidence for the innermost stable circular orbit, which if
confirmed suggests that the masses of the NSs in many of
these systems are between 1.8 M� and 2.1 M� [11,12].

The fifth constraint comes from a recent analysis of the
thermal radiation of the isolated pulsar RX J1856 which
determines a lower bound for its mass-radius relation that
implies a rather stiff EoS [13].

Finally, we include into the scheme constraints that are
derived from analyses of elliptic flow data and from kaon
production in heavy ion collisions. Nuclear collisions have
been described within a kinetic theory approach and the results
have been compared to experimental data for the nucleon
flow for densities up to 4.5 × ns [14]. From this a region
in the pressure-density diagram for SNM has been given
which defines upper (UB) and lower (LB) bounds to the high
density EoS and which is in accordance with measurements
of the elliptic flow. Even though 4.5 × ns is below typical
central densities that correspond to maximum masses of NS
configurations we use the fact that the existence of such a
region rules out rather stiff and very soft EoSs.

The outline of this work is the following. In Sec. II we
describe a set of modern relativistic nuclear EoSs obtained
within different approaches. In Sec. III the test scheme
sketched above will be discussed in detail. This includes the as-
trophysical constraints from the determination of (maximum)
NS masses in Sec. III A1, the new mass-baryon number test in
Sec. III A2, constraints for DU-cooling in Sec. III A3 and
for the mass-radius relations of LMXBs in Sec. III A4 as
well as the mass-radius relation from thermal emission of
the isolated NS RX J1856 in Sec. III A5. The EoS for SNM
at supernuclear densities is constrained by HIC experiments
from flow data analysis in Sec. III B1, and kaon production in
Sec. III B2. In Section IV we derive two immediate con-
sequences of this scheme: a conjecture about a universal
symmetry energy contribution to the EoS in β-equilibrium
and a sharpening of the flow constraint from HICs using new
information about the masses of compact stars. A summary of
the results of this work is given in Sec. V, together with the
conclusions to be drawn from them.

II. HADRONIC EoS

A. Model independent description

There are numerous comparative studies of NM approaches
for HIC and NS physics applications in which a representation
of the NM EoS has been employed which is based on the
nucleonic part of the binding energy per particle given in the
form

E(n, β) = E0(n) + β2ES(n), (1)

where β = 1–2 x is the asymmetry parameter depending on
the proton fraction x = np/n with the total baryon density
n = nn + np. In Eq. (1) the function E0(n) is the binding
energy in SNM, and ES(n) is the (a)symmetry energy, i.e.,
the energy difference between pure neutron matter and SNM.
Both contributions E0(n) and ES(n) are easily extracted from
a given EoS for the cases β = 0 and β = 1, respectively. The
parabolic interpolation has been widely used in the literature,
see e.g., Ref. [15]. It proves to be an excellent parametrization
of the asymmetry dependence for the purpose of the present
study and we will not go beyond it here. Nevertheless, it should
be mentioned in this context that an exact reproduction of a
given EoS might require higher order terms than β2 which have
been neglected here. From Eq. (1) all zero temperature EoSs
of NM can be obtained by applying simple thermodynamic
identities [16]. In particular, we use the relations

εB(n, β) = nE(n, β), (2)

PB(n, β) = n2 ∂

∂n
E(n, β), (3)

µn,p(n, β) =
(

1 + n
∂

∂n

)
E0(n)

−
(

β2 ∓ 2β − β2n
∂

∂n

)
ES(n) (4)
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for the baryonic energy density ε(n) and pressure P (n) as
well as the chemical potentials of neutron µn (upper sign) and
proton µp (lower sign), respectively.

NSM has to fulfill the two essential conditions of
β-equilibrium

µn = µp + µe = µp + µµ, (5)

and charge neutrality

np − ne − nµ = 0, (6)

where µe and µµ are the electron and muon chemical
potentials, conjugate to the corresponding densities ne and
nµ. In this paper we do not consider phase transitions to a
deconfined phase at n > ns . If a first order phase transition
were allowed a mixed phase could arise in some density
interval, see Ref. [17]. In general, the local charge neutrality
condition could be replaced by the global one. However, due
to the charge screening this density interval is essentially
narrowed [18,19].

Due to Eq. (5) the chemical potentials for muons and
electrons are equal, µµ = µe so that muons appear in the
system, once their chemical potential exceeds their mass. The
EoS for NSM is considered as an ideal mixture of a baryonic
and a leptonic part,

ε(n, β) = εB(n, β) + εe(n, β) + εµ(n, β), (7)

P (n, β) = PB(n, β) + Pe(n, β) + Pµ(n, β). (8)

Under NS conditions one parameter is sufficient for a
complete description, e.g., the baryochemical potential µb

which is conjugate to the conserved baryonic charge. In
β-equilibrated NSM and in SNM it is simply equivalent to
the neutron chemical potential, µb = µn. Applying Eqs. (4)
and (5) shows that the electron and muon chemical potential
can be written as an explicit function of baryon density and
asymmetry parameter,

µe(n, β) = 4βES(n). (9)

Both electrons and muons are described as a massive,
relativistic ideal Fermi gas.

With the above relations only one degree of freedom,
namely the baryon density, remains in charge neutral and
β-equilibrated NSM at zero temperature. Within this com-
fortable description actual properties of NM depend on the
behavior of E0(n) and ES(n) only. Both can be deduced easily
from any EoS introduced in the following section.

B. Equations of state applied in this paper

A wide range of densities up to ten times the saturation
density of NM is explored in the description of NSs and
HICs. It is obvious that relativistic effects are important under
these conditions. Consequently, we study only nuclear EoSs
that originate from relativistic descriptions of NM. There are
a number of different approaches from which we choose
representative examples without attempting completeness. We
want to emphasize that our focus is the development of a testing
scheme rather than an exhaustive application of it.

Phenomenological models are based on a relativistic mean-
field (RMF) description of NM with nucleons and mesons as
degrees of freedom [20–23]. The mesons couple minimally to
the nucleons. The coupling strengths are adjusted to properties
of NM or atomic nuclei. A scalar meson (σ ) and a vector
meson (ω) are treated as classical fields generating scalar and
vector interactions. The isovector contribution is generally
represented by a vector meson ρ. In order to improve the
description of experimental data, a medium dependence of the
effective interaction has to be incorporated into the model.
In many applications of the RMF model, nonlinear (NL) self-
interactions of the σ meson were introduced with considerable
success [24–33]. This approach was later extended to other
meson fields [32]. As an alternative, RMF models with density-
dependent nucleon-meson couplings were developed [33–38].
They allow for a more flexible description of the medium
dependence and several parametrizations were introduced
recently. In our study we choose two versions of the NL
models with self-couplings of the σ meson field that were
used in the simulation of HICs [39]. In the parameter set NLρ

the isovector part of the interaction is described, as usual, only
by a ρ meson. The set NLρδ also includes a scalar isovector
meson δ that is usually neglected in RMF models [40]. It
leads to an increased stiffness of the neutron matter EoS
and the symmetry energy at high densities. These particular
NL models were mainly constructed to explore qualitatively
this scalar-isovector contribution in the symmetry energy.
However, they have no non-linearity or density dependence
in the isovector sector and lead to very, perhaps too, stiff
symmetry energies at high densities. The density dependent
RMF models are also represented here by two parameter
sets [41]. They are obtained from a fit to properties of finite
nuclei (binding energies, radii, surface thickenesses, neutron
skins and spin-orbit splittings). The parametrization DD is the
standard approach with constrained rational functions for the
density dependence of the isoscalar meson couplings and an
exponential function for the ρ meson coupling [35]. In the
D3C model additional couplings of the isoscalar mesons to
derivatives of the nucleon field are introduced that lead to a
momentum dependence of the nucleon self-energies that is
absent in conventional RMF model [41].

