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1. Introduction

Astrophysicists distinguish between three different types of compact stellar objects. These are
white dwarfs, neutron stars, and black holes. The latter constitute a region of space which has so
much mass–energy concentrated in it that no particles (not even light) inside the black hole’s event
horizon can escape the black hole’s gravitational pull. Thesituation is very different for neutron
stars and white dwarfs, which are about as massive as the sun (massM⊙ = 2×1030 kg) but whose
radii are much smaller than the sun’s radius (R⊙ = 7× 105 km). Model calculations predict that
the matter in the cores of neutron stars is compressed to densities ranging from a few times the
density of an atomic nucleus, 2.5×1014 g/cm3, to densities that may be ten to twenty times higher
[1, 2, 3]. In comparison to that, white dwarfs of average mass, M ∼ 0.6M⊙ are at least by a factor
of 107 less dense than neutron stars. The tremendous densities (and thus pressures) existing inside
neutron stars make them superb astrophysical laboratoriesfor a wide range of fascinating physical
studies [1, 2, 4]. These include the exploration of nuclear processes in an environment extremely
rich of electrons and neutrons, and the formation of new states of matter, like quark matter which is
being sought at the most powerful terrestrial particle colliders. If quark matter exists in the cores of
neutron stars, it will be a color superconductor whose condensation pattern has been shown to be
very complex [5, 6, 7]. It has also been theorized that quark matter (known as strange quark matter)
may be even more stable than atomic nuclei. In the latter event neutron stars should be entirely
made of strange quark matter, possibly enveloped in a very thin nuclear crust. Such objects are
called strange stars [8, 9, 10]. Strangeness, therefore, carried by hyperons, mesons, H-dibaryons,
and strange quark matter, plays a key role for compact star physics and phenomenology, as will be
discussed in this paper (see Ref. [4] for a detailed recent review on this topic).

2. Composition of high-density neutron star matter and EoS

The properties of neutron stars are determined by the equation of state (EoS) of neutron star
matter. The EoS of neutron star matter below neutron drip, which occurs at densities around
4× 1011g/cm3, and at densities above neutron drip but below the saturation density of nuclear
matter is relatively well known. This is to a less extent the case for the EoS in the vicinity of the
saturation density of normal nuclear matter,n0 = 0.16 fm−3 (energy density ofε0 = 140 MeV/fm3).
Finally, the physical properties of matter at still higher densities are extremely uncertain so that the
associated EoS is only very poorly known [1, 2, 3]. This is graphically indicated by the hatched
areas in Fig. 1, which is based on three Walecka-type models for the EoS. The HV model is a
relativistic non-linear mean-field equation of state computed for nucleons (N= n, p) and hyperons
(H= Σ, Λ, Ξ) in chemical equilibrium [4, 11]. The other two models, GB180

300 [1] and CFL [12],
account additionally for the presence of up, down, and strange quarks in neutron star matter. The
quarks are treated as normal unpaired quarks (Q) in the GB180

300 model, and as color-flavor locked
superconducting quarks (sQ) with a superfluid gap of∆ = 100 MeV in the CFL model. The model
labeled DD-RBHF is a density dependent relativistic Brueckner-Hartree-Fock EoS which accounts
for nucleons and hyperons [13, 14]. It is obvious from Fig. 1 that, depending on stellar composition,
neutron star properties such as masses, radii, moments of inertia, redshifts, or limiting rotational
periods may vary significantly with strangeness.
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Figure 1: Models for the EoS of neutron star matter.

2.1 Hyperons

At the densities in the interior of neutron stars, the neutron chemical potential,µn, is likely
to exceeds the masses, modified by interactions, ofΣ, Λ and possiblyΞ hyperons [11]. Hence, in
addition to nucleons, neutron star matter is expected to have significant populations of hyperons
and possibly even∆’s [15]. If so, pure neutron matter would constitute an excited state relative to
hyperonic (many-baryon) matter which, therefore, would quickly transform via weak reactions like

n→ p+e− + ν̄e (2.1)

to the lower energy state. The chemical potentials associated with reaction (2.1) in equilibrium
obey the relation

µn = µ p + µe− , (2.2)

where µ ν̄e = 0 since the mean free path of (anti) neutrinos is much smallerthan the radius of
neutron stars. Hence (anti) neutrinos do not accumulate inside neutron stars. This is different for
hot proto-neutron stars [16]. Equation (2.2) is a special case of the general relation

µχ = Bχ µn−qχ µe− , (2.3)

which holds in any system characterized by two conserved charges. These are in the case of neutron
star matter electric charge,qχ , and baryon number charge,Bχ . Application of Eq. (2.3) to theΛ
hyperon (BΛ = 1, qΛ = 0), for instance, leads to

µΛ = µn . (2.4)

Ignoring particle interactions, the chemical potential ofa relativistic particle of typeχ is given by

µχ = ω(kFχ ) ≡
√

m2
χ +k2

Fχ
, (2.5)

whereω(kFχ ) is the single-particle energy of the particle andkFχ its Fermi momentum. Substituting
(2.5) into (2.4) leads to

kFn ≥
√

m2
Λ −m2

n ≃ 3 fm−1 ⇒ n≡
kFn

3

3π2 ≃ 2n0 , (2.6)

3



Strangeness in compact stars Fridolin Weber

wheremΛ = 1116 MeV andmn = 939 MeV was used. That is, if interactions among the particles
are ignored, neutrons are replaced withΛ’s in neutron star matter at densities as low as two times the
density of nuclear matter. This result is only slightly altered by the inclusion of particle interactions
[11]. Aside from chemical equilibrium, the condition of electric charge neutrality of neutron star
matter,

∑
χ=p,Σ±,Ξ−,∆++,...;e− ,µ−

qχ k3
Fχ

+ 3π2 nM Θ(µM −mM) ≡ 0, (2.7)

whereM stands forπ− or K− mesons, plays a key role for the particle composition of neutron
star matter too. The last term in (2.7) accounts for the possible existence of either aπ− or a
K− meson condensate in neutron star matter, which will be discussed in more detail in Sect. 2.2
below. Before, however, we illustrate the importance of Eqs. (2.2) and (2.7) for the proton-neutron
fraction of neutron star matter. The beta decay and electroncapture processes among nucleons,n→
p+e−+ ν̄e andp+e− → n+νe respectively, also known as nucleon direct Urca processes,are only
possible in neutron star matter if the proton fraction exceeds a certain critical value [17]. Otherwise
energy and momentum can not be conserved simultaneously forthese reactions so that they are
forbidden. For a neutron star made up of only nucleons and electrons, it is rather straightforward to
show that the critical proton fraction is around 11%. This follows from kFn = kFp +kFe combined
with the condition of electric charge neutrality of neutronstar matter. The triangle inequality then
requires for the magnitudes of the particle Fermi momentakFn ≤ kFp + kFe, and charge neutrality
dictates thatkFp = kFe. SubstitutingkFp = kFe into the triangle inequality leads tokFn ≤ 2kFp so
that for the particle number densities of neutrons and protons nn ≤ 8np. Expressed as a fraction
of the system’s total baryon number density,n≡ np + nn, one thus arrives atnp/n > 1/9 ≃ 0.11,
which is the figure quoted just above. Medium effects and interactions among the particles modify
this value only slightly but the presence of muons raises it to about 0.15. Hyperons, which may
exist in neutron star matter rather abundantly, produce neutrinos via direct Urca processes like
Σ− → Λ+e−+ ν̄e andΛ+e− → Σ−+νe [18]. The direct Urca processes are of key importance for
neutron star cooling, which will be discussed briefly in Sect. 6. In most cases, the nucleon direct
Urca process is more efficient than the ones involving hyperons [19, 20].

