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Abstract

The cooling of a compact star depends very sensitively on the state of matter at
supranuclear densities, which essentially controls the neutrino emission, as well as
on the structure of the stellar outer layers which control the photon emission. Open
issues concern the hyperon population, the presence of meson condensates, super-
fluidity and superconductivity, and the transition of confined hadronic matter to
quark matter. This paper describes these issues and presents cooling calculations
based on a broad collection of equations of state for neutron star matter and strange
matter. These results are tested against the body of observed cooling data.

Key words: Nuclear matter, Quark Matter, Equation of state, Neutron stars,
Cooling
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1 Introduction

Cooling simulations, confronted with soft X-ray, extreme UV, UV and optical
observations of the thermal photon flux emitted from the surfaces of neu-
tron stars, provide most valuable information about the physical processes
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operating in the interior of these objects. The predominant cooling mecha-
nism of hot (internal temperatures T >

∼ 1010 K) newly formed neutron stars
is neutrino emission, with an initial cooling time scale of seconds. Neutrino
cooling still dominates for at least the first thousand years, and typically for
much longer in slow (standard) cooling scenarios. Photon emission eventually
overtakes neutrinos when the internal temperature has sufficiently dropped.
Being sensitive to the adopted nuclear equation of state (EOS), the stellar
mass, the assumed magnetic field strength, superfluidity, meson condensates,
and the possible presence of color-superconducting quark matter, theoretical
cooling calculations serve as a principal window on the properties of super-
dense hadronic matter and neutron star structure. The thermal evolution of
neutron stars also yields information about such temperature-sensitive prop-
erties as transport coefficients, crust solidification, and internal pulsar heating
mechanisms.

We will present here an overview of the current status of neutron star cool-
ing calculations tested against the steadily growing body of observed cooling
data on neutron stars. The reader can also find a complementary approach in
Ref. [1]. Space limitation forbid us to dwell into the discussion of observational
data and we refer the reader to Ref. [2] for a recent compilation and to two
recent observational reviews [3,4] to get a flavor of the difficulties involved in
the analysis and interpretation of the data.

The paper is organized as follows. In § 2 we introduce the basic equations and
the physics input that governs neutron star cooling. Some simple analytical
solutions to the cooling equations are presented in § 3. The minimal cooling
paradigm, which assumes that no enhanced neutrino emission is allowed in
neutron stars, is presented in § 4. In § 5 we discuss enhanced neutron star
cooling via the direct Urca process, meson condensates, and quarks. The cool-
ing behavior of compact stars made of absolutely stable strange quark matter
is explored in § 6. The impact of magnetic fields on cooling and heating mech-
anisms is discussed in § 7 and § 8, respectively while § 9 considers cooling
neutron stars in transiently accreting binary systems. Conclusions are offered
in § 10.

2 Basic Equations and Physics Input

The basic features of the cooling of a neutron star are easily grasped by sim-
ply considering the energy balance equation for the star. In its Newtonian
formulation this equation reads

dEth

dt
= Cv

dT

dt
= −Lν − Lγ + H , (1)
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where Eth is the thermal energy content of the star, T its internal temperature,
and Cv its total specific heat. The energy sinks are the total neutrino luminos-
ity Lν , described in § 2.2, and the surface photon luminosity Lγ , discussed in
§ 2.6. The source term H includes all possible “heating mechanisms” which,
for instance, convert magnetic or rotational energy into heat as summarized
in § 8. Some simple analytical solutions to Eq. (1) will be presented in § 3.

The dominant contributions to Cv come from the core, constituting more
than 90% of the total volume, whose constituents are quantum liquids of lep-
tons, baryons, mesons, and possibly deconfined quarks at the highest densities.
When baryons, and quarks, become paired, as briefly described in § 2.3, their
contribution to Cv is strongly suppressed at temperatures T ≪ Tc (Tc being
the corresponding critical temperature). The crustal contribution is in prin-
ciple dominated by the free neutrons of the inner crust but, since these are
certainly extensively paired, practically only the nuclear lattice and electrons
contribute. Extensive baryon, and quark, pairing can thus significantly reduce
Cv, but by at most a factor of order ten since the leptons do not pair.

All results presented in this chapter were obtained with numerical codes which
exactly solve both the energy balance and the heat transport equations in their
General Relativistic forms (see, e.g., [2,5]). Since the density and chemical
composition of the star, after the proto-neutron star phase, do not change with
time, the Tolman-Oppenheimer-Volkoff equation of hydrostatic equilibrium is
solved initially, for a given EOS, and only the thermal equations are evolved
with time. The outermost, low density, layers of the star do see their structure
evolve during the cooling and they are hence treated separately as an envelope
which is the outer boundary condition and is described in § 2.6.

2.1 The Equation of State (EOS)

The cross section of a neutron star can be split roughly into three, possibly
four, distinct regimes. The first regime is the star’s outer crust, which consists
of a lattice of atomic nuclei and a Fermi gas of relativistic, degenerate electrons.
The second regime, known as the inner crust and where free neutrons appear,
extends from neutron drip density, ∼ 4 − 8 × 1011 g cm−3, to a transition
density of about 2 × 1014 g cm−3. Beyond that density one enters the star’s
third regime, its core matter where all atomic nuclei have dissolved into their
constituents, protons and neutrons. Furthermore, because of the high Fermi
pressure, the inner core may be expected to contain baryon resonances, boson
condensates, hyperons, or/and a mixture of deconfined up, down and strange
quarks [6,7]. The EOS of the outer and inner crust is rather well known.
This is very different for the EOS of the star’s core which is only very poorly
understood. Models derived for it fall into non-relativistic EOS and relativistic,
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Fig. 1. Models for the EOS of high-density neutron star matter computed for dif-
ferent compositions and many-body techniques. (p,n denote protons and neutrons;
H, K−, Q stand for hyperons, K− condensate, and quarks, respectively.)

field theoretical ones.

The most frequently used non-relativistic models for the EOS are based on
the hole-line expansion (Brueckner theory), the coupled cluster method, self-
consistent Green functions, the variational approach (Monte Carlo techniques),
the semi-classical Thomas-Fermi method, and the density functional approach
based on Skyrme effective interactions (for an overview of these methods
and additional references, see for instance Refs. [8–10]). The forces between
hadrons are described in terms of phenomenological nucleon-nucleon inter-
actions, possibly supplemented with three-nucleon interactions to achieve a
better agreement with the binding energy of nuclear matter at the empirical
saturation density. Figure 1 shows two sample models for the EOS of neutron
star matter (protons and neutrons only) which are obtained from variational
calculations based on the Urbana V14 two-nucleon interaction supplemented
with the three-body interactions UVII (left curve) and TNI (right curve) [11].

Relativistic, field-theoretical approaches to the EOS are based on model La-
grangians which generally describe baryons as Dirac particles interacting via
the exchange of mesons. The most important mesons are the σ and the ω,
which are responsible for nuclear binding, while the ρ meson is required to ob-
tain the correct value for the empirical symmetry energy. Nonlinear σ terms
need to be included at the mean-field (relativistic Hartree, RH) level in order
to obtain the empirical incompressibility of nuclear matter [6]. Such terms are
not necessary if the field equations are solved for the relativistic Brueckner-
Hartree-Fock (RBHF) approximation [7]. In contrast to RH, where the param-
eters of the theory are adjusted to the properties of infinite nuclear matter,
the RBHF method makes use of one-boson-exchange potentials whose param-
eters are adjusted to the properties of the deuteron and to the nucleon-nucleon
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X-2 a mass of 1.44±0.06M⊙ [17]), and PSR 1913+16 (1.4408±0.0003M⊙) [18] (in
all three cases quoted mass uncertainties are 1σ).

scattering data. Figure 1 shows several sample EOSs computed for RH and
RBHF, assuming different particle compositions of neutron star matter [7].
Finally we mention that in recent years a new class of effective field theories
was developed which treat the meson-nucleon couplings as density dependent.
These field theories provide a very good description of the properties of nuclear
matter, atomic nuclei as well as neutron stars [12–14].

In Figure 2 we show the mass-radius relationships of neutron stars for different
EOSs: it illustrates the well-known fact that this relationship is very sensitive
to the underlying model for the EOS.

Phase transitions to boson condensates, hyperonic matter, or quark matter,
soften the EOS, hence reducing both the stars gravitational mass and ra-
dius and resulting in a smaller maximum mass sustainable by the EOS. A
generically different mass-radius relationship is obtained for stars made of ab-
solutely stable strange quark matter (strange stars). For them M ∝ R3, which
is only significantly modified if M is close to the mass peak. As pointed out
in [19], strange stars can carry a solid nuclear crust whose density at its base
is strictly limited by neutron drip. This is made possible by the displacement
of electrons at the surface of strange matter, which leads to a strong electric
dipole layer there. The associated electric field is so strong that it holds open
a gap between the nuclear crust and quark matter, preventing the conversion
of the crust into the hypothetical lower-lying ground state of strange mat-
ter. Obviously, free neutrons, being electrically charge neutral, cannot exist
in the crust because they do not feel the Coulomb barrier and thus would
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mal possible nuclear matter density is determined by neutron drip which occurs at
ǫcrust = 0.24 MeV fm−3 (4.3 × 1011 g cm−3). Any nuclear density that is smaller
than that is possible. As an example, we show the EOS for a sample density of
ǫcrust = 10−4 MeV fm−3 (108 g cm−3).

gravitate toward the strange quark matter core where they are converted, by
hypothesis, into strange matter. Consequently, the density at the base of the
crust will always be smaller than neutron drip. The situation is graphically
illustrated in Figure 3 which shows the EOS of a strange star [7,20] carrying
a nuclear crust. Since the crust is bound to the quark matter core by gravity
rather than confinement, the mass-radius relationship of strange stars with
a nuclear crust is intermediate between the one of bare strange stars and of
purely gravitationally bound neutron stars, as shown in Figure 2.

2.2 Neutrino Processes

As already mentioned in the introduction, neutron stars are born with temper-
atures in excess of 1010 K. The dominating cooling mechanism of such objects,
for ∼ 104 − 105 years after birth, is neutrino emission from the interior. After
that, cooling via photon emission from the star’s surface takes over. Tables 1
and 2 summarize the dominant neutrino emitting processes together with their
efficiency for neutron star cooling and we now briefly describe the most impor-
tant ones. The reader is referred to Refs. [7,21–23] for more details. We will
nevertheless comment in § 2.5 on minor neutrino emission processes which
may become important in cases where all the dominant ones, as discussed in
§ 2.3, are suppressed by pairing.