Finally, we present a new parametrization of the RMF
model with density-dependent couplings that is fitted to
properties of finite nuclei (binding energies, charge and
diffraction radii, surface thicknesses, neutron skin in 208Pb,
spin-orbit splittings) as in Ref. [41] with an additional flow
constraint (see below) by fixing the pressure of SNM to
P = 50 MeV fm−3 at a density of n = 0.48 fm−3. The density
dependence of the σ and ω meson coupling functions is written
as

	i(n) = ai

1 + bi(x + di)2

1 + ci(x + di)2
	i(nref), (10)

where for the ρ meson a simple exponential law

	ρ(n) = 	ρ(nref) exp[−aρ(x − 1)] (11)

is assumed. The coupling constants 	i(nref) have been fixed at
a reference density nref . The density dependent couplings are
functions of the ratio x = n/nref with the vector density n.
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TABLE I. Parameters of the DD-F model as defined in Ref. [41]
with a reference density of nref = 0.1469 fm3.

Meson mi 	i(nref ) ai bi ci di

i (MeV)

σ 555 11.024 1.4867 0.19560 0.42817 0.88233
ω 783 13.575 1.5449 0.18381 0.43969 0.87070
ρ 763 3.6450 0.44793

The parameters of this parametrization called DD-F are
specified in Table I. For a more detailed description of these
type of models see Ref. [41].

More microscopic approaches start from a given free
nucleon-nucleon interaction that is fitted to nucleon-nucleon
scattering data and deuteron properties. In these ab initio calcu-
lations based on many-body techniques one derives the nuclear
energy functional from first principles, i.e., treating short-range
and many-body correlations explicitly. A successful approach
to the nuclear many-body problem is the Brueckner hole-line
expansion. In the relativistic Dirac-Brueckner-Hartree-Fock
(DBHF) approach [42] the nucleon inside the medium is
dressed by the self-energy 
 based on a T-matrix. The
in-medium T-matrix which is obtained from the Bethe-Salpeter
equation plays the role of an effective two-body interaction
which contains all short-range and many-body correlations in
the ladder approximation. Solving the Bethe-Salpeter equation
the Pauli principle is respected and intermediate scattering
states are projected out of the Fermi sea. The summation of
the antisymmetrized T-matrix interactions with the occupied
states inside the Fermi sphere yields finally the self-energy
in Hartree-Fock approximation. This coupled set of equations
constitutes a self-consistency problem which has to be solved
by iteration. It is possible to extract the nucleon self-energies
from DBHF calculations which can be compared with the
corresponding quantities in phenomenological RMF models,
but this is not completely unambiguous as discussed in
Ref. [44]. Here, we use recent results of (asymmetric) NM
calculations in the DBHF approach with the relativistic Bonn
A potential in the subtracted T-matrix representation [43].
This calculation stands as a representative for a relativistic
ab initio approach. One should, however, keep in mind that
although state-of-the-art DBHF calculations [44–46] agree on
a qualitative level, they show still some variance, depending

on the choice of the interaction and the solution techniques
applied. While implicitly included, present-day relativistic
DBHF calculations do not include explicit three-body forces.
They are essential in non-relativistic approaches such as
BHF and variational calculations [47]. Due to the fact that
three-body forces are to large extent unconstrained concerning
their isospin dependence this introduces an additional source of
uncertainty. For a detailed discussion of the various approaches
see, e.g., Refs. [42,48].

In order to bridge the gap between fully microscopic
and more phenomenological descriptions that can be applied
more easily to various systems, it is often useful to adjust
the parameters of the latter model to results extracted from
the former method. As an example of this approach, we use
a nonlinear RMF model (KVR) with couplings and meson
masses depending on the σ -meson field [9]. The parameters
were adjusted to describe the SNM and NSM EoS of the
Urbana-Argonne group [47] at densities below four times
the saturation density. Additionally, we study also a slightly
modified parameter set (KVOR) of this RMF model that
allows higher maximum NS masses. KVR and KVOR models
elaborate the fact that not only the nucleon but also the
meson masses should decrease with increasing NM density.
Being motivated by the Brown-Rho scaling assumption, see
Ref. [49], and the equivalence theorem between different RMF
schemes, these models use only one extra parameter compared
to the standard NL RMF model (NL model). The presence of
this extra parameter allows one to eliminate a deficiency of
conventional RMF models, consisting in a low critical density
for the DU reaction.

The nuclear EoSs of these various models can be charac-
terized by comparing the parameters in the approximation of
the binding energy per nucleon

E = aV + K

18
ε2 − K ′

162
ε3 + . . . + β2

(
J + L

3
ε + . . .

)
(12)

around saturation as a function of the density deviation
ε = (n − ns)/ns and the asymmetry β. In this form the EoS
is characterized at saturation by the binding energy aV , the
incompressibility K and its derivative, the skewness parameter
K ′ and by the symmetry energy J and the symmetry energy
derivative or symmetry pressure L for asymmetric NM. In
Table II these parameters are given for the models employed
in this study. Additionally, we give the Dirac effective mass

TABLE II. Parameters of NM at saturation for various EoSs (see text).

Model ns aV K K ′ J L mD

(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (m)

NLρ 0.1459 −16.062 203.3 576.5 30.8 83.1 0.603
NLρδ 0.1459 −16.062 203.3 576.5 31.0 92.3 0.603
DBHF 0.1810 −16.150 230.0 507.9 34.4 69.4 0.678
DD 0.1487 −16.021 240.0 −134.6 32.0 56.0 0.565
D3C 0.1510 −15.981 232.5 −716.8 31.9 59.3 0.541
KVR 0.1600 −15.800 250.0 528.8 28.8 55.8 0.805
KVOR 0.1600 −16.000 275.0 422.8 32.9 73.6 0.800
DD-F 0.1469 −16.024 223.1 757.8 31.6 56.0 0.556
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mD = m − 
 (at the Fermi momentum) in units of the free
nucleon mass m depending on the scalar self-energy 
 of the
nucleon.