2.2 Meson condensates

The pion or kaon meson fields may develop condensates in denseneutron star matter. These
condensates would have two important effects on neutron stars. Firstly, they would soften the EoS
above the critical density for onset of condensation, whichreduces the maximum neutron star mass.
Secondly, since the<π−> or <K−> condensates can absorb as little or as much momentum as
required by the scattering processesn+ <π−>→ n+ e− + ν̄e or n+ <K−>→ n+ e− + ν̄e, the
associated neutrino emissivities are very high which leadsto fast neutron star cooling [20, 21]
(see Sect. 6). Since theK− condensate process involves a change in strangeness, it is roughly
by a factor sin2 θC ≃ 1/20 (θC denotes the Cabibbo angle) less efficient than theπ− condensate
process. However, medium effects can reduce the impact of the π− condensate on stellar cooling
by about one order of magnitude, making it comparable to the efficiency of theK− condensate.
Estimates predict the onset ofπ− condensation at densities aroundnπ ∼ 2n0, with n0 = 0.16 fm−3

the empirical nuclear matter density. However, this density is very sensitive to the strength of the
effective nucleon particle-hole repulsion in the isospinT = 1, spinS= 1 channel, which tends to
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suppressπ− condensation and may pushnπ to much higher values. Similarly, depending on the
nuclear model, the threshold density for the onset ofK− condensation,nK , is probably at least as
high as 4n0 [22, 23].

K− condensation can only occur in neutron star matter if the electron chemical potential equals
the effective in-medium meson mass, according to the schematic reactione− → K− + νe, with the
neutrinos leaving the star (see Fig. 2). This reaction wouldbe followed byn→ p+ K−. By this
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Figure 2: The effective kaon mass,m∗
K , in nuclear matter and neutron star matter [4]. Data taken from [24]

and [22], respectively.

conversion the nucleons in the cores of newly formed neutronstars can become half neutrons and
half protons [25]. The relatively isospin symmetric composition achieved in this way resembles
the one of isospin symmetric atomic nuclei, which are made upof equal numbers of neutrons and
protons. Neutron star matter is therefore referred to in this picture as nucleon matter, and neutron
stars constructed for such an EoS are referred to as nucleon stars [25, 26, 27, 28].

2.3 H-dibaryons

A novel particle that could make its appearance in the centerof a neutron star is the so-called
H-dibaryon, a doubly strange six-quark composite with spinand isospin zero, and baryon number
two [29]. Since its first prediction in the 1970s, the H-dibaryon has been the subject of many
theoretical and experimental studies as a possible candidate for a strongly bound exotic state. In
neutron stars, which may contain a significant fraction ofΛ hyperons, theΛ’s could combine
to form H-dibaryons, which could give way to the formation ofH-dibaryon matter at densities
somewhere above∼ 3ε0 [30, 31, 32] depending on the in-medium properties of the H-dibaryon.
For an attractive optical potential,UH, of the H-dibaryon at normal nuclear density the equation
of state is softened considerably, as shown in Fig. 3. H-dibaryon matter could thus exist in the
cores of moderately dense neutron stars. H-dibaryons with avacuum mass of about 2.2 GeV and

5



Strangeness in compact stars Fridolin Weber

0 500 1000
Energy Density [MeV fm

−3
]

0

50

100

150

P
re

ss
ur

e 
[M

eV
 fm

−
3 ]

UH = +30 MeV

UH = 0 MeV

UH = −30 MeV

no H

TM1

Figure 3: EoS of neutron star matter accounting for a H-dibaryon condensate [32].UH is the optical potential
of the H-dibaryon at normal nuclear density.

a moderately attractive potential in the medium of aboutUH = −30 MeV, for instance, could go
into a boson condensate in the cores of neutron stars if the limiting star mass is about that of the
Hulse-Taylor pulsar PSR 1913+16,M = 1.444M⊙ [32]. Conversely, if the medium potential were
moderately repulsive, aroundUH = +30 MeV, the formation of H-dibaryons may only take place in
heavier neutron stars of masses greater than about 1.6M⊙. If formed, however, H-matter may not
remain dormant in neutron stars but, because of its instability against compression, could trigger
the conversion of neutron stars into hypothetical strange stars [31, 33, 34].

2.4 Quark deconfinement

One item that came recently into particular focus concerns the possible existence of quark
matter in the cores of neutron stars [2, 5, 6]. The phase transition from confined hadronic matter to
deconfined quark matter is characterized by the conservation of baryon charge and electric charge.
The Gibbs condition for phase equilibrium then is that the two associated chemical potentials,µn

andµe, and the pressure in the two phases be equal [1, 35],

PH(µn,µe,{χ},T) = PQ(µn,µe,T) . (2.8)

PH denoted the pressure of hadronic matter computed for a givenhadronic matter Lagrangian
LM({χ}), where{χ} denotes the field variables and Fermi momenta that characterize a solution
to the field equations of confined hadronic matter,

(iγµ∂µ −mχ)ψχ(x) = ∑
M=σ ,ω ,π,...

ΓMχM(x)ψχ(x) , (2.9)

(∂ µ∂µ +m2
σ)σ(x) = ∑

χ=p,n,Σ,...