Direct Urca Processes. The beta decay and electron capture processes
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Table 1
Dominant neutrino emitting processes in neutron star cores, in absence of hyperonsa

and quarksb.

Name Processc Emissivityd

(erg cm−3 s−1)

Modified Urca cycle
(neutron branch)

n + n → n + p + e− + ν̄e

n + p + e− → n + n + νe

∼ 2×1021 R T 8
9 Slow

Modified Urca cycle
(proton branch)

p + n → p + p + e− + ν̄e

p + p + e− → p + n + νe

∼ 1021 R T 8
9 Slow

Bremsstrahlung
n + n → n + n + ν + ν̄

n + p → n + p + ν + ν̄

p + p → p + p + ν + ν̄

∼ 1019 R T 8
9 Slow

Cooper pair
formations

n + n → [nn] + ν + ν̄

p + p → [pp] + ν + ν̄

∼ 5×1021 R T 7
9

∼ 5×1019 R T 7
9

Medium

Direct Urca cycle
n → p + e− + ν̄e

p + e− → n + νe

∼ 1027 R T 6
9 Fast

π− condensate n+ < π− >→ n + e− + ν̄e ∼ 1026 R T 6
9 Fast

K− condensate n+ < K− >→ n + e− + ν̄e ∼ 1025 R T 6
9 Fast

a In the presence of hyperons, most processes listed here have corresponding ones
with hyperons replacing nucleons.
b See Table 2 for quark processes.
c Where µ− are present, all processes involving e− have a corresponding one with
µ−, νµ, and ν̄µ replacing e−, νe, and ν̄e, respectively.
d Quoted emissivities are only indicative: each process has its specific dependences
on medium and particle densities, effective masses, plus medium effect corrections,
for which we refer the reader to Refs. [7,21–23]; the many R factors are the respective
temperature dependent control functions which take into account the effects of
pairing as discussed in § 2.3 and detailed in Ref. [22].

among nucleons, n → p + e− + ν̄e and p + e− → n + νe, also known as nucleon
direct Urca process (or cycle), are only possible in neutron stars if the proton
fraction exceeds a critical threshold [24]. Otherwise energy and momentum
can not be conserved simultaneously for these reactions. For a neutron star
made up of only neutrons, protons and electrons, the critical proton fraction
is around 11%. This follows readily from kFn

= kFp
+ kFe

combined with
the condition of electric charge neutrality of neutron star matter. The trian-
gle inequality then requires for the magnitudes of the particle Fermi momenta
kFn

≤ kFp
+kFe

, and charge neutrality constrains them to kFp
= kFe

. Substitut-
ing kFp

= kFe
into the triangle inequality leads to kFn

≤ 2kFp
so that nn ≤ 8np

for the number densities of neutrons and protons. Expressed as a fraction of
the system’s total baryon number density, n ≡ np + nn, one thus arrives at

7



np/n > 1/9 ≃ 0.11 as quoted above. Medium effects and interactions among
the particles modify this value only slightly but the presence of muons raises
it to about 0.15. Hyperons, which may exist in neutron star matter rather
abundantly, produce neutrinos via the direct Urca process Σ− → Λ + e− + ν̄e

with Λ + e− → Σ− + νe and similar ones involving hyperons and nucleons
simultaneously [25]. Which of these processes dominates the cooling depends
on the details of the star’s composition, but in most cases the nucleon direct
Urca process is more efficient than the ones involving hyperons [26,27].

Meson Condensate Urca Processes. The pion or kaon meson fields may
develop condensates in dense neutron star matter. These condensates would
have two important effects on neutron stars. Firstly, they would soften the
EOS above the critical density for onset of condensation, which reduces the
maximal possible neutron star mass. Secondly, since the condensate, <π−>
or <K− >, can absorb as little or as much momentum as required by the
scattering processes n+ <π−>→ n + e− + ν̄e or n+ <K−>→ n + e− + ν̄e,
the resulting neutrino emissivities of meson-condensed matter [28–30], even
though not as high as the ones of the direct Urca processes (see Table 1),
still lead to fast cooling [31–33]. Since the K−-condensate process involves
strangeness change it is less efficient than the π−-condensate process, roughly
by a factor sin2 θC ≃ 1/20 (θC being the Cabibbo angle). However, medium
effects can reduce the π−-condensate process by about one order of magnitude
and make it comparable to the K−-condensate one [34]. Estimates predict the
onset of charged pion condensation at a density nπ

cr ∼ 2n0 (n0 = 0.16 fm−3

being the empirical nuclear matter density). However, this value is very sen-
sitive to the strength of the effective nucleon particle-hole repulsion in the
isospin-1, spin-1 channel, which tends to suppress the π-condensation mech-
anism and may push nπ

cr to much higher values. Similarly, depending on the
nuclear model, the threshold density for the onset of kaon condensation, nK

cr ,
is at least of the order of 4n0 [35].

Modified Urca Processes. In absence of hyperons or meson condensates,
or in case the proton fraction is below threshold, none of the above described
Urca processes is possible. In this case, the dominant neutrino emission process
is a second order process, variant of the direct Urca process, called modified
Urca process [36,37], in which a bystander neutron or proton participates to
allow momentum conservation (see Table 1). Since this modified Urca process
involves 5 degenerate fermions, instead of three for the direct Urca and meson
Urca processes, its efficiency is reduced, simply by phase space limitation, by
a factor of order (T/TF)2. This reduction, for TF ∼ 100 MeV and T = 0.1 MeV
≃ 109 K, amounts to about 6 order of magnitude (!) and an overall temperature
dependence T 8 instead of T 6. It is certainly the dominant process for not too
high densities in absence of pairing, and is the essence of the old “Standard
Cooling Scenario”. However, in presence of pairing, neutrino emission by the
constant formation of Cooper pairs, see § 2.3, most probably dominates over
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Table 2
Dominant neutrino emitting processes in deconfined quark matter.

Name Processa Emissivityb Efficiency

(erg cm−3 s−1)

Direct Urca cycle
(ud branch)

u + e− → d + νe

d → u + e− + ν̄e

∼ 1026 R T 6
9 Fast

Direct Urca cycle
(us branch)

u + e− → s + νe

s → u + e− + ν̄e

∼ 1025 R T 6
9 Fast

Modified Urca cycle
(ud branch)

Q + u + e− → Q + d + νe

Q + d → Q + u + e− + ν̄e

∼ 1021 R T 8
9 Slow

Modified Urca cycle
(us branch)

Q + u + e− → Q + s + νe

Q + s → Q + u + e−ν̄e

∼ 1020 R T 8
9 Slow

Bremsstrahlungs Q1 + Q2 → Q1 + Q2 + ν + ν̄ ∼ 1019 R T 8
9 Slow

Cooper pair
formations

u + u → [uu] + ν + ν̄

d + d → [dd] + ν + ν̄

s + s → [ss] + ν + ν̄

∼ 2.5×1020 R T 7
9

∼ 1.5×1021 R T 7
9

∼ 1.5×1021 R T 7
9

Medium

a Muons are never present in quark matter. In case the quark matter is negatively
charged e+ are present instead of e− and processes involving e− are replaced by
similar ones involving e+.
b Quoted emissivities are only indicative: each process has its specific dependences on
medium and particle densities, strange quark mass ms, and color coupling constant
αc, see Ref. [7,41,42] for more details; the many R factors are the respective control
functions which take into account the effects of pairing as discussed in § 2.3.

the modified Urca process.

Since the modified Urca process involves a strong interaction for the momen-
tum exchange between the neutrino emitting nucleon and the bystander one,
it is prone to medium corrections which seem to result in a reduction of emis-
sivity (see. e.g., [38,39]). However, softening of the pion mode, which even-
tually leads to π−-condensation, do results in a very strong enhancement of
the emissivity when the density approaches nπ

cr, and gives a smooth transition
from the modified Urca process toward the π−-condensate process through a
medium-modified-Urca process (“MMU” process [23,40]).

The Quark Urca Processes. The neutrino emission processes in non-super-
conducting quark matter [41] can be divided into slow and fast ones, in com-
plete analogy to the nucleon processes discussed above, and the dominant pro-
cesses are listed in Table 2. The fast quark direct Urca processes d → u+e−+ν̄e

and s → u + e− + ν̄e are only possible if the Fermi momenta of quarks and
electrons obey the triangle inequalities associated with these reactions, which
are kFd

< kFu
+kFe

and kFs
< kFu

+kFe
. If the electron Fermi momentum, kFe

,
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in quark matter is too small for the quark triangle inequalities to be fulfilled,
a bystander quark is needed to ensure energy and momentum conservation in
the scattering process. This latter case is referred to as quark modified Urca
process. The emissivities associated with the quark modified Urca processes
are considerably smaller than those of the direct Urca processes because of
the different phase spaces associated with two-quark scattering and quark
decay. In the extreme case when the electron fraction vanishes entirely in
quark matter, both the quark direct and the quark modified Urca processes
become unimportant. The neutrino emission from the star is then dominated
by bremsstrahlung processes, Q1 + Q2 → Q1 + Q2 + ν + ν̄, where Q1 and Q2

denote any pair of quark flavors. In this case, stellar cooling proceeds rather
slowly.

Notice that non-Fermi liquid corrections lead to an enhancement of the emis-
sivities compared to the results of [41] and Table 2, which for the direct Urca
is of order (log(mc2/kBT ))2, with mc2 ∼ 400 MeV [43]. However this effect
has not yet been incorporated in numerical calculations and is balanced by a
similar increase in the specific heat so that the net result of non-Fermi liquid
effect is not expected to be very large [43].

2.3 Pairing

Pairing will unavoidably occur in a degenerate Fermi system in case there is
any attractive interaction between the particles. In case of the baryons, and
quarks, in the neutron star interior there are many candidates for channels
of attractive interactions, and the real question is rather what is the critical
temperature Tc at which pairing occurs? Calculation of Tc are notoriously
difficult and results often highly uncertain. We refer the reader to [44,45]
for detailed reviews. With respect to leptons, there is no obvious attractive
interaction which could lead to pairing with a Tc of significant value.