There are significant differences between the models. The
saturation density ns in phenomenological models fitted to
describe atomic nuclei (DD, D3C, DD-F) is in the range
0.147–0.15 fm−3. The models NLρ, NLρδ aiming at a
description of low-energy HIC data use the still smaller value
ns � 0.146 fm−3. In contrast to that, the “ab initio” approach
(DBHF) shows a saturation density that is considerably larger
(0.181 fm−3). Approximations of the Urbana-Argonne type
EoS (KVR, KVOR) use 0.16 fm−3. The binding energy per
nucleon is very similar in all models. The incompressibility
K spans a rather wide range from soft (K ≈ 200 MeV) to
rather stiff (K ≈ 275 MeV). A major difference is found for
the derivative K ′ of the incompressibility that is relevant for
the densities above saturation. Models with parameters that are
fitted to properties of finite nuclei (DD, D3C) lead to a negative
value of K ′ with a rather stiff EoS at higher densities. It is
well known that the ratio of the surface tension to the surface
thickness is determined by the parameters K and K ′ [50,51],
however, the exact relation depends on the assumption for the
shape of the surface. In the microscopic DBHF approach and
the phenomenological models NLρ, NLρδ, KVR, KVOR the
parameter K ′ is rather large and, correspondingly, the EoS
of symmetric matter is softer at high densities. The DD-F
model constructed here is an exception. In this parametrization
we wanted to satisfy simultaneously the description of finite
nuclei and the flow constraint that requires a soft EoS at high
densities leading to a very large K ′. Correspondingly, the
surface properties are not optimally well described by the
DD-F model with clear systematic trends (radii too small
for light nuclei and too large for heavy nuclei, too small
surface thicknesses as compared to experimental data). We
also remark that the parameters of the nonlinear models NLρ

and NLρδ, that where constructed for simulations of HICs,
are not representative for conventional NL models that are
fitted to properties of finite nuclei as, e.g., NL3, for which one
finds K = 271.5 MeV, K ′ = −203.0 MeV, J = 37.4 MeV,
L = 100.9 MeV and mD = 0.596 m [31,41]. It is known that
NL3 has an unphysically large symmetry energy. As was
shown, e.g., in Ref. [52] this can be improved by inlcuding
nonlinear rho-meson couplings. However, the resulting DU
threshold mass and maximum NS mass proved to be rather
small (MDU = 1.3M� and Mmax = 1.72M�, see table 3 in
Ref. [52]).

The symmetry energy J is very similar for all models
with the exception of a slightly larger value in the DBHF
calculation. Here one has, however, to keep in mind that
this value is read off at a correspondingly larger density. At
n = 0.16 fm−3 DBHF gives a value of J = 31.5 MeV, which
is in good agreement with the empirical models and also with
the variational approach of Ref. [47].

In contrast, the derivatives L of the symmetry energy of the
various models are spread over a large range. This quantity
is closely related to the stiffness of the symmetry energy at
high densities. In order to describe the experimental neutron
skin thicknesses in atomic nuclei a small slope of the neutron
matter EoS is required [53–55]. Models with L < 60 MeV

(DD, D3C, KVR, DD-F) fulfill this requirement by introducing
an effective density dependence of the ρ meson coupling to the
nucleon which goes beyond conventional NL RMF models. A
too small value for L on the other hand seems to be in conflict
with data from isospin diffusion in heavy-ion collisions [56]
so that recently from a combination of these data the limits
62 MeV < L < 107 MeV have been suggested, see Ref. [57]
and references therein. Only the models NLρ, NLρδ, DBHF,
and KVOR satisfy this requirement. However, as our emphasis
is on high density constraints of the EoS we will not elaborate
further on this interesting point here but remark that it deserves
a proper treatment.

The Dirac effective mass mD of the nucleon that appears in
the relativistic dispersion relation of the nucleons also shows
a large variation in the comparison. In order to describe the
spin-orbit splitting in atomic nuclei, a small value, typically
below or around 0.6m is required. Parameter sets with larger
values (KVR, KVOR) might have a problem in this respect
with the construction of a proper spin-orbit potential. Larger
values of the effective Dirac nucleon mass are motivated by
fitting the single nucleon spectra in nuclei [58] with a large
Landau mass m∗

L � 0.9–1.0 m. The works [59] find m∗
L �

0.74–0.82 m from the analysis of neutron scattering off lead
nuclei. The latter values relate to mD � 0.7–0.8 m [1]. For a
recent discussion of the momentum and isospin dependence
of the in-medium nucleon mass, see, e.g., Ref. [44].

The variation in the NM parameters is directly reflected in
the behavior of the energy per nucleon in SNM E0(n) and of
the symmetry energy ES(n) at densities above saturation as
shown in Fig. 1. The various models of this study predict
considerably different values for E0(n) and ES(n) at high
densities. Under the condition of β-equilibrium, however, the
range of binding energy per nucleon E(n, β) shows a much
smaller variation than expected from E0(n) and ES(n). This
is shown in the right panel of Fig. 1 and discussed further in
Sec. IV.
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FIG. 1. (Color online) The energy per nucleon in SNM E0(n)
(left panel), the symmetry energy ES(n) (middle panel) and the
energy per nucleon in NSM (β-equilibrated and charge neutral) for
the investigated models (right panel).
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III. CONSTRAINTS ON THE EoS AT HIGH DENSITIES

In this section we will investigate to what extent the different
EoSs introduced in Sec. II fulfill the various constraints. We
postpone the discussion of the results of these tests to Sec. V
after two new consequences from our analysis are presented
in Sec. IV.

A. Constraints from compact stars

1. Maximum mass constraint

Measurements of “extreme” values, like large masses or
radii, huge luminosities, etc., as provided by compact stars
offer good opportunities to gain deeper insight into the physics
of matter under extreme conditions as provided by compact
stars. Recent measurements on PSR J0751+1807 imply a
pulsar mass of 2.1 ± 0.2(+0.4

−0.5)M� (first error estimate with
1σ confidence, second in brackets with 2σ confidence) [4]
which is remarkably heavy in comparison to common values
for binary radio pulsars (MBRP = 1.35 ± 0.04M� [60]). This
special result constrains NS masses to at least 1.6M� (2σ

confidence level) or even 1.9M� within the 1σ confidence
level.

The mass and structure of spherical, nonrotating stars,
to which we limit ourselves in this paper, is calculated by
solving the Tolman-Oppenheimer-Volkov (TOV) equation,
which reads as

dP (r)

dr
= −G[ε(r) + P (r)][m(r) + 4πr3P (r)]

r[r − 2Gm(r)]
, (13)

where the gravitational mass m(r) inside a sphere of radius r

is given by

m(r) = 4π

r∫
0

dr ′ r ′2ε(r ′) (14)

which includes the effects of the gravitational binding energy.
The baryon number enclosed by that sphere is given by

N (r) = 4π

r∫
0

dr ′ r ′2n(r ′)√
1 − 2Gm(r ′)

r ′

, (15)

with n(r) being the baryon density profile of the star. Eq. (13)
describes the gradient of the pressure P and implicitly the
radial distribution of the energy density ε inside the star.
In order to solve this set of differential equations, one has
to specify the EoS, i.e., the relation between P and ε for
which we take the EoSs introduced in the previous Sec. II. We
supplement our EoSs describing the NSs interior by an EoS
for the crust. For that we use a simple BPS model [61]. Due
to uncertainties with different crust models one may obtain
slightly different mass-radius relations.

The stellar radius R is defined by zero pressure at the stellar
surface, P (R) = 0. The star’s cumulative gravitational mass
is given then by M = m(R) and its total baryon number is
N = N (R). In order to solve the TOV equations the radial

FIG. 2. (Color online) Mass versus central density for compact
star configurations obtained by solving the TOV equations (13) and
(14) for all EoSs introduced in Sec. III A Crosses denote the maximum
mass configurations, filled dots mark the critical mass and central
density values where the DU cooling process becomes possible.
According to the DU constraint, it should not occur in “typical
NSs” for which masses are expected from population synthesis [8]
to lie in the lower grey horizontal band. The dark and light grey
horizontal bands around 2.1M� denote the 1σ and 2σ confidence
levels, respectively, for the mass measurement of PSR J0751+
1807 [4].

change of the pressure P starting with a given central value at
radius r = 0 has to be calculated applying, e.g., an adaptive
Runge-Kutta algorithm.