Γσ χ ψ̄χ(x)ψχ(x) , (2.10)

plus additional equations for the other meson fields (M = ω ,π,ρ , ...). The pressure of quark matter,
PQ, is obtainable from the bag model. The quark chemical potentials µu, µd, µs are related to the
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baryon and charge chemical potentials as

µu =
1
3

µn−
2
3

µe, µd = µs =
1
3

µn +
1
3

µe. (2.11)

Equation (2.8) is to be supplemented with the two global relations for conservation of baryon charge
and electric charge within an unknown volumeV containingA baryons. The first one is given by

n≡
A
V

= (1−η)nH(µn,µe,T)+ η nQ(µn,µe,T) , (2.12)

whereη ≡VQ/V denotes the volume proportion of quark matter,VQ, in the unknown volumeV, and
nH andnQ are the baryon number densities of hadronic matter and quarkmatter. Global neutrality
of electric charge within the volumeV can be written as

0 =
Q
V

= (1−η)qH(µn,µe,T)+ η qQ(µn,µe,T)+qL , (2.13)

with qi the electric charge densities of hadrons, quarks, and leptons. For a given temperature,T,
Eqs. (2.8) to (2.13) serve to determine the two independent chemical potentials and the volume
V for a specified volume fractionη of the quark phase in equilibrium with the hadronic phase.
After completionVQ is obtained asVQ = ηV. Because of Eqs. (2.8) through (2.13) the chemical
potentials depend on the proportionη of the phases in equilibrium, and hence so also all properties
that depend on them, i.e. the energy densities, baryon and charge densities of each phase, and
the common pressure. For the mixed phase, the volume proportion of quark matter varies from
0≤ η ≤ 1 and the energy density is the linear combination of the two phases [1, 35],

ε = (1−η)εH(µn,µe,{χ},T)+ η εQ(µn,µe,T) . (2.14)

Hypothetical neutron star compositions computed along thelines described above are shown in
Fig. 4. Possible astrophysical signals originating from quark deconfinement will be discussed in
Sect. 5 [1, 2, 36, 37].
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2.5 Color superconductivity of quark matter

There has been much recent progress in our understanding of quark matter, culminating in the
discovery that if quark matter exists it ought to be in a colorsuperconducting state [5, 6, 38, 39].
This is made possible by the strong interaction among the quarks which is very attractive in some
channels. Pairs of quarks are thus expected to form Cooper pairs very readily. Since pairs of quarks
cannot be color neutral, the resulting condensate will break the local color symmetry and form what
is called a color superconductor. The phase diagram of such matter is expected to be very complex
[5, 6]. This is caused by the fact that quarks come in three different colors, different flavors, and
different masses. Moreover, bulk matter is neutral with respect to both electric and color charge,
and is in chemical equilibrium under the weak interaction processes that turn one quark flavor into
another. To illustrate the condensation pattern briefly, wenote the following pairing ansatz for the
quark condensate [40],

〈ψα
faCγ5ψβ

fb
〉 ∼ ∆1εαβ1ε fa fb1 + ∆2εαβ2ε fa fb2 + ∆3εαβ3ε fa fb3 , (2.15)

whereψα
fa

is a quark of colorα = (r,g,b) and flavorfa = (u,d,s), andεi jk denotes the Levi-Civita
symbol. The latter is zero fori = j, j = k , or k = i; +1 for (i, j,k) an even permutation of (1,2,3);
and−1 for (i, j,k) an odd permutation of (1,2,3). The condensate is a Lorentz scalar, antisymmetric
in Dirac indices, antisymmetric in color, and thus antisymmetric in flavor. The gap parameters
∆1, ∆2 and∆3 described-s, u-s andu-d quark Cooper pairs, respectively. The following pairing
schemes have emerged. At asymptotic densities (ms → 0 or µ → ∞) the ground state of QCD with
a vanishing strange quark mass is the color-flavor locked (CFL) phase (color-flavor locked quark
pairing), in which all three quark flavors participate symmetrically. The gaps associated with this
phase are

∆3 ≃ ∆2 = ∆1 = ∆ , (2.16)

and the quark condensates of the CFL phase are approximatelyof the form

〈ψα
faCγ5ψβ

fb
〉 ∼ ∆εαβXε fa fbX , (2.17)

with color and flavor indices all running from 1 to 3. SinceεαβXε fa fbX = δ α
fa

δ β
fb
− δ α

fb
δ β

fa
one sees

that the condensate (2.17) involves Kronecker delta functions that link color and flavor indices.
Hence the notion color-flavor locking. The CFL phase has beenshown to be electrically neutral
without any need for electrons for a significant range of chemical potentials and strange quark
masses [41]. If the strange quark mass is heavy enough to be ignored, then up and down quarks
may pair in the two-flavor superconducting (2SC) phase. Other possible condensation patterns
are CFL-K0 [42], CFL-K+ and CFL-π0,− [43], gCFL (gapless CFL phase) [40], 1SC (single-
flavor-pairing) [40, 44, 45], CSL (color-spin locked phase)[46], and the LOFF (crystalline pairing)
[47, 48, 49] phase, depending onms, µ , and electric charge density. Calculations performed for
massless up and down quarks and a very heavy strange quark mass (ms → ∞) agree that the quarks
prefer to pair in the two-flavor superconducting (2SC) phasewhere

∆3 > 0, and ∆2 = ∆1 = 0. (2.18)

In this case the pairing ansatz (2.15) reduces to

〈ψα
faCγ5ψβ

fb
〉 ∝ ∆εabεαβ3 . (2.19)

8
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Here the resulting condensate picks a color direction (3 or blue in the example (2.19) above), and
creates a gap∆ at the Fermi surfaces of quarks with the other two out of threecolors (red and
green). The gapless CFL phase (gCFL) may prevail over the CFLand 2SC phases at intermediate
values ofm2

s/µ with gaps given obeying the relation

∆3 > ∆2 > ∆1 > 0. (2.20)

For chemical potentials that are of astrophysical interest, µ < 1000 MeV, the gap is between 50 and
100 MeV. The order of magnitude of this result agrees with calculations based on phenomenolog-
ical effective interactions [39, 50] as well as with perturbative calculations forµ > 10 GeV [51].
We also note that superconductivity modifies the equation ofstate at the order of(∆/µ)2 [12, 52],
which is even for such large gaps only a few percent of the bulkenergy. Such small effects may
be safely neglected in present determinations of models forthe equation of state of quark-hybrid
stars. There has been much recent work on how color superconductivity in neutron stars could
affect their properties (see Refs. [5, 6, 47, 53, 54, 55] and references therein). These studies reveal
that possible signatures include the cooling by neutrino emission, the pattern of the arrival times
of supernova neutrinos, the evolution of neutron star magnetic fields, rotational stellar instabilities,
and glitches in rotation frequencies.

Aside from neutron star properties, an additional test of color superconductivity may be pro-
vided by upcoming cosmic ray space experiments such as AMS [56] and ECCO [57].1 As shown
in Ref. [58], finite lumps of color-flavor locked strange quark matter (see Sect. 2.6), which should
be present in cosmic rays if strange matter is the ground state of the strong interaction, turn out
to be significantly more stable than strangelets without color-flavor locking for wide ranges of
parameters. In addition, strangelets made of CFL strange matter obey a charge-mass relation of
Z/A ∝ A−1/3, which differs significantly from the charge-mass relationof strangelets made of or-
dinary strange quark matter. In the latter case,Z/A would be constant for small baryon numbersA
andZ/A ∝ A−2/3 for largeA [10, 58, 59]. This difference may allow an experimental testof CFL
locking in strange quark matter [58].