In the case of nucleons, at low Fermi momenta, pairing is predicted to occur
in the 1S0 angular momentum state while at larger momenta neutrons are
possibly paired in the 3P2 −

3F2 state (the mixing being due to the tensor
interaction). In the case of the neutron 1S0 pairing, which occurs at densities
corresponding to the crust and, possibly, the outermost part of the core, much
efforts have been invested in its study and calculations are converging with
time when more and more sophisticated many-body models are used. In the
case of the proton 1S0 pairing the situation is more delicate since it occurs
at densities (in the outer core) where protons are mixed, to a small amount,
with neutrons. Predictions for Tc span a much wider range than in the case of
the neutron 1S0 gap. Whether or not neutrons pair in the 3P2 −

3F2 channel
is still uncertain, since even the best available models for the nucleon-nucleon

10
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Fig. 4. Predictions for the nucleon pairing Tc. Left panel: neutron 1S0 pairing; three
most recent calculations (continuous lines) which include medium polarization ef-
fects while the dotted line shows the result in case these effects are neglected. Right
panel: same for protons; no polarization effects are taken into account except for the
continuous curve; the shaded area shows the range of expected Tc’s when polariza-
tion is taken into account, according to the estimates of [50]. Central panel: neutron
3P2 pairing; three typical results, none including polarization effects, illustrating the
possible range according to [46]. See [2] for details and references.

interaction fail to reproduce the measured 3P2 phase shift in vacuum [46].
Moreover, the results of [47], which consider polarization contributions to the
effective interaction, indicate that this gap may be vanishingly small. A set of
representatives predictions for the nucleon gaps are shown in Figure 4.

The enormous impact of pairing on the cooling comes directly from the ap-
pearance of the energy gap ∆ at the Fermi surface which leads to a suppression
of all processes involving single particle excitations of the paired species. When
T ≪ Tc the suppression is of the order of e−∆/kBT and hence dramatic. The
suppression depends on the temperature dependence of ∆ and the details of
the phase space involved in each specific process. In numerical calculations it
is introduced as a control function. For the specific heat one has

cv(T ) −→ cpaired
v (T ) = Rc(T/Tc) × cnormal

v (T ) , (2)

and the control functions have been calculated for both 1S0 and 3P2 pairing
in [48]. For neutrino processes there is a long family of control functions for
all processes which must also consider which of the participating baryons are
paired. As for cv one uses

ǫν(T ) −→ ǫpaired
ν (T ) = Rν(T/Tc) × ǫnormal

ν (T ) , (3)

and the Rν ’s for many processes can be found in [49]. We plot in Figure 5
several examples of control functions.

It is important to notice that the gap ∆ is actually a function of the particle
momentum, ∆ = ∆(k). For 1S0 pairing it is isotropic, i.e., ∆ = ∆(k), but for
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3P2−
3F2 pairing the angular dependence of ∆(k) is complicated. In this latter

case many phases, with distinct angular dependences of ∆(k) are possible
([51] found there are at least 13 of them) and for several of them ∆(k) has
nodes at some points or along some lines on the Fermi surface. The control
functions plotted in Figure 5 assume nodeless gaps, but in cases of 1D nodes
R ∼ (T/Tc)

2, while for 2D nodes R ∼ T/Tc, at T ≪ Tc instead of a Boltzmann-
like suppression.

Cooper Pair Breaking and Formation (PBF) Processes. Besides the
above described, and well known, suppressing effects on the specific heat and
neutrino emissivities, the onset of pairing also opens new channels for neu-
trino emission. The superfluid or superconducting condensate is in thermal
equilibrium with the single particle (“broken pairs”) excitations and there is
continuous formation and breaking of Cooper pairs, which are very intense at
temperatures slightly below Tc. The formation of a Cooper pair liberates an
energy which can be taken away by a ν-ν pair [52,53]

X + X −→ [XX] + ν + ν (4)

where [XX] denotes a Cooper pair of particles X (X stands for neutrons,
protons, hyperons, quarks, etc.). As an example, the emissivity for neutron
3P2 pairing is [49] 3

qn, 3P2

ν = 8.6 × 1021
(

nn

n0

)1/3 (m∗
n

mn

)

× R3P2
(T/Tc)

(

T

109 K

)7

, (5)

where the control function R is plotted in the right panel of Figure 5: the
process turns on at T = Tc, with an increasing efficiency when T decreases,
since the energy of the emitted neutrinos is determined by the gap’s size
which grows with decreasing temperature just below Tc, and is eventually
exponentially suppressed when T ≪ Tc as pair breaking is frozen because
kBT ≪ ∆. This process can be seen as a bremsstrahlung with a very strong

3 Our control function R differs from the F of Eq. (236) in [49] in that it is nor-
malized to have a maximum value of one.
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correlation in the final state and referring to Tables 1 and 2, one sees that it is
much more efficient that the simple bremsstrahlung and it can even dominate
over the standard modified Urca process. This process, which is as standard
as the modified Urca process, is an essential ingredient of the Minimal Cooling
Paradigm described in § 4. Analogous processes occur for all cases of pairing:
neutron, proton, hyperons, and quarks [42].

2.4 Color-Superconductivity of Quark Matter

Already several decades ago it had been suggested that the attractive force
among quarks may cause them to form Cooper pairs [54,55]. Originally the
gap was estimated to be around ∆ = 0.4 MeV [55]. Recently, however, it was
discovered that the condensation patterns of quark matter are much more
complex than originally thought [56,57]. This has its origin in the fact that
quarks come in different colors, different flavors, and different masses. More-
over, bulk matter is neutral with respect to both electric and color charge, and
is in chemical equilibration under the weak interaction processes that turn one
quark flavor into another. Depending on density and temperature, quarks may
thus condense in one of the following pairing schemes. At asymptotic densi-
ties the ground state of (3-flavor) QCD with a vanishing strange quark mass
is the color-flavor locked (CFL) phase in which all three quark flavors par-
ticipate symmetrically. This phase has been shown to be electrically neutral
without any need for electrons for a significant range of chemical potentials
and strange quark masses [58]. In the opposite limit where the strange quark
mass ms is large enough that strange quarks can be ignored, then up and down
quarks may pair in the 2-flavor superconducting (2SC) phase. Other possible
condensation patterns are CFL-K0, CFL-K+ and CFL-π0,−, gCFL (gapless
CFL phase), 1SC (single-flavor-pairing), CSL (color-spin locked phase), and
the LOFF (Larkin, Ovchinnikov, Fulde, and Ferrell) crystalline pairing phase,
depending on the quark flavor densities, the quark chemical potential µq, and
electric charge density. For chemical potentials that are of astrophysical inter-
est, µq < 1000 MeV, the color gap is between 50 and 100 MeV, which has a
significant impact on stellar cooling by neutrino emission.

2.5 Comments on minor neutrino emission processes

The neutrino processes described in § 2.2 are usually the dominant ones but
in particular cases some minor processes may become important.

During the first few years of the life of the compact star the surface tem-
perature is entirely controlled by neutrino emission in its upper layers and
is independent of what is happening in the core [29,59–61]. In this case the
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dominant process is plasmon decay (see, e.g., [49]) which very efficiently cools
every layer in the the outer crust until the temperature T drops below ~ΩP /kB

(ΩP being the electron plasma frequency in the layer) and plasmons are expo-
nentially suppressed. As a result, the effective temperature is Te ≃ 2.5 × 106

K (in case of a heavy element envelope) for all young compact stars inde-
pendently of the core temperature, as can be seen from the numerical results
presented in Figure 11. Later on the crust will cool by neutrino emission from
the electron-ion and electron-electron bremsstrahlung processes [49,62] and
the PBF process from the neutron 1S0 superfluid in the inner crust. This is
not very important at present time since there are no data about such young
compact stars, but may become essential in case a compact object is detected
within the remnant of the supernova SN 1987A.

For middle-age stars, in case all processes described in § 2.2 and § 2.3 are
strongly suppressed by very large gaps, neutrino emission from the crust, as
described in the previous paragraph, is important. Despite of the small amount
of mass present in the crust, omission of its neutrino emission may then lead
to erroneous results, i.e., too warm stars. All numerical results presented in
this paper of course include these processes.

2.6 The Surface Photon Luminosity and the Envelope

The photon luminosity Lγ is traditionally expressed as

Lγ = 4πR2 · σSBT
4
e , (6)

which defines the effective temperature Te (σSB being the Stefan-Boltzmann
constant and R the stellar radius). The quantities L, R, and Te are local
quantities as measured by an observer at the stellar surface. An external ob-
server “at infinity” will measure these quantities red-shifted, i.e., L∞ = e2φLγ ,
T∞ = eφTe, and R∞ = e−φR, where e2φ ≡ g00 is the time component of the
metric and is related to the red-shift z by e−φ = 1 + z, so that

L∞ = 4πR2
∞ · σSBT 4

∞ . (7)

The luminosity Lγ , or L∞, is the main output of a cooling calculation, and it
can equally well be expressed in terms of Te or T∞.

Numerical simulations calculate the time evolution of the internal temperature
T = T (ρ, t) and luminosity L = L(ρ, t) profiles (viewed as functions of the
density ρ instead of the radius r) up to an outer boundary ρb. This boundary
is chosen such that at this point the diffusive luminosity L(ρb) is equal to the
photon luminosity at the surface, i.e., L(ρb) ≡ Lγ , and an envelope model is
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glued as an outer boundary condition. Typically ρb is taken as 1010 g cm−3 and
the envelope is thus a thin layer, of the order of a hundred meters thick, which
is treated in the plane parallel approximation. Assuming that the thermal
relaxation time-scale of the envelope is much shorter than the stellar evolution
time-scale, and that neutrino emission in the envelope is negligible, hydrostatic
equilibrium and heat transport reduce to ordinary differential equations which,
with the appropriate physical input, are easily solved. The result is a surface
temperature Ts ≡ Te for each given Tb ≡ T (ρb). It is usually called a Tb − Ts

or Tb − Te relationship. Through Eq. (6), this gives us a relationship between
L(ρb) ≡ Lγ and T (ρb) which is the outer boundary condition for the cooling
code.