The resulting NS masses as a function of their central
density for the different EoSs are given in Fig. 2 together
with the mass range of typical NSs and the limits from PSR
J0751+1807. Also shown in this figure are the points on the
respective curves where the DU process becomes possible, as
further discussed in Sec. III A3.

The maxima of the mass-central density relations are easily
determined then and summarized in Table III for the EoSs
investigated in this work. As can be seen none of these values
falls below the 2σ mass limit of 1.6M�, whereas the 1σ

mass limit of 1.9M� would exclude NLρ and NLρδ, while
marginally excluding KVR. Thus the ability of this first and
rather trivial test to exclude a given EoS demands a high
accuracy of observations. A more stringent test could be
achieved with decreasing error estimates or the observation
of at least one pulsar that is still more massive than PSR
J0751+1807. We point out that if a pulsar with a mass
M > 2.1M� is observed in the future, this will imply serious
restrictions on the viable EoS, see Fig. 2. Within the set of
EoSs tested by us, only DD, D3C, and DBHF would survive.
Moreover, the maximum mass constraint is closely related
to the flow constraint. This point will be further investigated
within Sec. IV B.

2. Gravitational mass—baryon number constraint

Recently, it has been suggested in Ref. [5] that pulsar B in
the double pulsar system J0737–3039 may serve to test models
proposed for the EoS of superdense nuclear matter. The system
J0737–3039 consists of a 22.7 ms pulsars J0737–3039A
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TABLE III. Maximum star masses, corresponding central densities and the fulfillment of the strong (1σ ) and
weak (2σ ) maximum mass constraint, as well as the gravitational mass-baryon number constraint for pulsar B in
J0737–3039 [5] without and with a mass loss of 0.01M�. Fulfillment (violation) of a constraint is indicated with
+(−) and a marginal result is rated with ◦.

Model Mmax

(M�)
nmax(0)
(fm−3)

J0751+1807
(1σ )

J0751+1807
(2σ )

J0737-3039 B
(no loss)

J0737-3039 B
(loss 1% M�)

NLρ 1.83 1.22 − + − −
NLρδ 1.87 1.15 − + − −
DBHF 2.33 0.94 + + − +
DD 2.42 0.86 + + − −
D3C 2.42 0.82 + + − −
KVR 1.89 1.24 ◦ + − +
KVOR 2.01 1.12 + + − ◦
DD-F 1.96 1.22 + + − +

(pulsar A) [62], and a 2.77 ms pulsar companion J0737–3039B
(pulsar B) [63], orbiting the common center of mass in a
slightly eccentric orbit of 2.4 h duration. One of the interesting
characteristics of this system is that the mass of pulsar B is
merely 1.249 ± 0.001M� [6], which is the lowest reliably
measured mass for any NS to date. Such a low mass could be
an indication that pulsar B did not form in a type-II supernova,
triggered by a collapsing iron core, but in a type-I supernova
of an ONeMg white dwarf [5] driven hydrostatically unstable
by electron captures onto Mg and Ne. The well-established
critical density at which the collapse of such stars sets in
is 4.5 × 109 g/cm3 corresponding to an ONeMg core whose
critical baryon mass is MN = Nu ∼ 1.37M�, where the
atomic mass unit u = 931.5 MeV has been used [5] to convert
the baryon number to baryon mass. Assuming that the loss of
matter during the formation of the NS is negligible, a predicted
baryon mass for the NS of MN = 1.366–1.375M� was derived
in Ref. [5]. This theoretically inferred baryon number range
together with the star’s observed gravitational mass of M =
1.249 ± 0.001M� may represent a most valuable constraint
on the EoS [5], provided the above key assumption for
the formation mechanism of the pulsar B is correct. Then
any viable EoS proposed for NSM must predict a baryon
number in the range 1.366 <∼ MN <∼ 1.375M� for a NS whose
gravitational mass is in the range M = 1.249 ± 0.001M�.
None of the EoSs tested in this work satisfies this strong
constraint. The authors of Ref. [5] discussed caveats such
as baryon loss and variations of the critical mass due to carbon
flashes during the collapse. This constraint requires a very
precise calculation of the baryon number, e.g. a lowering of
MN by 1% changes the outcome of this test significantly.
Since the simulation of e-capture supernovae and the evolution
of their progenitors is still a work in progress, more interesting
results are expected in the near future. The final value
and accuracy of the baryon number of J0737–3039 are
therefore highly important. The result of such calculations
is shown in Fig. 3 and summarized in Table III. Finally we point
out that this constraint is critically based on the assumption
of the formation scenario for pulsar B. If this turns out to be
incorrect the constraint has to be abandoned.

3. Direct Urca constraint

The maximum mass constraint seems to have, at least for
the EoSs investigated in this paper, a rather small exclusion
potential. The M − MN criterion, however, would provide
more stringent limits only if the assumed formation mechanism
of pulsar B in RX J0737–3039 and the neglect of mass
loss prove to be valid. This scheme is improved by adding
the DU criterion, which demands that the DU process shall
not occur in typical neutron stars with masses in the range
Mtyp ∼ 1–1.5M�.

If the proton fraction x = np/(np + nn) exceeds a critical
value xDU the DU process n → p + e− + ν̄e becomes opera-
tive. An estimate of this DU-threshold follows from the triangle
inequality for momentum conservation where the moduli of
the momenta are given by the neutron, proton and electron

FIG. 3. (Color online) Relation between gravitational mass M

and baryon mass MN (both in units of the solar mass M�) of NSs
for the EoSs discussed in this work. The filled rectangle denotes the
constraint derived for pulsar B in the double pulsar J0737–3039 [5].
The empty rectangle demonstrates the change of the constraint when
the assumed loss of baryon number in the collapse amounts to 1% of
the solar value.

035802-7
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FIG. 4. (Color online) Proton fractions x = np/(nn + np) for
different EoSs. The band labeled with xDU frames all threshold
curves obtained for the investigated models. According to Eq. (16) the
range of possible threshold values varies between 11.1% and 14.8%
depending on the muon fraction.

Fermi momenta pFi
. The typical neutrino energy of the order

of the temperature T is small and can be neglected. In quasi-
equilibrium n → p + e− + ν̄e implies that pFn

� pFp
+ pFe

.
From the charge neutrality condition np = ne + nµ one easily
finds the DU-threshold xDU as

xDU = 1

1 + (
1 + x

1/3
e

)3 , (16)

where xe = ne/(ne + nµ) is the leptonic electron fraction.
Since this depends on the symmetry energy, the DU-threshold
is model dependent. For xe = 1 (no muons) this formula
reproduces the muon-free threshold value of 11.1% [64]. In the
limit of massless muons, which is applicable for high densities
(xe = 1/2) one finds an upper limit of xDU = 14.8%. In Fig. 4
the proton fraction as a function of density is shown for the
different EoSs, together with the slightly model-dependent
DU-threshold xDU(n), shown as a band for all the models. As
can be seen the DU-process sets in at very different critical
densities depending on the EoS. For some models (DD, D3C,
DD-F) the DU-process does not occur at all. Once the critical
density is reached in the center of a star configuration for a

given EoS, the corresponding DU-critical star mass MDU is
marked in Fig. 2 by a dot. Every star with a mass only slightly
above MDU will be efficiently cooled by the DU-process and
becomes almost invisible for thermal detection within a few
years [7]. Nucleon superfluidity which suppresses the cooling
rates has been included. Values of the pairing gaps used in the
literature have been used and then varied to check the model
dependence of the result [65]. Table IV summarizes these DU
critical masses for all models. The DU constraint is fulfilled
by the DD, D3C, and DD-F EoS models which are not affected
by the DU process at all and by KVR, KVOR which are
affected for masses higher than 1.5M�, the limit for “typical
NS” obtained from population synthesis models [8,66]. As a
weaker constraint we also use MDU > 1.35M�, which follows
from the population synthesis. If the DU process were allowed
for MDU < 1.35M� it would affect most of the NS population
and lead to a contradiction with the measured Log(N) - Log(S)
distribution [8]. It should, however, not be expected that the
objects observed in X-rays were some exotic family of NSs
rather than typical NSs. DBHF and both NL models do not
pass even the weak DU test. They have a DU threshold
mass MDU < 1.35M�. We remark that one can not, of course,
finally exclude the possibility of lower values of MDU within a
more exotic explanation of the present cooling data. However,
we consider the absence of the DU process for typical NS
configurations as the most realistic scenario and define this as
a constraint.