2.6 Absolute stability of strange quark matter

So far we have assumed that quark matter forms a state of matter higher in energy than atomic
nuclei. This most plausible assumption, however, may not becorrect [60, 61, 62], since for a
collection of more than a few hundredu, d, squarks, the energy per baryon,E/A, of quark matter
can be just as well below the energy per baryon of the most stable atomic nuclei, nickel and iron.
This is known as the strange quark matter hypothesis. The energy per baryon in56Fe, for instance,
is given byM(56Fe)c2/56 = 930.4 MeV, with M(56Fe) the mass of the56Fe atom. A simple
estimate shows that for strange quark matter described by the MIT bag modelE/A = 4Bπ2/µ3,
so that bag constants ofB = 57 MeV/fm3 (i.e. B1/4 = 145 MeV) andB = 85 MeV/fm3 (B1/4 =

160 MeV) would place the energy per baryon of strange quark matter at E/A = 829 MeV and
915 MeV, respectively, which correspond to strange quark matter which is absolutely bound with
respect to nuclear matter [10]. If this were indeed the case,neutron star matter would be metastable
with respect to strange quark matter, and all neutron stars should in fact be strange quark stars

1See J. Madsen’s contribution on strange matter in cosmic rays published elsewhere in this volume.
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[10, 63, 64]. As outlined just above, strange quark matter isexpected to be a color superconductor
which, at extremely high densities, should be in the CFL phase. This phase is rigorously electrically
neutral with no electrons required [41]. For sufficiently large strange quark masses, however, the
low density regime of strange quark matter is rather expected to form a 2SC phase (or possibly other
phases) in which electrons are present [5, 6]. The presence of electrons causes the formation of an
electric dipole layer on the surface of strange matter, which enables strange quark matter stars to
carry crusts made of ordinary nuclear matter [8, 9, 65]. The maximal possible density at the base of
the crust (inner crust density) is determined by neutron drip, which occurs at about 4×1011 g/cm3.
This somewhat complicated situation of the structure of strange matter enveloped in a (chemically
equilibrated) nuclear crust can be represented by a proper choice for the EoS which consists of
two parts [66]. At densities below neutron drip it can be represented by the EoS of Baym-Pethick-
Sutherland, while the high-density part, consisting of strange quark matter, can be described by
the bag model EoS (see Fig. 5). The EoS is characterized by a significant discontinuity in density
between strange quark matter and nuclear crust matter across the electric dipole gap where the
pressure of the nuclear crust at its base equals the pressureof strange matter at its surface [2, 4, 66].

One crucial astrophysical test of the strange quark matter hypothesis is whether strange quark
stars can give rise to the observed phenomena of pulsar glitches. In the crust quake model an oblate
solid nuclear crust in its present shape slowly comes out of equilibrium with the forces acting on it
as the rotational period changes, and fractures when the built up stress exceeds the sheer strength
of the crust material. The period and rate of change of periodslowly heal to the trend preceding
the glitch as the coupling between crust and core re-establish their co-rotation. The existence of
glitches may have a decisive impact on the question of whether the strange quark matter hypothesis
holds or not. From the calculations in [66] it is known that the ratio of the crustal moment of inertia
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to the star’s total moment of inertia,Icrust/Itotal, varies between 10−3 and 10−5 at the maximum
mass. If the angular momentum of the pulsar is conserved in the quake then the relative frequency
change and moment of inertia change are equal and one arrivesat [66]

∆Ω
Ω

=
|∆I |
I0

>
|∆I |

I
≡ f

Icrust

I
∼ (10−5−10−3) f , with 0 < f < 1 . (2.21)

Here I0 denotes the moment of inertia of that part of the star whose frequency is changed in the
quake. It might be that of the crust only, some fraction, or all of the star. The factorf in Eq.
(2.21) represents the fraction of the crustal moment of inertia that is altered in the quake, i.e.,f ≡
|∆I |/Icrust. Since the observed glitches have relative frequency changes∆Ω/Ω = (10−9 − 10−6),
a change in the crustal moment of inertia off <

∼ 0.1 would cause a giant glitch even in the least
favorable case [66]. Moreover, one finds that the observed range of the fractional change in the
spin-down rate,̇Ω, is consistent with the crust having the small moment of inertia calculated and
the quake involving only a small fractionf of that, just as in Eq. (2.21). To this aim we write [66]

∆Ω̇
Ω̇

=
∆Ω̇/Ω̇
∆Ω/Ω

|∆I |
I0

=
∆Ω̇/Ω̇
∆Ω/Ω

f
Icrust

I0
> (10−1 to 10) f , (2.22)

where use of Eq. (2.21) has been made. Equation (2.22) yieldsa small f value in the rangef <

(10−4 to 10−1), in agreement withf <
∼ 10−1 established just above. Here measured values of the

ratio(∆Ω/Ω)/(∆Ω̇/Ω̇)∼ 10−6 to 10−4 for the Crab and Vela pulsars, respectively, have been used.

An improved discussion of the surface gap below strange starcrusts has been performed very
recently in Ref. [67]. In addition to the electrostatic forces described above, this study includes
gravity too. The properties of the gap are investigated for awide range of parameters assuming both
color-flavor locked and noncolor-flavor locked strange starcores. It is found that the maximally
allowed inner crust density is generally lower than that of neutron drip. This does not alter the
overall form of the EoS shown in Fig. 5, however. Another interesting finding concerning the
surface properties of strange stars was recently publishedin Ref. [68]. In this paper it is found that,
depending on the surface tension of nuggets of strange matter, a heterogeneous crust comprised
of nuggets of strange quark matter embedded in an uniform electron background may exist in the
surface region of strange stars. This heterogeneous strange star surface would have a negligible
electric field which would make the existence of an ordinary nuclear crust, which requires a very
strong electric field, impossible.

3. Models of compact stars

Neutron stars are objects of highly compressed matter so that the geometry of space-time
is changed considerably from flat space. Thus models of such stars are to be constructed in the
framework of Einstein’s general theory of relativity combined with theories of superdense matter.
The effects of curved space-time are included by coupling the energy-momentum density tensor
for matter fields to Einstein’s field equations. The generally covariant Lagrangian density is

L = LE +LG , (3.1)
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where the dynamics of particles is introduced through the matter LagrangianLM added to the
gravitational LagrangianLG. The latter is given by

LG = g1/2 R= g1/2 gµν Rµν , (3.2)

wheregµν andRµν denote the metric tensor and the Ricci tensor, respectively. The latter is given
by

Rµν = Γσ
µσ ,ν −Γσ

µν ,σ + Γσ
κν Γκ

µσ −Γσ
κσ Γκ

µν , (3.3)

where commas followed by a Greek letter denote derivatives with respect to space-time coordinates,
e.g. ,ν = ∂/∂xν etc. The Christoffel symbolsΓ in (3.3) are defined as