It has been shown in Refs. [63,64] that Te is actually controlled by a “sensi-
tivity layer”, where electrons become partially degenerate and ions are in the
liquid phase. At higher densities the highly degenerate electrons are extremely
efficient in transporting heat while at lower densities photons take over and
are also very efficient. The density at which the sensitivity layer is located in-
creases with increasing Tb. This sensitivity layer is hence a throttle and, once
heat has passed through it, it can freely flow to the surface and be radiated.
The layers at densities below the sensitivity layer have no effect at all on the
thermal evolution of the star, since they are unable to alter the heat flow,
but the outermost layer, the photosphere, is of course of upmost observational
importance since it is there that the energy distribution of the emerging flux,
i.e., the observable spectrum, is determined.

Gluing an envelope to an interior solution is a standard technique in stellar
evolution codes. For neutron stars it has two extra advantages: it relieves us
from solving for hydrostatic equilibrium in the interior, since matter there is
degenerate, and, most importantly, it allows one to easily include magnetic
field effects. The magnetic field slightly enhances heat transport along it but
strongly suppresses it in the perpendicular direction, resulting in a highly
non uniform surface temperature [65]. Assuming that magnetic field effects on
heat transport are negligible at ρ > ρb one keeps spherical symmetry in the
interior and thus has a unique Tb at ρb. For this given uniform Tb one can
piece together a set of envelope calculations for the various field strengths and
orientations along the stellar surface, corresponding to the assumed magnetic
field structure, and thus obtain a non uniform surface temperature distribution
Ts(θ, φ), in spherical coordinates (θ, φ) [66,67]. The effective temperature is
simply obtained by averaging the locally emerging photon flux Fγ(θ, φ) ≡

σSB T 4
s (θ, φ) over the whole stellar surface

T 4
e ≡

1

4π

∫ ∫

T 4
s (θ, φ) sin θ dθdφ (8)
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Fig. 6. Two examples of surface temperature distributions induced by the magnetic
field, in an area preserving projection of the neutron star surface (grey shading,
shown on the right scale, follows the surface flux instead of the temperature). Left
panel assumes a dipolar field, with strength 1.2 × 1012 G at the pole located at
(θ, φ) = (90o, 90o): for a core temperature of 4.05× 107 K it gives Te = 5.43× 105 K
(see Eq. 8) while the maximum and minimal surface temperatures, at the magnetic
poles and along the magnetic equator, respectively, are Tmax = 6.70 × 105 K and
Tmin = 1.4 × 105 K. The right panels shows the effect the same dipolar field to
which a quadrupolar component has been added: this results in Te = 5.31 × 105 K.
This particular latter case allows one to reproduce the observed ROSAT X-ray pulse
profile of Geminga (see Figure 6 in [67]) which shows a single very broad pulse while
a purely dipolar field would result in a double pulse profile (assuming the observer
is in the direction θ ≃ 90o and emission is isotropic blackbody). Finally, in absence
of magnetic field, the same internal temperature would result in Te = 5.54× 105 K.
The star’s mass and radius are, resp., 1.4 M⊙ and 10 km.

Two examples of such temperature distributions are illustrated in Figure 6.
The overall effect on Te is nevertheless surprisingly small, see, e.g., [66,67]
and the examples in Figure 6, and a non-magnetic envelope is actually a
rather good approximation. However, the assumption of spherical symmetry
at ρ > ρb is questionable and will be discussed in § 7.

Given that the overall effect of the magnetic field, in the envelope, is not
very strong, it turns out that the major uncertainty about the envelope is
its chemical composition. The standard neutron star crust is made of cold
catalyzed matter, which means 56Fe at low density (ρ < 106 g cm−3). However
real neutron stars may be dirty and have lighter elements at their surface.
As was shown in [68] the presence of light elements in the envelope strongly
enhances heat transport (e.g., the electron thermal conductivity within liquid
ions of charge Z, in the sensitivity layer, is roughly proportional to 1/Z, [69])
and results in a significantly higher Te, for the same Tb, than in the case
of a heavy element envelope. Due to pycnonuclear fusion, light elements are
unlikely to be present at densities above 109 g cm−3. At very high Te this
density is below the sensitivity layer and light elements have little effect, but
for Te within the observed range (∼ 105 − 106 K) the sensitivity layer is at
a sufficiently low density so that it can easily be contaminated with light
elements and the Tb − Te relationship can be significantly altered. However, if
only a small amount of light elements is present at the surface their effect will
only be felt a low Te. We show in Figure 7 the Tb−Te relationships for various
amounts of light elements and also, for comparison, the case of a magnetized
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Fig. 7. Relationship between the red-shifted effective temperature T∞
e and the in-

terior temperature Tb at the bottom of the envelope assuming various amounts of
light elements parameterized by η ≡ g2

s 14∆ML/M (M is the star’s mass, ∆ML the
mass in light elements in the envelope, and gs 14 the surface gravity in units of 1014

cm s−2; this figure assumes gs 14 = 2.43), in the absence of a magnetic field [70]. Also
shown are the Tb − T∞

e relationships for an envelope of heavy elements with and
without the presence of a dipolar field of strength of 1011 G following [71]. Notice
that the smaller is ∆ML the lower is the temperature at which its effect is felt.

envelope with a 1011 G dipolar magnetic field.

3 Some simple analytical solutions

Assuming simplified physics input one can easily obtain some very illustrative
analytical solutions to the cooling Eq. (1). Let us write

Cv = C · T , Lslow
ν = N s · T 8 , Lfast

ν = N f · T 6 , (9)

for the specific heat from degenerate fermions and neutrino emission with only
“slow” processes or with some of the “fast” processes listed in Table 1. For Lγ

we write

Lγ ≡ 4πR2σSBT 4
e = ST 2+4α using Te ∝ T 0.5+α (α ≪ 1) , (10)

where Te has been converted into the internal temperature T through an
envelope model with a power-law dependence. Figure 7 shows that for a heavy
element envelope or for an envelope with a large amount of light elements this
power-law relation is a good approximation in a wide range of temperatures.
Typical values for the numerical coefficients in Eqs. (9) and (10) are listed in
Table 3.

Due to the much stronger T dependence of Lν compared to Lγ, at early times
neutrino emission drives the cooling and when T has sufficiently decreased
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Table 3
Typical numerical coefficients for simplified power-law cooling models

C N s N f S α

erg K−2 erg s−1 K−8 erg s−1 K−6 erg s−1 K−2−4α

high 1030 10−32 10−9 4 × 1014 0.1

low 1029 10−34 0 2 × 1015 0.05
Comments:

C: “low” value corresponds to the leptons contribution only, i.e., assuming all baryons are paired with high

Tc’s, while “high” value corresponds to total absence of pairing.

Ns: ”high” value corresponds to total absence of pairing while ”low” value assumes complete pairing of

baryons in the core and neutrino emission is then provided predominantly by the electron-ion bremsstrahlung

in the crust, which can also be very roughly approximated by a luminosity ∼ T 8.

N f : “high” value corresponds approximately to an inner core of 1 M⊙ sustaining a direct Urca process with

nucleons, “low” value of course corresponds to total absence of fast neutrino emission.

S and α: “high” corresponds to an envelope with a maximum amount of light elements while “low” corre-

sponds to an envelope made of heavy elements, in both cases with a stellar radius R ∼ 12 km.

photons will take over.

(1) During the neutrino cooling era we can neglect Lγ in Eq. (1) and, with
our approximate formulas of Eq. (9), obtain analytical solutions

Slow ν

cooling











: t =
C

6N s

(

1

T 6
−

1

T 6
0

)

;
Fast ν

cooling











: t =
C

4N f

(

1

T 4
−

1

T 4
0

)

, (11)

where T0 is the initial temperature at time t0 ≡ 0. For T ≪ T0, this gives, for
slow ν cooling

T =
(

C

6N s

)

1

6

t−
1

6 and Te
∼
∝ t−

1

12 , (12)

and for fast ν cooling

T =
(

C

4N f

)

1

4

t−
1

4 and Te
∼
∝ t−

1

8 (13)

(we have used that α ∼ 0). The very small exponent in the Te evolution during
neutrino cooling is a direct consequence of the strong temperature dependence
of Lν . The neutrino cooling time scales are also very suggestive:

τ slow
ν =

C

6N sT 6
≃ 6 months ·

[

C30

6N s
−32T

6
9

]

, (14)
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and

τ fast
ν =

C

4N fT 4
≃ 4 minutes ·

[

C30

6N f
−9T

4
9

]

, (15)

and justify the names of “slow” and “fast” neutrino cooling! Notice that 109 K
is a typical value for the baryon pairing Tc, and hence, in case of fast neutrino
cooling, one can expect that a few minutes after the star is born its core may
become superfluid/superconducting, and the neutrino emission very strongly
suppressed.

(2) During the photon cooling era (Lγ ≫ Lν) one similarly obtains

t = t1 +
C

4α S

(

1

T 4α
−

1

T 4α
1

)

, (16)

where T1 is the temperature at time t1. When t ≫ t1 and T ≪ T1, we have

T =
(

C

4αS

)

1

4α

t−
1

4α and Te
∼
∝ t−

1

8α . (17)

Since α ≪ 1, we see that, during the photon cooling era, the evolution is
very sensitive to the nature of the envelope, i.e., α and S, and to changes in
the specific heat, as induced by pairing. Notice that in case α = 0 one would
obtain an exponential solution instead of a power law.

The shift from neutrino to photon cooling: the temperature Tshift at
which this happens is also easily estimated by equating Lν to Lγ , giving for
slow ν cooling

T s
shift ≃

(

S

N s

)1/6

∼ 108 K and Te ∼ 106 K (18)

and for fast ν cooling

T f
shift ≃

(

S

N f

)1/4

∼ 106 K and Te ∼ 105 K (19)

However, for fast ν cooling N f can be significantly reduced by pairing and
hence T f

shift increased. One may also want to obtain an estimate of the age
tshift at which this happens by using Eq. (12) and (13). It is however now
important to keep the α dependence in Lγ , Eq. (10), and, for small α one
obtains, for slow ν cooling, tsshift = C/6S(N s/S)(2/3 α) and a similar expression

19



for fast ν cooling. Given that N/S is a very small number, the value of tshift

is extremely sensitive to the exact value of α, and also of N which can be
altered by several orders of magnitude by pairing. Considering moreover that
these simple solutions are based on approximate formulas, such results for tshift

are not very useful in themselves for numerical estimates but show that tshift

can change significantly by small changes in the interior (through N and C)
and/or surface (through S and α) physics. The numerical results presented in
the following sections show that tshift can vary from about 104 yrs up to about
106 years, for both slow and fast ν cooling.