4. Mass-Radius relation constraint from LMXBs

The kilohertz quasi-periodic brightness oscillations (QPOs)
seen from more than 25 NS X-ray binaries constrain candidate
high-density EoSs because there are fundamental limits on
how high-frequency such oscillations can be. A pair of such
QPOs is often seen from these systems (see Ref. [67] for a
general review of properties). In all currently viable models
for these QPOs, the higher frequency of the QPOs is close
to the orbital frequency at some special radius. For such
a QPO to last the required many cycles (up to ∼100 in
some sources), the orbit must obviously be outside the star.
The orbit must also be outside the innermost stable circular
orbit (ISCO), because according to the predictions of general

TABLE IV. Critical compact star mass for the occurrence of the DU cooling process with the corresponding central density, the criterion
of the DU constraint and the M(R) constraints from the isolated NS RX J1856.5–3754 and the low-mass X-ray binary 4U 1636–536 with its
upper (u) and lower (l) mass limits, see text. Symbols are defined in Table III.

Model MDU(M�) nDU(0)(fm−3) MDU � 1.5M� MDU � 1.35M� 4U 1636-536
(u)

4U 1636-536
(l)

RX J1856
(A)

RX J1856
(B)

RX J1856
(C)

NLρ 0.98 0.32 − − − − − − +
NLρδ 0.92 0.28 − − − − − − +
DBHF 1.27 0.37 − − + + − + +
DD - - + + + + − + +
D3C - - + + + + − + +
KVR 1.77 0.81 + + − ◦ − − +
KVOR 1.73 0.61 + + − + − − +
DD-F - - + + − + − − +
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relativity, inside the ISCO gas or particles would spiral rapidly
into the star, preventing the production of sharp QPOs. This
implies [10,68] that observation of a source whose maximum
QPO frequency is νmax limits the stellar mass and radius to

M < 2.2 M�(1000 Hz/νmax)(1 + 0.75j )
(17)

R < 19.5 km(1000 Hz/νmax)(1 + 0.2j ).

Here j ≡ cJ/GM2 (where J is the stellar angular momentum)
is the dimensionless spin parameter, which is typically 0.1–0.2
for these systems. There is also a limit on the radius for any
given mass.

These limits imply that for any given source, the observed
νmax means that the mass and radius must fall inside an allowed
“wedge.” Therefore, any allowed EoS must have some portion
of its corresponding mass-radius curve fall inside this wedge.
The wedge becomes smaller for higher νmax, therefore the
highest frequency ever observed (1330 Hz, for 4U 0614+091;
see Ref. [69]) places the strongest of such constraints on the
EoS. Note, though, that another NS could in principle have a
greater mass and thus be outside this wedge, but an EoS ruled
out by one star is ruled out for all, since all NS have the same
EoS. As can be seen from Fig. 5, the current constraints from
this argument do not rule out any of the EoS we consider.
However, because higher frequencies imply smaller wedges,
future observation of a QPO with a frequency ∼1500–1600 Hz
would rule out the stiffest of our EoS. This would therefore be
a complementary restriction to those posed by RX J1856.5–
3754 (discussed below) and the implied high masses for some
specific NSs, which both argue against the softest EoS.

If one has evidence for a particular source that a given
frequency is actually close to the orbital frequency at the ISCO,
then the mass is known (modulo slight uncertainty about the
spin parameter). This was first claimed for 4U 1820–30 [70],

FIG. 5. (Color online) Mass-radius constraints from thermal
radiation of the isolated NS RX J1856.5–3754 (grey hatched region)
and from QPOs in the LMXBs 4U 0614+09 (green hatched area)
and 4U 1636–536 (orange hatched region) which shall be regarded as
separate conditions to the EoSs. For the mass of 4U 1636–536 a mass
of 2.0 ± 0.1M� is obtained, so that the weak QPO constraint would
exclude the NLρ and NLρδ EoSs whereas the strong one would leave
only DBHF, DD and D3C.

but complexities in the source phenomenology have made this
controversial. More recently, careful analysis of Rossi X-ray
Timing Explorer data for 4U 1636–536 and other sources [11]
has suggested that sharp and reproducible changes in QPO
properties are related to the ISCO. If so, this implies that
several NSs in low-mass X-ray binaries have gravitational
masses between 1.9 M� and possibly 2.1 M� [11]. In Fig. 5
we display the estimated mass 2.0 ± 0.1 M� for 4U 1636–536,
which would eliminate NLρ and NLρδ as the softest proposed
EoS even in the weak interpretation, and allow only DBHF,
DD and D3C in the strong one, see Table IV.

5. Mass-Radius relation constraint from RX J1856

The nearby isolated NS RX J1856.5–3754 (hereafter short:
RX J1856) belongs to a group of seven objects which show
a purely thermal spectrum in X-rays and in optical-UV. This
allows the determination of R∞/d, the ratio of the photospheric
radius R∞ to the distance d of the object, if the radiative
properties of its photosphere are known. RX J1856 is the
only object of this group which has a measured distance
obtained by Hubble Space Telescope (HST) astrometry. Early
measurements which turned out to be in error gave a distance
of 60 pc and resulted in a very small blackbody radius of
the neutron star which could not have been explained even
in terms of a self-bound strange quark star [71]. After the
corrected distance of 117 pc [72] became known several groups
pointed out that the blackbody radius of this star is as large
as 15–17 km. Although both the X-ray and the optical-UV
spectra are extremely well represented by blackbody functions
they require different emission areas, a smaller hot spot
and a larger cooler region. The overall spectrum could also
be fitted by blackbody emission from a surface showing a
continuous temperature distribution between a hot pole and
a cool equator as expected for a magnetized neutron star.
The resulting blackbody radii are 17 (two blackbodies) and
16.8 km (continuous temperature distribution) [13]. In the
present paper we use the result of the continuous temperature
fit, R∞ = 16.8 km. Recently, the inclusion of more HST
sightings indicated even larger distances up to 178 pc, and
140 pc is considered to be a conservative lower limit [73].
This would yield unplausibly large radii, but recently it has
been shown that a condensed matter surface radiating as a
blackbody with a thin layer of magnetized hydrogen on top of
it gives a very good fit to the overall spectrum. For a distance
of 140 pc the corresponding radius is 17 km [74]. Although
some questions, in particular that of the distance, are not yet
finally settled, the recent data point to a large radius.