Γσ
µν =

1
2

gσλ (

gµλ ,ν +gνλ ,µ −gµν ,λ
)

. (3.4)

The connection between both branches of physics is providedby Einstein’s field equations

Gµν ≡ Rµν −
1
2

gµνR= 8πTµν(ε ,P(ε)) , (3.5)

(µ ,ν = 0,1,2,3) which couples the Einstein curvature tensor,Gµν , to the energy-momentum den-
sity tensor,Tµν , of the stellar matter. The quantitiesgµν andR in (3.5) denote the metric tensor
and the Ricci scalar (scalar curvature) [2]. The tensorTµν contains the equation of state,P(ε),
of the stellar matter discussed in Sect. 2. In general, Einstein’s field equations and the many-body
equations were to be solved simultaneously since the baryons and quarks move in curved space-
time whose geometry, determined by Einstein’s field equations, is coupled to the total mass energy
density of the matter. In the case of neutron stars, as for allastrophysical situations for which the
long-range gravitational forces can be cleanly separated from the short-range forces, the deviation
from flat space-time over the length scale of the strong interaction,∼ 1 fm, is however practically
zero up to the highest densities reached in the cores of such stars (some 1015 g/cm3). This is not
to be confused with the global length scale of neutron stars,∼ 10 km, for whichM/R∼ 0.3, de-
pending on the star’s mass. That is to say, gravity curves space-time only on a macroscopic length
scale but leaves it flat to a very good approximation on a microscopic length scale. To achieve an
appreciable curvature on a microscopic scale set by the strong interaction, mass densities greater
than∼ 1040 g/cm3 would be necessary [69]! This circumstance divides the construction of models
of compact stars into two distinct problems. Firstly, the effects of the short-range nuclear forces on
the properties of matter are described in a comoving proper reference frame (local inertial frame),
where space-time is flat, by the parameters and laws of special relativistic many-body physics.
Secondly, the coupling between the long-range gravitational field and the matter is then taken into
account by solving Einstein’s field equations for the gravitational field described by the general rel-
ativistic curvature of space-time, which determines the global structure of the stellar configuration.

For many studies of neutron star properties it is sufficient to treat neutron star matter as a
perfect fluid. The energy-momentum tensor of such a fluid is given by

Tµν =
dxµ

dτ
dxν

dτ
(

ε +P
)

+ gµν P. (3.6)
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Figure 6: Mass–radius relations of non-rotating (left panel) and rotating (right panel:Ω = ΩK) neutron stars
computed for different EoSs.ΩK denotes the general relativistic Kepler (mass shedding) frequency.

For non-rotating spherically symmetric stars the metric has the rather simple form

ds2 = −e2Φ(r) dt2 +e2Λ(r) dr2 + r2dθ2 + r2sin2θ dφ2 , (3.7)

whereΦ(r) andΛ(r) are radially varying metric functions. From (3.7) one readsoff the following
covariant components of the metric tensor,

gtt = −e2Φ(r) , grr = e2Λ(r) , gθ θ = r2 , gφφ = r2 sin2θ , (3.8)

so that the only non-vanishing Christoffel symbols are

Γr
tt = e2Φ(r)−2Λ(r) Φ′(r) , Γt

tr = Φ′(r) , Γr
rr = Λ′(r) , Γθ

rθ = r−1 , Γφ
rφ = r−1 , Γr

θ θ = − r e−2Λ(r) ,

Γφ
θ φ =

cosθ
sinθ

, Γr
φφ = − r sin2θ e−2Λ(r) , Γθ

φφ = −sinθ cosθ , (3.9)

where primes denote differentiation with respect to the radial coordinate. Substituting (3.6) and
(3.9) into Einstein’s field equations leads to the general relativistic equations of hydrostatic equi-
librium discussed first by Tolman [70] and Oppenheimer-Volkoff [71],

dP(r)
dr

= −
ε(r)m(r)

r2

(

1+ P(r)
ε(r)

) (

1+ 4πr3P(r)
m(r)

)

1− 2m(r)
r

. (3.10)

Note that we use geometrized units, where the gravitationalconstant and velocity of light are
G = c= 1 so thatM⊙ = 1.475 km. The boundary condition to (3.10) isP(r = 0) = P(εc), whereεc

denotes the energy density at the star’s center, which constitutes a parameter. Equation (3.10) is to
be integrated out to a radial distance whereP(r) = 0 which determines the star’s radius,R. The mass
contained in a sphere of radiusr (≤ R), denoted bym(r), follows fromm(r) = 4π

∫ r
0 dr′ r ′2 ε(r ′) .

The star’s total gravitational mass is thus given byM ≡ m(R). Figure 6 shows the mass-radius
relationships of both non-rotating as well as rotating sequences of neutron stars for the sample
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EoSs discussed in Sect. 2. The non-rotating sequences are solutions of the Tolman–Oppenheimer–
Volkoff equation shown in (3.10). The construction of rotating sequences will be discussed shortly
below. Figure 7 shows the gravitational mass of non-rotating as well as rotating neutron stars as
a function of central star density. Stars to the right of the respective mass peaks in each panel are
unstable against radial oscillations and thus cannot existstably in nature. Also shown in these plots
are the evolutionary (constant stellar baryon number,A) paths that isolated rotating neutron stars
would follow during their stellar spin-down evolution caused by the emission of magnetic dipole
radiation and a wind ofe+–e− pairs. Figure 7 reveals that CFL stars may spend considerably more
time in the spin-down phase than their competitors of the same mass. Another point that we want to
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Figure 7: Mass–central energy relations for the sample equations of state introduced in Sect. 2.

make is that all equations of state are able to support neutron stars of canonical mass,M ∼ 1.4M⊙.
Neutron stars more massive than about 2M⊙, on the other hand, are only supported by equations of
state that exhibit a very stiff behavior at asymptotic densities, disfavoring the presence of hyperons,
meson condensates, or quarks. Knowledge of the maximum possible mass of neutron stars is of
great importance for two reasons. Firstly, because the largest known neutron star mass imposes a
lower bound on the maximum mass of a theoretical model. Very massive neutron star candidates
are J0751+1807 (2.1+0.4

−0.5 M⊙ [72]), Vela X–1 (1.88±0.13M⊙ if the inclination angle of the system
is i = 90o; an inclination angle ofi = 70o increases the star’s mass to 2.27± 0.17M⊙ [73]), and
Cyg X-2 (1.78±0.23M⊙ [74]. Titarchuck and Shaposhnikov obtain for Cyg X–2 a lowermass of
1.44±0.06M⊙ [75]). The second reason is that the maximum mass of neutron stars is essential in
order to identify solar-mass black hole candidates [76, 77].