4 The “Minimal Cooling” paradigm

The Minimal Cooling paradigm assumes that no enhanced neutrino emission
is allowed, in particular, that no form of “exotic” matter is present in the
inner core of the star. It is hence a benchmark against which observations
of cooling neutron stars have to be compared, and a discrepancy between
the minimal cooling theoretical predictions and data should be considered as
strong evidence for physics beyond minimal. As such the minimal paradigm
excludes a priori the presence of charged meson condensates, hyperons, and/or
deconfined quark matter, but it also assumes that the growth of the symmetry
energy with density is slow enough that the nucleon direct Urca process is
forbidden. It can be seen as a modern version of the “Standard Cooling”
scenario but with the important difference that the effects of nucleon pairing
are wholly taken into account, particularly the strong neutrino emission from
the formation of Cooper pairs during the pairing phase transition 4 .

This paradigm is studied in great detail in Ref. [2]. Its tenets immediately
imply strong constraints on the supernuclear equation of state, resulting in
stellar radii between 11 to 12 km for a 1.4 M⊙ mass and between 9 to 10 km
at the maximum mass (the latter being not so strongly constrained, around
1.7 up to 2.3 M⊙). Neutrino emission from the core comprises the neutron
and proton branches of the modified Urca processes and the similar, but less
efficient, n-n, n-p, and p-p bremsstrahlung processes (see Table 1), which are
inherited from the old “standard” scenario. However, essential and unavoid-
able within the minimal scenario is the occurrence of nucleon pairing. The
resulting suppression of both the nucleonic specific heat and the above men-
tioned neutrino emission processes is well known, but a result is that neutrino
emission by the PBF process is dominating for most cases of pairing gaps.
This is illustrated in Figure 8: the left panel clearly shows that for Tc’s of the

4 The motivation for the renaming from “Standard” to “Minimal” is precisely that
“Standard Cooling” is commonly understood as “Modified Urca Cooling” while, in
presence of pairing, the dominant process is the PBF process.
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Fig. 8. Left Panel: neutrino luminosities from the PBF process for four different
neutron 3P2 − 3F2 gaps (labeled “a”, “b”, and “c’ as in Figure 4 while the gap
labeled “T72” is taken from [72]). The lower left panel shows the four gaps’ Tc vs.
the enclosed volume (left scale) and density (right scale) and the upper left panel
the corresponding PBF luminosities as well as the surface photon luminosity while
the dashed curve shows, for comparison, the total luminosity from modified Urca
and nucleon bremsstrahlung processes without pairing suppression. Luminosities are
calculated assuming an isothermal star so that, e.g., with a temperature of 2× 109

K, one can see that in case of gap “b”, two regions have unpaired neutrons: the inner
core at ρ above ∼ 8.5×1014 g cm−3 and a corresponding volume of ∼ 1.1×1018 cm3,
and the outer core at ρ below ∼ 3×1014 g cm−3 and corresponding volume of about
∼ (11.5 − 9.8) × 1018 ≃ 1.7 × 1018 cm3, while the intermediate region, of volume
≃ 9 × 1018 cm3 has T slightly below Tc and produces the large Lν by the PBF
process shown in the upper panel. Right panel: comparison of luminosities from
various processes during a realistic cooling history: photon (“γ”), all ν-processes
(“Total ν”), modified Urca and nucleon bremsstrahlung (“MU-Br. ν”), and PBF
(“PBF ν”) from n 3P2−

3F2 and p 1S0 pairing marked by “n” and “p”, respectively.
The n 3P2 −

3F2 gap is our model “a” which, as shown on the left panel, is amongst
the most efficient one for the PBF process while the p 1S0 gap is from [73]. All
results are from Ref. [2].

order of 109 K, as in the cases “a” and “T72”, the PBF process is more than
one order of magnitude more efficient than the unsuppressed modified Urca
and bremsstrahlung processes when T is below Tc. Once the pairing suppres-
sion of these last two processes are taken into account the PBF process can
dominate by up to two orders of magnitude as shown in the right panel of
Figure 8. The left panel of Figure 9 compares the effects of various neutron
3P2 −

3F2 gaps, confirming the results of the previous figure that Tc ∼ 109 K
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Fig. 9. Minimal cooling. Left panel: comparison of cooling trajectories with vanishing
n 3P2 − 3F2 gaps, labeled “0”, and the three model gaps “a”, “b”, and “c” (see
Figure 4). Right panel: dependence of the cooling trajectory on the stellar mass
without pairing, where the mass effect is almost indistinguishable, and with only
proton 1S0 pairing (dashed curves) and both proton 1S0 and neutron 3P2 − 3F2

pairing. Results from Ref. [2].

provides the strongest PBF neutrino cooling, while the right panel consider
the effect of the stellar mass, which turns out to be rather weak. Only in case
of extensive nucleon pairing can we find some small mass dependence.

Comparison of the predictions of the Minimal Cooling paradigm with the data
is shown in Figure 10. Predictions assuming a heavy element or a light element
envelope are plotted separately and, for each envelope model, the width in the
predictions is a result of the uncertainty in the size of the nucleon pairing
gaps. Each wide grey strip encompasses the whole range of results when all
gaps shown in Figure 4 are used. The small mass dependence is also included in
these results. Objects with the best data, shown as boxes in the figure, show a
remarkably good agreement with the theoretical results of the minimal cooling.
One may still focus on two stars, PSR 1055–52 and RX J0720.4–3125, which
may be warmer than predicted and could be cases in which some internal
heating mechanism is at work. On the other side, PSR 0833–45 (“Vela”) and
PSR 1706–44, may be too cold and require some enhanced neutrino emission.
However, much stronger cases for the necessity of enhanced neutrino emission
are the two pulsars PSR J0205+6449 and RX J0007.0+7302 which are clearly
below any of the predictions of the minimal cooling paradigm. Finally, the
upper limits on the luminosity of the neutron star which may be present in
the four SNRs marked as “a”, “b”, “c”, and “d” in this figure doubtlessly
require enhanced neutrino emission in case any of these SNRs contained a
neutron star. Similar results has been recently obtained in Ref. [74] which,
with ad-hoc gaps, showed that even PSR J0205+6449 and RX J0007.0+7302
could be accommodated within the minimal paradigm.
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Fig. 10. Comparison of the predictions of the Minimal Model of neutron star cooling
with the best presently available data. The two dark grey shaded areas correspond
to models having a heavy element envelope or an envelope with a maximum amount
of light elements, as labeled, and the light grey area indicate intermediate trajecto-
ries corresponding to intermediate amounts of light elements in the envelope. The
spread of predictions, for each envelope type, corresponds to different assumptions
about the extent of nucleon (neutron and proton) pairing. Boxes correspond to
neutron stars where surface thermal emission is clearly detected and which have
been studied in detail: 1 to 6 are obtained from spectral fits with magnetized hy-
drogen atmospheres while 7 to 11 are from blackbody fits. These stars are: 1 - RX
J0822–4247 (in SNR Puppis A), 2 - 1E 1207.4–5209 (in SNR PKS 1209–52), 3 -
PSR 0538+2817, 4 - RX J0002+6246 (in SNR CTB 1), 5 - PSR 1706–44, 6 - PSR
0833–45 (in SNR “Vela”), 7 - PSR 1055–52, 8 - PSR 0656+14, 9 - PSR 0633+1748
(“Geminga”), 10 - RX J1856.5–3754, and 11 - RX J0720.4–3125. The next four
stars, labeled as A, B, C, and D, are barely detected and in case C there is no
evidence for thermal emission: A - CXO J232327.8+584842 (in SNR Cas A), B -
PSR J0205+6449 (in SNR 3C58), C - PSR J1124–5916 (in SNR G292.0+1.8), and,
D - RX J0007.0+7302 (in SNR CTA 1). The last four data points, a, b, c, and d, are
from deep observations of four shell SNRs, considered as products of core collapse
supernovae, in which there is no evidence of any kind for the presence of a compact
object; they may correspond to very cold neutron stars or isolated black holes: a - ?
(in SNR G315.4–2.3), b - ? (in SNR G093.3+6.9), c - ? (in SNR G084.2–0.8), and,
d - ? (in SNR G127.1+0.5). See Ref. [2] for discussion and references.
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5 Enhanced Cooling

In the core, almost any chemical composition beyond the one of the minimal
scenario will open channels for enhanced neutrino emission which possibly
results in extremely fast cooling of the neutron star. The left panel of Figure
11 illustrates the effect of the direct Urca process from nucleons in a model
where this process is allowed for masses above 1.35 M⊙ (this specific critical
mass is of course very model dependent). Notice that the 1.4 M⊙ star has
an inner “pit” where the direct Urca process is occurring with a mass of only
0.038 M⊙ , while the 1.7 M⊙ star’s “pit” is above 1 M⊙ . After the early phase,
at ages a few tens of years, the rapid temperature drop in fast cooling stars
is due to the finite thermal relaxation time of the crust and heavier stars,
having thinner crusts, relax faster. The right panel of this figure compares
the impact of the direct Urca process on stellar cooling with other enhanced
cooling processes, which originate from pion condensation, kaon condensation
and the direct quark Urca process. Differences between these models come as
much from the various efficiencies for neutrino emission as from the various
critical densities at which enhanced emission becomes allowed. Comparison
with the data plotted here shows that any of these fast cooling processes
results in stars with temperature clearly incompatible with observations.

This naive picture is strongly affected when baryon pairing is taken into ac-
count [31,75,76]. As discussed in § 2.3 the development of an energy gap in-
duces a suppression of the neutrino emission for any process in which the
paired component participates. As can be seen from the left panel in Fig-
ure 12, neutron superfluidity (3P2 −

3F2 in the present example with a small
superfluid gap of 0.3 MeV [5]) delays cooling significantly and moves the the-
oretical temperatures right up to the region where most observed data are
concentrated. Similar results are obtained with all enhanced cooling scenarios
as, e.g., nucleon direct Urca [76], K− or π− condensates [31,77,78], hyperons
[79–81] or hyperons with deconfined quarks [81]. With a high enough value of
Tc the enhanced neutrino emission may not even have time to act and result in
stellar temperatures as high as the ones obtained within the minimal scenario
[76].