The relation between R∞ and true stellar radius R is given
by R∞ = R(1 − R/RS)−1/2, with the Schwarzschild radius
RS = 2GM/R. It is also possible, that the surface could be
condensed, in which case the inferences are less certain, but
preliminary work [75] suggests that the radius is still likely to
be large. The resulting lower bound in the mass radius plane
for R∞ = 16.8 km is shown in Fig. 5. There are three ways to
interpret this result:

(i) RX J1856 belongs to compact stars with typical masses
M ∼ 1.4M� and would thus have to have a radius
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exceeding 14 km (see Fig. 2). None of the examined
EoSs can meet this requirement.

(ii) RX J1856 has a typical radius of R ∼ 12–13 km,
implying that the EoS has to be rather stiff at high
density in order to allow for configurations with masses
above ∼2M�. In the present work this condition would
be fulfilled for DBHF, DD and D3C. This M > 1.6M�
explanation implies that the object is very massive and it
is not a typical NS since most of NSs have M < 1.5M�,
as follows from population synthesis models.

(iii) RX J1856 is an exotic object with a small mass ∼0.2M�,
which would be possible for all EoSs considered here.
No such object has been observed yet, but some mech-
anisms for their formation and properties have been
discussed in the literature [76].

It cannot be excluded, however, that the distance measure-
ment could be revised by a future analysis. If the distance
would turn out to be smaller than the present value, then this
constraint would have no discriminative power any more since
all EoSs could possibly fulfill it. Should a revised distance
value be larger than the present one, then only the exotic
low-mass star interpretation would remain which again is
possible for all (not self-bound) EoSs but which would raise
the question about the formation scenario for such a diffuse
low-mass object. Certainly this explanation of the puzzling
object would no longer qualify RX J1856 as an object to test
the high-density nuclear EoS.

Finally we want to emphasize another problem. Comparing
Figs. 3 and 5 we observe that models producing a smaller
radius (KVR, DD-F, DBHF) better accommodate the M − MN

constraint and those having a larger radius (D3C, DD) fulfill the
RX J1856 constraints better. Out of the EoSs tested in this work
only DBHF could satisfy these constraints simultaneously and
it would be a rather challenging task to resolve the problem of
this EoS with the DU constraint. Further comments are given
in the discussion below.

B. Constraints from heavy-ion collisions

1. The flow constraint

The flow data analysis of dense SNM probed in HICs [14]
reveals a correlation to the stiffness of the EoS which can be
formulated as a constraint to be fulfilled within the testing
scheme introduced here.

The flow of matter in HICs is directed both forward and
perpendicular (transverse) to the beam axis. At high densities
spectator nucleons may shield the transversal flow into their
direction and generate an inhomogeneous density and thus
a pressure profile in the transversal plane. This effect is
commonly referred to as elliptic flow and depends directly on
the given EoS. An analysis of these nucleon flow data, which
depends essentially only on the isospin independent part of
the EoS, was carried out in a particular model in Ref. [14]. In
particular it was determined for which range of parameters of
the EoS the model is still compatible with the flow data. The
region thus determined is shown in Fig. 6 as the dark shaded
region. Ref. [14] then asserts that this region limits the range of

FIG. 6. (Color online) Pressure region consistent with experimen-
tal flow data in SNM (dark shaded region). The light shaded region
extrapolates this region to higher densities within an upper (UB) and
lower border (LB).

accessible pressure values at a given density. For our purposes
we extrapolated this region by an upper (UB) and lower (LB)
boundary, enclosing the light shade region in Fig. 6.

Thus the area of allowed values does not represent exper-
imental values itself, but results from transport calculations
for the motion of nucleons in a collision [14]. Of course,
it seems preferable to repeat these calculations for each
specific EoS, but this would not be a manageable testing tool.
Therefore we adopt the results of Ref. [14] as a reasonable
estimate of the preferable pressure-density domain in SNM.
Its upper boundary is expected to be stable against temperature
variations [77]. The important fact is that the flow constraint
probes essentially only the symmetric part of the binding
energy function E0(n).

Following Ref. [14] the constraint arises for a density
window between 2 and 4.5 times saturation density ns . One
has, however, to keep in mind that at high densities this
constraint is based on flow data from the AGS energy regime
(Elab ∼ 4–11A GeV). At these energies a large amount of the
initial bombarding energy is converted into new degrees of
freedom, i.e., excitations of higher lying baryon resonances
and mesons, which makes conclusions on the nuclear EoS
more ambiguous than at low energies. Nevertheless, the
analysis of Ref. [14] provides a guideline for the high density
regime which we believe to be reasonable.

As can be seen in Fig. 6, this last constraint is well fulfilled
by the KVR, KVOR, NLρ and NLρδ models. For the latter
two models this is rather obvious since they have already been
tested to reproduce flow data. The constraint is satisfied for
densities below 3ns by DBHF. When comparing our models
with the flow constraint below, we separate regions of SIS (n <∼
3ns) and AGS (n >∼>∼ 3ns) energies considering weak and
strong flow constraints. DD and D3C, which fulfilled the DU
constraint well, are significantly above the demanded region.
We want to emphasize that the DD-F model was constructed
in this paper to pass this test. It is based on a reparametrization
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of the DD model, in order to satisfy the introduced test scheme
in most points.

2. Constraints from subthreshold kaon production

K+ mesons were suggested as promising tools to probe the
nuclear EoS, almost 20 years ago [78]. The first channel to
open in order to produce a K+ meson is the reaction NN −→
NK+ which has a threshold of Elab = 1.58 GeV kinetic
energy for the incident nucleon. When the incident energy per
nucleon in a heavy ion reaction is below this value one speaks
of subthreshold kaon production. This process is particularly
interesting since it ensures that the kaons originate from the
high density phase of the reaction. The missing energy has
to be provided either by the Fermi motion of the nucleons or
by energy accumulating multi-step reactions. Both processes
exclude significant distortions from surface effects if one goes
sufficiently far below threshold. In combination with the long
mean free path subthreshold K+ production is an ideal tool to
probe compressed NM in relativistic HICs, see Ref. [79] for a
recent review.

Within the last decade the KaoS Collaboration at GSI has
performed systematic measurements of the K+ production
far below threshold [80–82]. At subthreshold measurements
which range from 0.6 to 1.5A GeV laboratory energy per
nucleon compressions of two to maximally three times ns are
reached. Transport calculations have demonstrated that sub-
threshold K+ production provides a suitable tool to constrain
the EoS of SNM at supersaturation densities [79,83,84]. The
theoretical analysis of the data implies a soft behavior of the
EoS in the considered density range consistent with the flow
constraint at moderate densities (n <∼ 3ns) and supports DBHF,
NLρ, NLρδ, KVR, KVOR and DD-F EoSs in SNM [85–87].

IV. CONSEQUENCES

A. Universal symmetry energy conjecture

Investigating the onset of DU processes in Sec. III A3 has
shown that the DU threshold for the investigated models can
be reached for rather small baryon densities slightly below
2ns for NLρ, NLρδ, DBHF or, as the most extreme opposite,
not at all for DD, D3C and DD-F. Equation (16) states that
the threshold xDU depends on the electron-muon ratio. The
electron and muon densities are determined by their chemical
potentials. In β-equilibrium µe = µµ is given in turn by Eq. (9)
as a function of the asymmetry parameter β and the symmetry
energy ES . The resulting proton fraction x, shown on the right
hand side of Fig. 7, mainly maps the topological behavior of
ES(n), see Fig. 1. As a rule of thumb therefore a large proton
fraction x is attained for stiff symmetry energies ES(n). The
NLρ, NLρδ and DBHF models confirm this rule well and the
symmetry energy used by these models can be sorted out for
contradicting the present cooling phenomenology, as described
in Sec. III A3. Figure 2 illustrates both DU- and maximum
mass constraint.