The structure equations of rotating compact stars are considerably more complicated that those
of non-rotating compact stars [2]. These complications have their cause in the rotational deforma-
tion, that is, a flattening at the pole accompanied with a radial blowup in the equatorial direction,
which leads to a dependence of the star’s metric on the polar coordinate,θ , in addition to the
mere dependence on the radial coordinate,r. Secondly, rotation stabilizes a star against gravi-
tational collapse. A rotating star can therefore carry moremass than a non-rotating star. Being
more massive, however, means that the geometry of space-time is changed too. This makes the
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Figure 8: Dragging of local inertial frames (Lense-Thirring effect)caused by∼ 1.4M⊙ neutron stars rotating
at 2 ms. The frequencȳω is defined in Eq. (3.13).

metric functions associated with a rotating star depend on the star’s rotational frequency. Finally,
the general relativistic effect of the dragging of local inertial frames implies the occurrence of an
additional non-diagonal term,gtφ , in the metric tensorgµν . This term imposes a self-consistency
condition on the stellar structure equations, since the extent to which the local inertial frames are
dragged along by the star is determined by the initially unknown stellar properties like mass and
limiting rotational frequency. The covariant components of the metric tensor of a rotating compact
star are thus given by [2, 78]

gtt = −e2ν +e2ψω2 , gtφ = −e2ψ ω , grr = e2λ , gθ θ = e2µ , gφφ = e2ψ , (3.11)

which leads for the line element to

ds2 = gµνdxµ dxν = −e2ν dt2 +e2ψ (

dφ −ω dt
)2

+e2µ dθ2 +e2λ dr2 . (3.12)

Here each metric function, i.e.ν , ψ , µ andλ , as well as the angular velocities of the local inertial
frames,ω , depend on the radial coordinater and polar angleθ and implicitly on the star’s angular
velocity Ω. Of particular interest is the relative angular frame dragging frequency,ω̄ , defined as

ω̄(r,θ ,Ω) ≡ Ω−ω(r,θ ,Ω) , (3.13)

which is the angular velocity of the star,Ω, relative to the angular velocity of a local inertial frame,
ω . It is this frequency that is of relevance when discussing the rotational flow of the fluid inside the
star, since the magnitude of the centrifugal force acting ona fluid element is governed–in general
relativity as well as in Newtonian gravitational theory–bythe rate of rotation of the fluid element
relative to a local inertial frame [79]. In contrast to Newtonian theory, however, the inertial frames
inside (and outside) a general relativistic fluid are not at rest with respect to the distant stars, as
pointed out just above. Rather, the local inertial frames are dragged along by the rotating fluid.
Depending on the internal stellar constitution, this effect can be quite strong, as shown in Fig. 8 for
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Table 1: Properties of neutron stars composed of nucleons and hyperons (HV), nucleons, hyperons, and
normal quarks (GB180

300 ), and nucleons, hyperons, and color-superconducting quarks (CFL).

HV GB180
300 CFL HV GB180

300 CFL
ν = 0 ν = 0 νK = 0 νK = 850 Hz νK = 940 Hz νK = 1400 Hz

εc (MeV/fm3) 361.0 814.3 2300.0 280.0 400.0 1100.0

I (km3) 0 0 0 223.6 217.1 131.8

M (M⊙) 1.39 1.40 1.36 1.39 1.40 1.41

R (km) 14.1 12.2 9.0 17.1 16.0 12.6

Zp 0.1889 0.2322 0.3356 0.2374 0.2646 0.3618
ZF 0.1889 0.2322 0.3356 −0.1788 −0.1817 −0.2184
ZB 0.1889 0.2322 0.3356 0.6046 0.6502 0.9190

gs,14 (cm/s2) 1.1086 1.5447 3.0146 0.7278 0.8487 1.4493

T/W 0 0 0 0.0894 0.0941 0.0787

BE (M⊙) 0.0937 0.1470 0.1534 0.0524 0.1097 0.1203

Veq/c 0 0 0 0.336 0.353 0.424

rotating 2 ms neutron stars. For a very compact neutron star containing a color-superconducting
CFL core, as in our example, one reads off from this figure thatthe local inertial frames at the star’s
center rotate at about half the star’s rotational frequency, ω(r = 0) ≃ Ω/2. This value drops to
about 15% for the local inertial frames located at the star’sequator. The scenarios shown in Fig.
8 may be of great importance for binary millisecond neutron stars in their final accretion stages,
where the accretion disk approaches the star very closely.

Table 1 summarizes the impact of strangeness on several intriguing properties of non-rotating
as well as rotating neutron stars. The latter spin at their respective Kepler frequencies. One sees
that the central energy density,εc, spans a very wide range, depending on particle composition.
The surface redshift is of importance since it is connected to observed neutron star temperatures
through the relationT∞/Teff = 1/(1+ Z). CFL quark stars may have redshifts that are up to 50%
higher than those of conventional stars. Finally, we also show in Table 1 the surface gravity of
stars,gs,14 [80], which again may be up to 50% higher for CFL stars. The other quantities listed are
the rotational kinetic energy in units of the total energy ofthe star,T/W, the stellar binding energy,
BE, and the rotational velocity of a particle at the star’s equator [2].

4. Limiting rotational periods

4.1 Mass shedding from the equator

No simple stability criteria are known for rapidly rotatingstellar configurations in general
relativity. However, an absolute limit on rapid rotation isset by the onset of mass shedding from
the equator of a rotating star. The corresponding rotational frequency is known as the Kepler
frequency,ΩK . In classical mechanics, the expression for the Kepler frequency, determined by the
equality between the centrifugal force and gravity, is readily obtained asΩK =

√

M/R3. In order
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Figure 9: Moment of inertia of several sample neutron stars.

to derive the general relativistic counterpart of this relation, one applies the extremal principle to
the circular orbit of a point mass rotating at the star’s equator. Sincer = θ = const for a point mass
there, one hasdr = dθ = 0. The line element (3.12) then reduces to

ds2 =
(

e2ν −e2ψ (Ω−ω)2) dt2 . (4.1)

Substituting this expression intoJ≡
∫ s2

s1
ds, wheres1 ands2 refer to points located at that particular

orbit for whichJ becomes extremal, gives

J =

∫ s2

s1

dt
√

e2ν −e2ψ (Ω−ω)2 . (4.2)

Applying the extremal conditionδJ = 0 to Eq. (4.2) and noticing thatV = eψ−ν (Ω−ω) then leads
to the following relation,

∂ψ
∂ r

e2ν V2−
∂ω
∂ r

eν+ψ V −
∂ν
∂ r

e2ν = 0. (4.3)

It constitutes a simple quadratic equation for the orbital velocityV of a particle at the star’s equator.
One thus obtains for the Kepler frequencyΩK (Kepler period,PK) the final relation [2],