The right panel of Figure 12 illustrates several of these considerations [81].
This panel shows cooling curves for models with only nucleons (thin contin-
uous curves) and with nucleons and an hybrid phase of nuclear+deconfined
quark matter (dashed curves and dotted curves) and various hypotheses about
pairing. Nucleon and quark direct Urca processes are allowed, except in the
case marked as “Mc” where they are arbitrarily turned off for illustration. Four
different neutron 3P2−

3F2 gaps are considered, labeled as “z” (zero gap), and
“a”, “b”, and “c” according to Figure 4. For models including quark matter in
the inner core, five quark gaps are also considered, labeled as “Z” (zero gap),
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Fig. 11. Left panel: influence of the direct Urca process on the cooling of stars of
various masses. (Figure from Ref. [76].) Right panel: influence of different enhanced
neutrino emission processes on the cooling of neutron stars of mass M = 1.4M⊙,
except for the kaon-condensed model whose mass is M = 1.8M⊙. (The 1.4M⊙

model is not dense enough to support a kaon condensation). (Figure from Ref. [33].)
Upper limit on PSR 1929+10 thermal luminosity is from Ref. [83]; see Figure 10 for
identification of other data.

“A”, “B”,”C”, and “D” corresponding, to maximum gap sizes of 0.1, 1.0, 10,
and 100 MeV, respectively (all flavors and color of quarks are assumed to
have the same gap for simplicity). Considering models without quarks matter
(continuous lines), one sees that models with a large neutron 3P2 −

3F2 gap
“c” have almost the same evolution as the model with no direct Urca process,
“Mc”, and are all compatible with the highest measured neutron stars tem-
peratures. Models with neutron gap “b” could explain, as in the left panel, the
intermediate temperature neutron stars, in which case the warmer one should
be understood as having lower masses and no direct Urca process allowed
(model “Mc”). Models with smaller neutron gaps produce too low tempera-
tures but would correspond to the four upper limits (data points labeled as
“a”, “b”, “c”, and “d” in Fig 10). Finally, hybrid models with quarks (dashed
and dotted lines) give almost indistinguishable results when the quark gaps
are large enough (curves labeled “A”, “B”, “C”, and “D”) and it is only in
case of a vanishingly small quark gap that their presence is noticeable.

As can be seen from this brief presentation, we have an embarrassingly large
number of possible scenarios in case enhanced neutrino cooling is occurring.
Most models have to include in an essential way the various possible pair-
ing gaps, about which very little is known at high densities, to reconcile en-
hanced neutrino cooling with data. Nevertheless there are possibilities to have
a smooth transition from slow to fast neutrino cooling through strong medium
effects and without invoking pairing [23,82], or with a significant amount of

25



-1.0 1.0 3.0 5.0 7.0
log(τ/yr)

28.0

30.0

32.0

34.0

36.0

lo
g(

L
s/e

rg
 s

)

M=1.8 M=1.4

M=1.0
M=0.5

−
1

lo
g 

 L
  (

er
g 

 s
)

Log  t  (years)

0

[Z]

[A]
[B,C,D]

[Mc]

[c]
[b]

[a]

[z]

[A,B,C,D]

Fig. 12. Left panel: influence of superfluid 3P2 −
3F2 neutrons on the cooling curves

labeled Gπ
300 and G300 (with kaon condensation) in Figure 11 for various neutron

star masses. (Figure from Ref. [33].) Right panel: effect of varying the neutron and
quark gap size, while keeping the mass fixed at 1.4 M⊙. See text for description and
discussion. (Figure from Ref. [81].) The large differences in luminosities at late times
between the two panels are due to small differences in treatment of the envelope and
specific heat, as discussed after Eq. (17). See Figures 10 and 11 for identification of
data.

internal heating as discussed in § 8. Obviously, much work is still needed to
determine which scenarios are the more plausible.

6 Cooling of Strange Quark Stars

6.1 Strange Stars with Nuclear Crusts

If strange quark matter were in fact the true ground state of the strong inter-
action (see § 2.1), new classes of compact stars should exist which range from
dense strange stars to strange dwarf stars [84,85]. They would form distinct
and disconnected branches of compact stars and are not part of the continuum
of equilibrium configurations that include ordinary white dwarfs and neutron
stars [86]. Figure 13 shows the cooling behavior of such strange stars with
and without nuclear crusts. One sees that not even the thickest, theoretically
possible crust (inner crust density equal to neutron drip density) does prevent
strange stars from cooling very rapidly [87]. If one treats the quarks as su-
perfluid particles, assuming a small density-independent gap of just 0.1 MeV,
radiation of neutrinos is greatly reduced and the stellar cooling behavior is
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Fig. 13. Cooling behavior of strange stars with maximally thick crusts and with
very thin crusts, i.e., with only an envelope (Figure from Ref. [33].) See Figure 10
and 11 for identification of data.

rather similar to that of conventional neutron stars. The different condensa-
tion patterns of color superconducting quark matter, discussed in § 2.4, do not
alter this picture dramatically. In the CFL phase, for instance, all quarks have
very large gaps, ∆ ≫ T , so that both ǫν and cv are so strongly reduced that
quark matter that may exist in the center of a neutron star would be rendered
invisible. Notice that, in spite of the CFL phase being charge neutral by itself
in bulk [88], a strange star in the CFL can still support a nuclear crust when
surface boundary conditions are properly taken into account [89]. The cool-
ing behavior of such stars would then be determined by the nuclear matter
surrounding the CFL quark matter core. This conclusion is strengthened by
the studies performed in Refs. [90,91]. The cooling behavior of compact stars
with 2SC quark matter in their cores is simplified by the fact that up and
down quarks may pair with a gap ∆ ∼ 100 MeV which is orders of magnitude
larger than the stellar temperature, <

∼ 1 MeV, and are therefore inert with
respect to the star’s temperature evolution. For 2SC quark matter, however,
there exist also quark pairing channels that lead to weak pairing with gaps
on the order of several keV to about 1 MeV, which is on the same order of
magnitude as the star’s temperature. These quarks may thus not pair but, in-
stead, radiate neutrinos rapidly via the quark direct Urca process (Table 2). If
this is the case, the 2SC quark matter core would cool rapidly and determine
the cooling history of the star [56,92]. Naturally the cooling behavior of such
stars depends rather sensitively on the value of the superfluid gap [92].
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6.2 Strange Stars with a Bare Quark Surface

Even though it is in principle possible to cover the strange quark matter by
a layer of normal nuclear matter, as assumed in the previous subsection, it is
not clear at all how such a nuclear crust may be formed. When a strange star
is born its internal temperature is likely of the order of a few times 1011 K,
as in a standard proto-neutron star formed in core-collapse, and the resulting
neutrino flux is so high that it should easily be able to expel all baryonic
matter surrounding the quark matter [93]. As a result a new-born strange star
is most certainly bare, i.e., its surface consists directly of quark matter with
no nuclear component above it. Such a strange star remains bare as long as
its temperature is above ∼ 3 × 107 K [94].

If this is the case, the thermal evolution of a bare strange star would be rad-
ically different from the one of a neutron star or a strange star with a crust.
The surface density of the quark matter is about 4− 8× 1014 g cm−3 and the
resulting plasma frequency of the order of 20 MeV [19] which may lead one to
believe that a bare strange star is unable to emit thermal radiation once it’s
temperature dropped below about 1010 K, i.e., a few seconds after its birth:
a bare strange star would be a silver sphere instead of a blackbody emitter.
However this naive picture neglects the presence of electrons within the quark
matter which are bound to the quark matter by Coulomb forces. As such, the
electrons slightly leak out of the quark matter, by a distance which is roughly
given by their Debye screening length, producing thus an electrosphere with
a thickness of a few thousand Fermis [95]. As noted by Usov [96] the result-
ing electrostatic field, of the order of 5 × 1017 V cm−1 [19], is well above the
Schwinger critical field of QED and can induce copious production of e− − e+

pairs at the surface. However, this pair emission does not occur in vacuum,
but within the electrosphere and it is ultimately limited by electron degener-
acy. Nevertheless the resulting luminosity is enormous as long as the surface
temperature is above ∼ 109 K [97]. Pairs outflowing from the stellar surface
mostly annihilate into photons in the vicinity of the strange star [97] resulting
in a fireball of e−, e+ and γ’s. At luminosities > 1041 erg s−1 this plasma is
optically thick and produces a blackbody spectrum while at decreasing lumi-
nosities the spectrum progressively evolves into a very wide annihilation line
[98]. At lower temperatures, when pair production becomes suppressed by
electron degeneracy, photons can still be emitted by e− − e+ bremsstrahlung
within the electrosphere [99] and result in significant luminosities.

The thermal evolution of a bare strange star with the Usov-Schwinger pair
production mechanism has been studied numerically in [100] and results are
shown in Figure 14. Uncertainties about the pairing state of quark matter are
taken into account schematically in the three scenarios marked in the figure
as “A”, “B”, and “C”, in which the gaps suppress neutrino emission with
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Fig. 14. Cooling behavior of a bare strange star, showing the thermal luminosity
from the Usov-Schwinger pair-production mechanism vs. age. In the left panel it is
assumed that heat, within the star, flows to the surface by diffusion while in the
right panel convection is allowed resulting in much stronger heat flow and higher
thermal luminosities. In the dotted curves no quark superconductivity is included
while the continuous curves labeled A, B, & C have quark color superconductivity
taken into account for three possible scenarios (see text for details). (From Ref.
[100].)

increasing efficiency, leading thus to slower cooling of the star. These results
show that bare strange stars can produce extremely high thermal luminosi-
ties, well above the Eddington limit, over extended periods of time, but with
considerable uncertainty due to the precise phase of color superconductivity
present at these “low” astrophysical densities. Notice, however, that the pho-
ton emission from e− − e+ bremsstrahlung in the electrosphere [99] was not
included in these models, and will significantly change the evolution when the
thermal luminosity has dropped below 1040 erg s−1.