The asymmetry contribution β2ES(n) to the energy per nu-
cleon (left panel of Fig. 7) only shows a marginal dependence
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FIG. 7. (Color online) Density dependence of the asymmetry
contribution to the energy per particle (left panel) and of the proton
fraction (right panel) in NSM. Encircled curves correspond to EoSs
that violate the DU-constraint.

for different EoSs when compared to differences in the energy
per nucleon of SNM. These form a narrow band which allows
two important statements. First, the behavior of β2ES(n) is
to good approximation universal for all EoSs which pass the
DU-constraint. The second conclusion regards the influence
of the symmetry energy on the mass of NS. Here we find that
due to the above universal behavior of β2ES(n) the mass of a
star is also dominated by the behavior of E0(n). In other words
it seems not very likely that it is possible to infer any essential
properties of ES(n) only from NS mass observations, even if
E0(n) would be perfectly known. This point emphasizes the
importance of a more detailed understanding of the cooling
behavior of compact stars as an effective tool for probing
ES(n) at high densities beyond saturation.

B. Sharpening the flow constraint

As shown in Sec. III A1 and III B1 the flow constraint was
more restrictive on the EoS than the maximum mass constraint
due to a large estimated error for the mass of PSR J0751+1807.
But the flow constraint itself has uncertainties, represented by
the region of possible pressures in Fig. 6.

Thus an EoS which is in accordance with the flow constraint
might still violate the maximum NS mass constraint. This is
demonstrated in Fig. 8, where in particular the lower boundary
of the limiting region in Fig. 6 was extrapolated to construct an
artificial EoS (LB) in order to obtain the mass-density relation
for corresponding compact star configurations.

The resulting mass curve in Fig. 8 is far from reaching even
the weak mass constraint of 1.6M� originating from the lower
2σ bound on the mass of PSR J0751+1807. It also cannot
accommodate the well-measured mass MB1913+16 = 1.4408 ±
0.0003M� [88]. This figure clearly demonstrates that the lower
bound (LB) in Fig. 6 does not satisfy the maximum mass
constraint and should be shifted upwards, thus narrowing the
band of the flow constraint.
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TABLE V. Summary of results for the suggested scheme of tests. Non separated columns show the results for a strict (left) and weakened
(right) interpretation of the corresponding constraint. The last column gives the total number of fulfilled tests in the suggested scheme. Symbols
are defined in Table III.

Model Mmax �
1.9M�

Mmax �
1.6M�

MDU �
1.5M�

MDU = �
1.35M�

4U 1636–536
(u)

4U 1636–536
(l)

RX
J1856

(A)

RX
J1856

(B)

J0737
(no loss)

J0737
(loss 1%

M�)

SIS+AGS
flow

constr.

SIS flow
+ K+

constr.

No. of
passed
tests

(out of
6)

NLρ − + − − − − − − − − + + 1 2
NLρδ − + − − − − − − − − + + 1 2
DBHF + + − − + + − + − + − + 2 5
DD + + + + + + − + − − − − 3 4
D3C + + + + + + − + − − − − 3 4
KVR ◦ + + + − ◦ − − − + + + 3 5
KVOR + + + + − + − − − ◦ + + 3 5
DD-F + + + + − + − − − + + + 3 5

The maximum mass constraint demands a certain stiffness
of E0(n) in order to obtain sufficiently large maximum NS
masses. The small influence of ES(n) on the NS mass can
be well recognized on Fig. 8, too. Two different symmetry
energies, necessary to describe NSM, were taken from the
investigated EoSs. They were chosen in accordance with the
DU-constraint and gave the largest (DD-F) and smallest (D3C)
contribution to the binding energy at n = 1 fm−3. The resulting
deviations of the NS masses are shown as error bars on the
curves in Fig. 8. It results in a maximum difference of less than
0.2M� for the mass curves corresponding to LB. The same was
done for an artificial EoS extrapolating the upper boundary
(UB). Here the largest error estimate of approximately 0.1M�
is even smaller. The maximum mass for UB of about 2.0 M�
again fulfills well the corresponding constraint.

Comparing the flow constraint in Fig. 6 and the mass-radius
constraint in Fig. 5 we see that none of the EoSs we tested
satisfies both constraints. Only DBHF is able to satisfy a weak

FIG. 8. (Color online) Mass versus central density for compact
star configurations, calculated using the UB and LB extrapolations
of the flow constraint boundaries from Fig. 6, E0(n), together with
different symmetry energies ES(n) not violating the DU-constraint,
see Fig. 7. The error bars illustrate the maximum deviation resulting
from choosing different symmetry energies ES(n). The gray horizon-
tal bars denote the expected mass of PSR J0751+1807 including for
1σ and 2σ confidence intervals, resp., whereas the vertical bars limit
the density region covered by the flow constraint.

flow constraint (for n < 3ns) and the RX J1856 constraint
under the assumption of an object with M > 1.6M�. Thus we
again emphasize a problem for the RX J1856 constraint with
the joint fulfillment of other constraints as the M − MN and
the flow constraints.

V. SUMMARY AND CONCLUSIONS

The task we intended with this work, developing a test
scheme for the nuclear EoS by the present phenomenology
of dense NM in compact stars and heavy-ion collisions, is
satisfactorily completed at this point. Applying this scheme
to specific EoSs offers some interesting insights which
indicate that astrophysical measurements might become more
important for the interpretation of terrestrial measurements
than presently accepted. We have summarized the results of
all suggested tests performed on our choice of relativistic,
high-density EoSs in Table V which reveals the discriminative
power of their combined application in a broad region of
densities and isospin asymmetry. We want to point out here,
however, that each model was derived to describe a restricted
region in the (n, β)- plane and was not necessarily meant to
describe a broader region. In Table V we rate the performance
of the models when applied nevertheless in a very wide (n, β)-
region.

Due to its sensitivity to different contributions to the energy
this scheme motivates the necessity for changes in several EoSs
if one wants to apply them to the whole available (n, β) interval
although they well describe properties at the saturation density
and a specific region of the (n, β) plane.

In particular ES(n), the contribution of the symmetry energy
to the total energy, is probed by the DU-constraint. It states
that the DU process would cool NSs much too fast, so that it
should occur for stars with masses greater than ≈ 1.35–1.5M�
only. If it would affect stars with masses below this limit the
DU-process would affect most of the known NS population.
We have shown that only EoSs with a rather soft symmetry
energy at high density fulfill the DU-constraint.

The symmetric matter contribution to the energy per
nucleon E0(n) should sufficiently describe the elliptic flow.
Adding the results of Ref. [14] to the test scheme, very soft
EoSs are allowed. The latter, however, can be sorted out by the
maximum mass constraint. As a result, these two combined
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constraints limit the stiffness of a reliable EoS to be rather low
(flow), but not too low at n <∼ 4ns and rather high for higher
densities (maximum mass).