ΩK = ω +
ω ′

2ψ ′
+eν−ψ

√

ν ′

ψ ′
+

( ω ′

2ψ ′
eψ−ν

)2
⇒ PK =

2π
ΩK

, (4.4)

which is to be determined self-consistently at the star’s equator (primes denote radial derivatives).
For most neutron star matter equations of state, the Kepler period obtained for 1.4M⊙ neutron stars
scatters around 1 ms. One exception to this are strange quarkmatter stars. These are self-bound
and, thus, tend to possess smaller radii than conventional neutron stars, which are bound by gravity
only. Because of their smaller radii, strange stars can withstand mass shedding down to periods of
around 0.5 ms [66, 81]. CFL stars reside between these limits.
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As a last topic of this section, we briefly discuss the moment of inertia of a rotationally de-
formed star described by the metric in Eq. (3.12). For such stars the moment of inertia is given
by

I(Ω) = 2π
∫ π

0
dθ

∫ R(θ )

0
dr eλ+µ+ν+ψ ε +P(ε)

e2ν−2ψ − (ω −Ω)2

Ω−ω
Ω

. (4.5)

Figure 9 shows that the crustal fraction of the moment of inertia of a neutron star may be around
50% smaller if the star contains a very soft phase of matter like quark matter. This may be of
relevance for pulsar glitch models and the modeling of the post-glitch behavior of pulsars.

4.2 Gravitational radiation reaction driven instabilitie s

Rotational instabilities in rotating stars, known as gravitational radiation driven instabilities,
are probably setting a more stringent limit on rapid stellarrotation than mass shedding. These
instabilities originate from counter-rotating surface vibrational modes which at sufficiently high
rotational star frequencies are dragged forward. In this case gravitational radiation, which in-
evitably accompanies the aspherical transport of matter, does not damp the instability modes but
rather drives them. Viscosity plays the important role of damping these instabilities at a sufficiently
reduced rotational frequency such that the viscous dampingrate and power in gravity waves are
comparable. The most critical instability modes that are driven unstable by gravitational radiation
are f -modes andr-modes. Figure 10 shows the stable neutron star frequenciesif only f -modes
were operative. One sees that hot as well as cold neutron stars can rotate at frequencies close to
mass shedding, because of the large contributions of shear and bulk viscosity, respectively, for this
temperature regime. The more recently discoveredr-mode instability may change the picture com-
pletely, as can be seen too from Fig. 10. These modes are driven unstable by gravitational radiation
over a considerably wider range of angular velocities than the f -modes (cf. dashed curve labeled
(m= 2) r-mode instability). In stars with cores cooler than∼ 109 K, on the other hand, ther-mode
instability may be completely suppressed by viscous phenomena so that stable rotation would be
limited by the f -mode instability again [82].
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Figure 11: Critical rotation frequencies versus
stellar temperature for CFL strange stars [85].

Figure 12: Same as Fig. 11, but for 2SC quark
stars [85].

Figures 11 and 12 are the counterparts to Fig. 10 but calculated for strange stars made of
CFL and 2SC quark matter, respectively [84, 85]. Ther-mode instability seems to rule out that
pulsars are CFL strange stars, if the characteristic time scale for viscous damping ofr-modes are
exponentially increased by factors of∼ ∆/T as calculated in [84]. An energy gap as small as∆ =

1 MeV was assumed. For much larger gaps of∆ ∼ 100 MeV, as expected for color superconducting
quark matter in the CFL phase, the entire diagram would ber-mode unstable. The full curve in Fig.
11 is calculated for a strange quark mass ofms = 200 MeV, the dotted curve forms = 100 MeV. The
box marks the positions of most low mass X-ray binaries (LMXBs) [86], and the crosses denote
the most rapidly rotating millisecond pulsars known. All strange stars above the curves would
spin down on a time scale of hours due to ther-mode instability, in complete contradiction to the
observation of millisecond pulsars and LMXBs, which would rule out CFL quark matter in strange
stars (see, however, Ref. [87]). Figure 12 shows the critical rotation frequencies of quark stars as
a function of internal stellar temperature for 2SC quark stars. For such quark stars the situation is
less conclusive. Rapid spin-down, driven by ther-mode gravitational radiation instability, would
happen for stars above the curves.

5. Astrophysical signals of quark deconfinement

5.1 Isolated, rotating neutron stars

Whether or not quark deconfinement occurs in neutron stars makes only very little difference
to their static properties, such as the range of possible masses and radii, which renders the detection
of quark matter in such objects extremely complicated. Thismay be strikingly different for isolated,
rotating neutron stars which spin down, and thus become morecompressed, because of the emission
of magnetic dipole radiation and a wind of electron-positron pairs. For some rotating neutron stars
the mass and initial rotational frequency may be just such that the central density rises from below
to above the critical density for dissolution of baryons into their quark constituents. If accompanied

19



Strangeness in compact stars Fridolin Weber

by a pronounced shrinkage of the neutron star, as is the case for the neutron star shown in the
central panel in Fig. 4, the star’s moment of inertia could change dramatically. As shown in [88],
the moment of inertia can decrease so anomalously that it could even introduce an era stellar spin-
up that may last for∼ 108 years. Since the dipole age of millisecond pulsars is about 109 years,
one may roughly estimate that about 10% of the solitary millisecond pulsars could be in the quark
transition epoch and thus could be signaling the ongoing process of quark deconfinement. Changes
in the moment of inertia reflect themselves in the braking index,n, of a rotating neutron star, as can
be seen from [4, 88, 89]

n(Ω) ≡
ΩΩ̈
Ω̇2

= 3−
I +3I ′Ω+ I ′′Ω2

I + I ′Ω
≃ 3−

3I ′ Ω+ I ′′Ω2

2I + I ′Ω
, (5.1)

where dots (primes) denote derivatives with respect to time(Ω). The last relation in (5.1) constitutes
the non-relativistic limit of the braking index [90]. It is obvious that these expressions reduce to
the canonical limitn = 3 if I is independent of frequency. Evidently, this is not the casefor rapidly

Table 2: Dominant neutrino emitting processes in neutron star coresif hyperons and quarks are absent [21].