7 Magnetic field effects in the crust

All the heat stored in the core of the neutron star and eventually irradiated
away from its surface by photons has to be transported through the crust.
In the absence of rotation and magnetic field this transport in the crust is
spherically symmetric. While the effects of rotation are quite small even for
millisecond pulsars, the presence of magnetic fields may cause significant devi-
ations from the spherical symmetry of the transport processes, even for quite
“standard” field strength of ∼ 1012G. Due to the classical Larmor rotation of
electrons, a magnetic field causes anisotropy of the heat flux and the heat con-
ductivity becomes a tensor whose components perpendicular, κ⊥, and parallel,
κ‖, to the field lines are given by

κ⊥ =
κ0

1 + (ΩBτ)2
and κ‖ = κ0 , (20)
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Fig. 15. Temperature distribution and magnetic field lines in the crust for a “core”
(left panel) and a “crustal” (central panel) dipolar field (from Ref.[101]), and sur-
face temperature distribution resulting from the “crustal” field (right panel). The
“core” field gives a surface temperature distribution very similar to the left panel
of Figure 6. The thickness of the crust in left and central panels has been stretched
by a factor 5 for clarity and the two bars show the temperature scales in units of
Tcore = 106 K. For the “core” field on has Te = 1.15 × 105K while for the “crustal”
field Te = 0.89 × 105K. In both cases, the dipolar field strength is B0 = 3 × 1012 G
at the magnetic pole. (The neutron star considered here has a 1.4 M⊙ mass and a
radius of 11 km.)

where κ0 is the conductivity in absence of magnetic field, ΩB the gyro-frequency
of the electrons and τ their collisional relaxation time. In the neutron star crust
ΩBτ ≫ 1 is easily realized and, as a result, heat flows preferentially along the
magnetic field lines [101]. This effect is moreover amplified at the surface by
the well known non-isotropy in the envelope as described in § 2.6.

The non-isothermality of the subjacent crust depends strongly on the internal
geometry of the field [101]. Assuming a dipolar field structure, outside the star
the radial dependence of the field is uniquely determined, ∝ r−3, while inside
the star it depends on the location of the electric currents, through Ampère’s
law. Assuming currents are exclusively located in the core (“core field”) the
r−3 dependence also applies to the crust while if they are exclusively located
in the crust and the field does not penetrates the core (“crustal field”) the
field topology in the crust is radically distinct: for the same external field in
the latter case field lines in the crust are squeezed into the crustal shell and
have hence a very large meridional component. This meridional component
of the crustal field inhibits the radial flow of heat which is hence redirected
preferentially toward the magnetic poles. This difference is illustrated in Fig-
ure 15.

The drastic difference in the crustal temperature distribution for the different
field structures which are characterized by the same dipolar field structure and
strength outside the neutron star, causes significant differences in the surface
temperature distribution which will have several observational consequences:
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1. A non-uniform surface temperature induces a modulation of the observed
soft X-ray thermal emission [66]. The stronger channeling of the heat flow
toward the polar regions in the case of a crustal field will result in larger
amplitude in the pulse profile.

2. The differences in the photon luminosities for a core or a crustal field will also
affect the long term cooling of neutron stars. A neutron star having a magnetic
field confined to its crust will stay warmer for a longer time, due to its lower
photon luminosity, compared to a neutron star with a field penetrating its
core.

3. This may open a way to study the internal geometry of the magnetic field.
We may be able to distinguish between field geometries where the currents
are essentially localized in the crust or in the core, or even detect the imprint
of the presence of a toroidal field [102].

8 Heating Mechanisms

The expression “heating mechanism” refers to the term “H” in Eq. (1) and
generically encompasses all possible dissipative processes which will inject heat
into the star by tapping into various forms of energy: magnetic (§ 8.1), rota-
tional or chemical (§8.2).

8.1 Magnetic Field Decay and Joule Heating

Given that most neutron stars have strong magnetic fields, magnetic energy
is a natural reservoir from which to extract heat by the Joule effect from
the decaying electric currents. Assuming a uniform internal field of strength
B = 1013B13 G, one can roughly estimate an amount

Emag ∼
B2

8π
×

4

3
πR3 ∼ 2 × 1043 B2

13 erg (21)

of stored magnetic energy. With a field decay time scale τ = 106τ6 yrs this
gives us an equivalent “magnetic heating luminosity”

Hmag ≃
Emag

τ
∼ 6 × 1029 B2

13

τ6
erg s−1 (22)

This simple estimate indicates that decay of a standard magnetic field can
alter the neutron star thermal evolution at late (> 106 yr) times. In the case
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of a magnetar, ultra-strong fields and potential channels for fast decay (i.e.,
τ ≪ 106 yrs) can nevertheless lead to significant heating in young stars [103–
105].

We will now describe some numerical results for the simplest case of a stan-
dard magnetic field, following the Ref. [106] which considered the case where
magnetic energy is converted into heat through Ohmic decay of the currents
supporting the field. This Joule heating contributes to the source term H in
Eq. (1), where the heat production by field decay per unit of (proper) time
and volume is given by ~j2/σ, ~j being the electric current density and σ the
scalar electric conductivity. Joule heating is specially effective in the crust,
which never becomes superconductive. Therefore, Ref. [106] considered only
magnetic fields which are, along with the currents supporting them, confined
to the neutron star crust and some results are shown in Figure 16 (see also
Ref. [107]). The amount of heat locally released by Joule heating is determined
by the strength of the field and its decay rate at that time. Most of the mag-
netic energy is dissipated at early times when it has almost no effect because
the star’s thermal energy is still too large. It is only when the star has be-
come sufficiently cold that Hmag becomes significant, unless the field strength
is of magnetar size. As illustrated in Figure 16, scenarios with a weak field
supported by currents located at low density, i.e., decaying fast while the star
is still hot, lead to virtually no observable effect. On the contrary, scenarios
with strong field supported by currents at high densities keep a large amount
of magnetic energy to be dissipated on long time scales, the best cases being
fast cooling stars which result in the highest temperatures at ages ∼ 107−108

years.

The above description is based on a linear evolution of the field but non-linear
effects caused by the Hall drift in the highly magnetized crust may lead to an
instability, which transfers magnetic energy rapidly from large scale structures
into much smaller ones [108,109]. In that way, close to the NS surface small
scale (∼ 0.1 − 1 km) field structures, as necessary for the onset of the pulsar
mechanism, will be created which simultaneously are sources of accelerated
(tHall ∼ 104yrs) Joule heating [110]. Detailed numerical modeling of the effect
of this instability on the cooling of the pulsar remains to be performed.

8.2 Dissipative motion of vortex lattices and readjustment to equilibrium

The dissipative motion of vortex lattices and the rotational readjustment of
the stellar equilibrium structure are other key processes that contribute to the
heating of neutron stars. The relative effectiveness of these heating processes,
however, varies significantly from one process to another, and depends sensi-
tively on the value of the rotational parameter K, which enters the power-law
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Fig. 16. Thermal (upper panels) and magnetic (lower panels) evolutions of neutron
star undergoing slow (left panels) and fast (right panels) neutrino cooling, with Joule
heating from magnetic field confined to the stellar crust. The three representative
cases of initial field strengths cover a wide range of model parameters: B0 = 1011,
1012, and 1013 G have their supporting currents initially concentrated at densities
of ρ0 ∼ 1012, 1013, and 1014 gm cm−3, respectively. (Adapted from Ref. [106].)

relation Ω̇(t) = −K(t)Ωn(t) characterizing the spin-down of pulsars. Figure 17
shows the heating rate H (which enters in Eq. (1)) computed for several com-
peting internal heating processes and parameter sets. These are [111]: vortex
creep dissipation with pinning at nuclei for A) the Epstein-Baym parameter
set (EB-pinning) and B) the parameter set of Pizzochero et al.; vortex flow dis-
sipation C) in the crust and D) in the core; E) crust cracking; and F) chemical
heating. Notice that the parameters values in case A) probably overestimate
the effect. Chemical heating occurs because of the changing chemical composi-
tion with stellar frequency. The matter would maintain chemical equilibrium if
the relaxation timescales for the weak reaction processes were small compared
to the timescale of rotational evolution. These timescales, however, were found
to be comparable and the stellar composition therefore departs from chemical
equilibrium, which modifies the reaction rates [112] and leads generally to a
net conversion of chemical energy into thermal energy [113,114]. In general,
internal heating leads to enhanced stellar surface temperatures, which can be
very pronounced for rotating neutron stars of middle (K ∼ 10−15 s) and old
(K ∼ 10−22 s) ages [111] or millisecond pulsars [115]. As shown in [111,116]
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Fig. 17. Heating rate H as a function of internal star temperature for the heating
scenarios (A)–(F) listed in the text. The left panel corresponds to K ∼ 10−15 s,
the right panel to K ∼ 10−22 s. The photon and neutrino luminosities of standard
cooling and enhanced cooling models (Lγ , Lν, std., Lν, enh.) are shown for comparison.
(Figure from Ref. [111].)

(see also [117]), the increase in surface temperature caused by the internal
heating due to thermal creep of pinned vortices and the outward motion of
proton vortices in neutron stars cooling rapidly via one of the enhanced mech-
anisms discussed in § 5 would lead to a good agreement with the observed
data.

9 Cooling Neutron Stars in Soft X-Ray Transients

Neutron stars undergoing accretion from a companion in a close binary system
can also give us information about the state of matter at supranuclear densi-
ties. In case of continuous accretion, the bulk of the observable X-ray emission
is dominated by the release of gravitational energy when matter hits the neu-
tron star surface and by frictional heating in the inner part of the accretion
disc, in case where such a disc exists. Nuclear energy is released during X-ray
bursts, and superbursts, which may teach us about the thermal response of
the stellar core [118].

A very interesting class of accreting neutron stars consists of the ones in the
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so-called Soft X-Ray Transients (“SXRTs”) which undergo recurrent surges of
activity separated by long phases of relative “quiescence” during which accre-
tion very likely does not occur. The substantial X-ray brightening observed
in outburst (Lo ∼ 1037−38 erg s−1) together with type I bursts unambiguously
indicate that episodes of intense accretion occur onto a stellar surface, i.e., a
neutron star, and not into a black hole. In quiescence, the faint X-ray emission
has a luminosity in the order of Lq ∼ 1031−33 erg s−1, i.e., comparable to a
standard isolated cooling neutron star. Typically, the duration of an outburst,
to, is considerably shorter than the recurrence time between two outbursts, tr.
In principle, the effects of accretion are the same as in case it is continuous
but during the quiescence phase we are most likely detecting thermal emission
from the cooling of the neutron star heated up by the accretion. Given the
high internal temperature of the star, the heat released in the upper layers
from the accretion and the bursts flows back to the surface and is radiated
away because of the large temperature gradient in the envelope. Nevertheless,
the star stays hot due to energy release from non-equilibrium process in the
interior: this heat can be stored in the stellar interior and slowly released when
accretion stops.