We want to stress that out of the tested EoSs only DBHF
passes simultaneously the gravitational binding (M − MN )
as well as both mass-radius (M − R) tests. The M − MN

constraint to be fulfilled requires a smaller radius of the
M � 1.25M� star, whereas the M − R test from RX J1856
favors substantially larger star radii, at least for M <∼ 1.4M�.
This contradictory situation would be resolved when RX J1856
is a star with a large mass or when an EoS would fulfill
the M − MN constraint and nevertheless assign large radii to
NS with typical masses. Such an EoS would be qualitatively
different from the ones we investigate here.

The whole scheme left three of eight model EoSs, namely,
DD-F, KVR, and KVOR as most effective within a broad
(n, β) region under consideration. The DD-F model explicitly
fits properties of finite nuclei, especially the neutron skin
thickness of 208Pb that implies a small value of L. The
KVR model yields a similar value of L. It might, however,
have problems with respect to isospin diffusion in heavy
ion collisions since this small L does not fit the constraint
deduced in Refs. [89] and [57]. The KVOR model fulfills
this latter constraint. Here we point out that both KVR and
KVOR were not applied to finite nuclei. Thus it would be a
challenge to apply such models to finite nuclei in the future. All
the models except DD-F demonstrate their predictive power
within a broad (n, β) region whereas the DD-F model (as
a modified DD model) has been constructed in the present
work in order to fulfill the flow constraint in addition to
constraints from saturation and finite nuclei common to DD
models. In contrast to the phenomenological RMF models,
DBHF is an ab initio approach without room left for the
readjustment of free parameters. But correlations beyond
the ladder approximation are not taken into account. In a
certain sense, they are included, although hidden in the fitted
parameters, in the phenomenological approaches. However,
an interesting aspect would be to perform calculations for
different types of free space nucleon-nucleon interactions. In
particular the CD-Bonn potential [90] which accounts more
precisely for the isospin dependence of the nuclear forces
than Bonn A (used here) would be appropriate for future
investigations. Another point would be the explicit inclusion
of hyperonic degrees of freedom which may have a significant
impact on the NS matter EoS at high densities (depending
on yet badly known nucleon-hyperon interaction). This could
open a possibility for the DBHF and other EoSs to satisfy
appropriately the DU constraint.

Beside the scheme’s good overall selectivity the joint
application of different constraints might give new interesting
insights. One of these is the universal behavior of the
contribution β2ES(n) to the binding energy in NSM we
observed for all EoSs that fulfill the DU-constraint. Then it
seems to us that the flow constraint limits the maximum mass
of NSs to values around or not much about the expected mass
of PSR J0751+1807 with M = 2.1M�, which also coincides
with the upper mass limit for 4U 1636–536. To verify this
suggestion, a more detailed analysis, similar to that shown in
Ref. [91], has to be performed.

Next we want to emphasize that the maximum mass
constraint as a result of astrophysical measurements further
limits the pressure-density-region which results from analysis
of elliptic flow data governed in terrestrial HIC experiments
[14]. Although the introduced scheme would not change, it
seems useful to us to repeat these calculations under this point
of view. It would be interesting too, to examine the agreement
of experimental flow data with numerically calculated values
explicitly applying the KVOR and DD-F models that have
passed above constraints.

We have used here models which do not allow for phase
transitions. Any possible phase transition that may appear in
the NSs interior results in a decrease of the maximum NS mass.
All the models may well pass the constraint Mmax <∼ 1.6M�
(2σ uncertainty for PSR J0737–3039) but KVR, and even DD-
F and KVOR which successfully have passed most of our tests
might get problems with the restriction Mmax <∼ 1.9M� (1σ

level for PSR J0737–3039 and lower limit for 4U 1636–536)
if the phase transition is sufficiently strong.

If the phase transition would occur in SNM it would also
soften the EoS thus modifying the flow constraint depicted
in Fig. 4. Nevertheless, if the energy gain due to the phase
transition is not too large the band of the flow constraint [14]
is rather broad and all the models which already are situated
within this band may still remain there. However, if we
considered the common “flow+maximum mass” constraint
as indicated by Fig. 6, the NLρ and NLρδ models could get
a problem crossing the lower boundary of the thus obtained
new band, again if the phase transition would be sufficiently
strong.

The charged pion, kaon and the hyperonization transition
in NSM change the proton and electron concentrations thus
affecting the DU threshold. This threshold is then pushed up to
higher densities. Simultaneously, these transitions open new
reaction channels, allowing for DU reactions which involve
new particles: π−,K−, hyperons and quarks. The appearance
of the condensates and /or filling of the new Fermi seas also
affects the values of the pairing gaps which are not well known.
With small gaps the new reaction channels lead to very rapid
cooling of NS raising the problem to appropriately describe the
NS cooling. However, if gaps are large these reactions might
be nonoperative and the DU constraint may become softer or
even noneffective. The threshold densities for hyperonization
strongly depend on poorly known baryon-baryon interactions.
In case of repulsion the threshold density is pushed up [92] and
the situation becomes more cumbersome. We avoided studying
such models here.

We postpone the analysis of EoSs allowing for phase transi-
tions to future work. Besides hyperonization, the possibility of
a quark matter phase transition should be studied. This will be
important for both NSs and for the planned HICs in the planned
CBM experiment at FAIR where large baryon densities are to
be created.

In this paper we presented a selection of constraints from
compact star observables and HICs which focus on different
aspects of the high density behavior of the EoS. Due to the
increasing precision of present astrophysical measurements
during the last years, which is expected to develop further,
we feel confident that a stage is reached where the high
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density EoS becomes testable by real constraints as we have
demonstrated in this paper. However, the introduced scheme
shall not be understood to be in a final shape, since the
presented subtests will most likely sharpen with new arising
data. Furthermore additional constraints might cover more
aspects of the behavior of dense matter. We consider further
investigations to be necessary as well as promising in order
to work out deeper insights into the nature of dense matter
beyond saturation, driven, e.g., by a systematic application
of the presented scheme to more types of relativistic and
nonrelativistic EoSs.

ACKNOWLEDGMENTS

The authors acknowledge discussions of the results pre-
sented in this work at the workshops on “The New Physics of

Compact Stars” at the ECT∗ Trento, Italy, and on “Dense
hadronic matter and QCD phase transition” in Prerow,
Germany. T.K. has been supported in part by the DFG Graduate
School 567 on “Strongly Correlated Many-particle Systems”
at Rostock University and by the Virtual Institute VH-VI-041
on “Dense hadronic matter and QCD phase transition” of
the Helmholtz Association. The work of D.N.V. has been
supported in part by DFG project No. 436 RUS 113/558/
0-3 and T.G. from the BMBF grant No. 06ML981. H.G.
acknowledges funding from DFG grant No. 436 ARM 17/4/05,
E.N.E.v.D. from grant FA 67/29-1. E.E.K. was supported
by the U.S. Department of Energy under contract No. DE-
FG02-87ER40328 and the research of F.W. is supported by
the National Science Foundation (USA) under Grant PHY-
0457329, and by the Research Corporation (USA). M.C.M.
was supported in part by a senior NRC grant at Goddard Space
Flight Center.

[1] N. K. Glendenning, Compact stars: Nuclear physics, particle
physics, and general relativity (Springer, New York, 2000).

[2] F. Weber, Pulsars as astrophysical laboratories for nuclear and
particle physics (IoP Publishing, London, 1999).

[3] Superdense QCD matter and compact stars, edited by
D. Blaschke and D. Sedrakian (Springer, Dordrecht, 2006).

[4] D. J. Nice, E. M. Splaver, I. H. Stairs, O. Löhmer, A. Jessner,
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