Name Process Emissivity
(erg cm−3 s−1)

Modified Urca cycle
(neutron branch)

n+n→ n+ p+e−+ ν̄e
n+ p+e− → n+n+ νe

∼ 2×1021 R T8
9 Slow

Modified Urca cycle
(proton branch)

p+n→ p+ p+e−+ ν̄e
p+ p+e− → p+n+ νe

∼ 1021 R T8
9 Slow

Bremsstrahlung
n+n→ n+n+ ν + ν̄
n+ p→ n+ p+ ν + ν̄
p+ p→ p+ p+ ν + ν̄

∼ 1019 R T8
9 Slow

Cooper pair
formations

n+n→ [nn]+ν + ν̄
p+ p→ [pp]+ν + ν̄

∼ 5×1021 R T7
9

∼ 5×1019 R T7
9

Medium

Direct Urca cycle n→ p+e− + ν̄e
p+e− → n+ νe

∼ 1027 R T6
9 Fast

π− condensate n+ < π− >→ n+e− + ν̄e ∼ 1026 R T6
9 Fast

K− condensate n+ < K− >→ n+e− + ν̄e ∼ 1025 R T6
9 Fast

rotating neutron stars, and it also fails for stars that undergo pronounced compositional changes
(phase transitions) which alter the moment of inertia significantly. Under favorable circumstances,
these changes inI , originating from the transition of confined hadronic matter into quark matter,
may cause the braking index to deviate dramatically from 3 inthe vicinity of the star’s frequency
where the phase transition to quark matter occurs. The changes inI may even be so pronounced that
n(Ω)→±∞ at the transition point [1, 2, 4, 90]. Such dramatic anomalies inn(Ω) are not known for
conventional neutron stars (see left panel in Fig. 4), because their radii and thus moments of inertia
appear to vary smoothly withΩ [2, 4]. A counterexample to this, however, is discussed in [91].
The future astrophysical observation of strong anomalies in the braking behavior of isolated pulsars
could thus be cautiously interpreted as a possible astrophysical signal for quark deconfinement in
neutron stars.
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Table 3: Dominant neutrino emitting processes in deconfined quark matter [21].

Name Process Emissivity Efficiency
(erg cm−3 s−1)

Direct Urca cycle
(ud branch)

u+e− → d+ νe
d → u+e− + ν̄e

∼ 1026 R T6
9 Fast

Direct Urca cycle
(usbranch)

u+e− → s+ νe
s→ u+e− + ν̄e

∼ 1025 R T6
9 Fast

Modified Urca cycle
(ud branch)

Q+u+e− → Q+d+ νe
Q+d → Q+u+e−+ ν̄e

∼ 1021 R T8
9 Slow

Modified Urca cycle
(usbranch)

Q+u+e− → Q+s+ νe
Q+s→ Q+u+e−ν̄e

∼ 1020 R T8
9 Slow

Bremsstrahlungs Q1+Q2 → Q1 +Q2+ ν + ν̄ ∼ 1019 R T8
9 Slow

Cooper pair
formations

u+u→ [uu]+ν + ν̄
d+d → [dd]+ν + ν̄
s+s→ [ss]+ν + ν̄

∼ 2.5×1020 R T7
9

∼ 1.5×1021 R T7
9

∼ 1.5×1021 R T7
9

Medium

5.2 Accreting neutron stars

Accreting x-ray neutron stars provide a very interesting contrast to the spin-down of isolated
neutron stars. These x-ray neutron stars are being spun up bythe accretion of matter from a lower-
mass (M<

∼0.4M⊙), less-dense companion. If the critical deconfinement density falls within that of
the canonical pulsars, quark matter could already exist in them but will be spun out of such stars
as their frequency increases during accretion. This scenario has been modeled in [92], where it
was found that quark matter remains relatively dormant in the core of a neutron star until the star
has been spun up to frequencies at which the central density is about to drop below the threshold
density at which quark matter exists. As known from the discussion above, this could manifest
itself in a significant increase of the star’s moment of inertia. The angular momentum added to a
neutron star during this phase of evolution is therefore consumed by the star’s expansion, inhibiting
a further spin-up until the star’s quark matter content has been completely converted into a mixed
phase of hadrons and quarks. Such accreters, therefore, tend to spend a greater length of time in the
critical frequencies than otherwise. For canonical accretion rates of 10−10M⊙/year the time span
can be on the order of 109 years. Hence, from this scenario, one would expect a greaternumber of
accreting x-ray neutron stars that appear near the same frequency. Evidence that accreting neutron
stars pile up at certain frequencies, which are well below the mass shedding limit, is provided by
the spin distribution of accreting millisecond pulsars in 57 Tuc and neutron stars in low mass X-ray
binaries observed with the Rossi X-ray Timing Explorer (RXTE). The proposed limiting mecha-
nisms responsible for this behavior is generally attributed to gravity-wave emission caused by the
r-mode instability, or by a small stellar mass quadrupole moment [93, 94, 95]. Supplemental to
these explanations, quark reconfinement (or, more generally, strong first-order like phase transition)
may be linked to this phenomenon as well [37, 92, 96, 97].

6. Cooling of neutron stars

The predominant cooling mechanism of hot (temperatures of several∼ 1010 K) newly formed
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Figure 13: Cooling behavior of a 1.4M⊙ neutron star for competing assumptions about the properties of
superdense matter. Three distinct cooling scenarios, referred to as standard, intermediate, and enhanced can
be distinguished. The band-like structures reflect the uncertainties inherent in the stellar EoS [2, 4].

neutron stars immediately after formation is neutrino emission, with an initial cooling time scale of
seconds. Already a few minutes after birth, the internal neutron star temperature drops to∼ 109 K.
Photon emission overtakes neutrino emission when the internal temperature has fallen to∼ 108 K,
with a corresponding surface temperature roughly two orders of magnitude smaller. Neutrino cool-
ing dominates for at least the first 103 years, and typically for much longer in standard cooling
(modified Urca) calculations. The dominant neutrino emitting processes in neutron star matter are
summarized in Tables 2 and 3. Figure 13 shows the outcome of cooling calculations performed
for a broad collection of equations of state [2, 4] and competing assumptions about the dominant
neutrino emitting processes. For recent overviews of neutron star cooling, see, for instance, Refs.
[21, 98]. We also refer to D. Blaschke’s contribution contained elsewhere in this volume.

7. Summary

It is often stressed that there has never been a more excitingtime in the overlapping areas
of nuclear physics, particle physics and relativistic astrophysics than today. This comes at a time
where new orbiting observatories such as the Hubble Space Telescope (HST), Rossi X-ray Timing
Explorer, Chandra X-ray satellite, and the X-ray Multi Mirror Mission (XMM) have extended
our vision tremendously, allowing us to observe compact star phenomena with an unprecedented
clarity and angular resolution that previously were only imagined. On the Earth, radio telescopes
(Arecibo, Green Bank, Parkes, VLA) and instruments using adaptive optics and other revolutionary
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techniques have exceeded previous expectations of what canbe accomplished from the ground.
Finally, the gravitational wave detectors LIGO, LISA, and VIRGO are opening up a window for
the detection of gravitational waves emitted from compact stellar objects such as neutron stars and
black holes. This unprecedented situation is providing us with key information on compact stars,
which are the only physical objects in which cold and dense baryonic matter is realized in nature.
As discussed in this paper, a key role in compact star physicsis played by strangeness. It alters
the masses, radii, cooling behavior, and surface composition of neutron stars. Other important
observables may be the spin evolution of isolated neutron stars and neutron stars in low-mass x-ray
binaries. All told, these observables are key in exploring the phase diagram of dense nuclear matter
at high baryon number density but low temperature, which is not accessible to relativistic heavy
ion collision experiments.
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