Non equilibrium processes certainly occur in the crust of an accreting neu-
tron star: thermonuclear processes at the surface will produce iron-peak nu-
clei which are then pushed to higher densities. In their way, these nuclei will
undergo electron capture, neutron emission and absorption and eventually
pycnonuclear fusions [119]. Overall, about 1.5 MeV is released as heat for
each accreted baryon. This energy is enough to explain the observed quiescent
(thermal) luminosities Lq in most cases [120]:

Lq ≃ f × Qnuc
<Ṁ >

mu
≃ f × 6 × 1032 Qnuc

1.5MeV

<Ṁ >

10−11M⊙ yr−1
erg s−1, (23)

where <Ṁ > is the time average of the accretion rate, Qnuc the energy released
deep in the crust per accreted baryon, and f the fraction of Qnuc which is stored
in the stellar interior, i.e., not lost by neutrino emission. The luminosity Lo

during an accretion outburst can be estimated as Lo ≃ (∆M/to)(GM/R)
where ∆M is the mass accreted during the outburst. Writing <Ṁ >≃ ∆M/tr
one then obtains, following [120],

Loto
Lqtr

≃
GM

R

mu

fQnuc
≃

200

f
. (24)

Notice that Lo/Lq is independent of the source’s distance, which is often poorly
constrained, while to and tr can in principle be directly obtained by monitoring
the source for a long enough time.
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Detailed numerical calculations [121,122] confirmed this simple and elegant
picture and are compared with data in Figure 18 (see also [123,124]). Results
in this figure are based on a dense matter model in which the direct Urca
process is allowed at high densities and controlled by neutron pairing. The

4U 1608−52

CEN X−4

Rapid Burster

SAX J1808.4

AQL X−1

EXO 0748−676

Fig. 18. Quiescent to outburst luminosity ratio plotted versus the recurrence time
over the outburst time. The filled squares represent observed values. Estimates
for the efficiency of heat storage f = 1 and 0.01, Eq. (23) (but with minor GR
corrections), are shown for a 1.4 M⊙ star (dashed-dot) and 1.8 M⊙ star (dashed).
Dots connected by lines show numerical results (see text ) for different neutron star
masses as labeled: the 1.4 M⊙ case has no enhanced neutrino emission, i.e., f ≃ 1,
while the other two cases at 1.7 and 1.8 M⊙ have increasingly more efficient neutrino
emission, i.e., f ≪ 1 (the precise value of the neutron star masses are, however, very
model dependent). Adapted from [121], with new data for SAX J1808.4-3658 from
[125].

two stars Aql X-1 and 4U 1608–52 show very good agreement with the sim-
ple model and the numerical results with f ≃ 1, i.e., with negligible neutrino
losses and thus very probably are low mass neutron stars. The star in Cen X-4
is noticeably off and seems to require very strong neutrino losses. However,
it must be emphasized that in 35 years since its discovery it has undergone
only two bursts (in 1969 and 1979) and hence its recurrence time tr is highly
uncertain: it is not impossible that this point should be plotted much further
to the right, as indicated by the arrow in the figure. The most interesting and
intriguing object is certainly SAX J1808.4-3658, dubbed as “The accreting
pulsar”, which provided the first strong observational evidence for the evolu-
tionary scenario that millisecond pulsars owe their short rotational period to
a long phase of accretion in a low mass X-ray binary system. The very low
upper limit on its thermal quiescent luminosity Lq [125] requires, within the
present scenario, very strong neutrino emission (even beyond what has been
considered in [121] and shown in Figure 18, i.e., an inner core where enhanced
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neutrino emission is not suppressed at all by neutron pairing) and hence a
large mass which is in perfect agreement with the idea that recycling of a neu-
tron star to a millisecond rotation period by accretion requires a mass transfer
of about 0.2 to 0.5 M⊙ [126]. Notice that the first precise measurement of the
mass of a millisecond pulsar, PSR J1909-3744, was recently announced, giv-
ing a value of 1.438 ± 0.024 M⊙ [127], at the upper edge of the mass range
of binary pulsars [128]. (The latter, which are not millisecond pulsars, come
from short-lived double massive star systems and did not have time to ac-
creted a significant amount of mass.) The measured mass of PSR J1909-3744
demonstrates that spinning-up of a neutron star to millisecond period does not
requires accretion of much more that 0.2 M⊙ . Other mass estimates of binary
millisecond pulsars [129], though not as accurate, do indicate that much larger
masses are reachable, e.g., PSR J0751+1807, which has a mass measurement
of 2.1+0.4

−0.5 M⊙ at 95% confidence [130].

Another, and still poorly explored, aspect of these objects is their short time-
scale thermal response to the accretion phases. This is an aspect of the problem
from which extremely important information about both the structure of the
neutron star crust and the thermal state of their core can be obtained [122,131],
and about which intriguing observational results are being found (see, e.g.,
[132]).

10 Epilogue and conclusions

Confrontation of the predictions of the Minimal Model with data in § 4 showed
a reasonably good agreement with presently available data on isolated cool-
ing neutron star, i.e., no compelling evidence for the occurrence of enhanced
neutrino emission is found. Nevertheless, most models of dense matter predict
the presence of some form of exotic matter at high enough density, or at least
a high proton fraction, which allow enhanced neutrino emission. Are these
“non-minimal” scenarios wrong or are we missing cooling neutron stars ?

Before hasting into conclusions, one must first emphasize that the fact the
results of the Minimal Cooling scenario are compatible with the data does not
mean that the other scenarios are ruled out (unless one is a fervent adept of the
“Occam’s Razor Principle”). A scientific paradigm is refuted when it is incom-
patible with experimental facts, not because its competitors are compatible.
Alternative scenarios, “exotic” ones or simply with a high proton fraction,
whose chemical composition allows enhanced neutrino emission do not nec-
essarily imply fast cooling since the neutrino emission can be suppressed by
pairing as we showed in § 5. With large enough gaps these scenarios can be
compatible with the data as illustrated in Figure 12. Moreover, enhanced neu-
trino emission is expected to be allowed, if at all, only at high enough densities,
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and hence for sufficiently massive neutron stars, the critical neutron star mass
depending on the particular model.

We have no direct information at all about the masses of the observed nearby
cooling neutron stars. Many measured masses of radio pulsars in binary sys-
tems are between 1.25 to 1.44 M⊙ [128,133]. Exceptions to this are the mass
of the binary neutron star J0751+1807 which is in the range 2.1+0.4

−0.5 M⊙ [130],
and the companion of PSR J1756-2251, with a mass of 1.18+0.03

−0.02 M⊙ [134].
It is not clear if the mass range of 1.25 to 1.44 M⊙ also applies to isolated
neutron stars. Evolutionary models of massive stars [135] predict a bimodal
distribution for the neutron star masses, with the two peaks being between
1.2 − 1.3 M⊙ for progenitor main sequences masses below 19 M⊙ (which will
burn carbon in a convective core) and between 1.7 − 1.8 M⊙ for progenitor
main sequence masses above 19 M⊙ (where carbon burning will occur in a
radiative core). The actual value of 19 M⊙ for the main sequence bifurcation
mass may not be very accurate, but the double peaked neutron star mass
distribution is certainly real. Given the initial mass function for heavy stars,
one could thus expect that massive (e.g., > 1.5 M⊙ ) isolated neutron stars
be very rare.

A neutron star whose temperature is in disagreement with the Minimal Cool-
ing predictions must be of course cold, but moreover young and very likely
massive, hence probably uncommon. Therefore, such a star can be expected
to be found far away from the Sun and its detection will be very difficult since
its weak thermal spectrum will be strongly absorbed. Notice that all young
(< a few times 104 yrs) neutron stars plotted in Figure 10 are at a distance
superior to 1 kpc except for the Vela pulsar. In particular, the two most con-
spicuous young and cold objects, PSR J0205+6449 (in SNR 3C 58) and RX
J0007.0+7302 (in SNR CTA 1) are at distances of 2.6± 0.3 kpc and 1.4± 0.3
kpc, respectively. Moreover, as emphasized recently in [136], about 80% of the
nearby young neutron stars come from the Gould Belt: this local structure of
young stellar associations forms a ring of about 1 kpc surrounding the Sun
and has an estimated age of 30-50 Myrs. If the Gould Belt’s progenitors of the
nearby young cooling neutron stars were formed when the belt was formed,
which is likely for many of them, and core collapsed about one Myrs ago, they
were massive stars not much above 10 M⊙ since heavier stars died well be-
fore. From the results of [135] one can safely conclude that most nearby young
cooling neutrons stars have masses not exceeding 1.4 M⊙: it is not surprising
that none of them shows clear evidence of enhanced neutrino cooling.

The smoking guns in favor of enhanced neutrino cooling are certainly, to date,
the two isolated pulsars PSR J0205+6449 and RX J0007.0+7302 (see § 4) and
the accreting pulsar SAX J1808.4-3658 (see § 9). Since evolutionary scenarios
for recycling pulsar to millisecond periods require accretion of about 0.2 to
0.5 M⊙ [126], SAX J1808.4-3658 is a natural candidate for a neutron star
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with an inner core beyond minimal. Possibly more such objects will be found
in the SNRs studied recently in [137] (whose present luminosity upper limit
are marked as “a”, “b”, “c”, and “d” in Figure 10) in case a neutron star
is detected and will provide us with definite evidence for the occurrence of
enhanced neutrino emission. Finally, one must entertain the idea that core
collapse supernovae fail to produce heavy neutron stars, sending them into
a black hole despite their masses are lower than the maximum allowed mass
of neutron stars, and that heavy neutron stars can only be found in binary
systems, such as SAX J1808.4-3658, after substantial mass accretion occurred.
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