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1. Introduction

Astrophysicists distinguish between three different sypbcompact stellar objects. These are
white dwarfs, neutron stars, and black holes. The lattestitote a region of space which has so
much mass—energy concentrated in it that no particles ot kght) inside the black hole’s event
horizon can escape the black hole’s gravitational pull. Jiteation is very different for neutron
stars and white dwarfs, which are about as massive as therasgs{l., = 2 x 10°° kg) but whose
radii are much smaller than the sun’s radiis & 7 x 10° km). Model calculations predict that
the matter in the cores of neutron stars is compressed tatidenmnging from a few times the
density of an atomic nucleus,2x 10* g/cn?, to densities that may be ten to twenty times higher
[1, 2, 3]. In comparison to that, white dwarfs of average miks- 0.6 M, are at least by a factor
of 10’ less dense than neutron stars. The tremendous densitieth(anpressures) existing inside
neutron stars make them superb astrophysical laborafori@swide range of fascinating physical
studies [1, 2, 4]. These include the exploration of nuclgac@sses in an environment extremely
rich of electrons and neutrons, and the formation of nevestat matter, like quark matter which is
being sought at the most powerful terrestrial particleidels. If quark matter exists in the cores of
neutron stars, it will be a color superconductor whose cosalion pattern has been shown to be
very complex [5, 6, 7]. It has also been theorized that quaatten (known as strange quark matter)
may be even more stable than atomic nuclei. In the latterteveutron stars should be entirely
made of strange quark matter, possibly enveloped in a vémyniliclear crust. Such objects are
called strange stars [8, 9, 10]. Strangeness, therefongéeddy hyperons, mesons, H-dibaryons,
and strange quark matter, plays a key role for compact siaigghand phenomenology, as will be
discussed in this paper (see Ref. [4] for a detailed recetgweon this topic).

2. Composition of high-density neutron star matter and EoS

The properties of neutron stars are determined by the enuafistate (EoS) of neutron star
matter. The EoS of neutron star matter below neutron dripclwvbccurs at densities around
4 x 1ollg/cm3, and at densities above neutron drip but below the sataratémsity of nuclear
matter is relatively well known. This is to a less extent theefor the EoS in the vicinity of the
saturation density of normal nuclear matter= 0.16 fm—3 (energy density ofy = 140 MeV/fmg).
Finally, the physical properties of matter at still highendities are extremely uncertain so that the
associated EoS is only very poorly known [1, 2, 3]. This isphieally indicated by the hatched
areas in Fig. 1, which is based on three Walecka-type modelthé EoS. The HV model is a
relativistic non-linear mean-field equation of state coteddfor nucleons (M n, p) and hyperons
(H=Z, A, =) in chemical equilibrium [4, 11]. The other two models§¥° [1] and CFL [12],
account additionally for the presence of up, down, and ggajuarks in neutron star matter. The
quarks are treated as normal unpaired quarks (Q) in ﬁg@o@nodel, and as color-flavor locked
superconducting quarks (sQ) with a superfluid gapp ef 100 MeV in the CFL model. The model
labeled DD-RBHF is a density dependent relativistic BruerkHartree-Fock EoS which accounts
for nucleons and hyperons [13, 14]. Itis obvious from Fichdttdepending on stellar composition,
neutron star properties such as masses, radii, momentgntifiinredshifts, or limiting rotational
periods may vary significantly with strangeness.
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Figure 1. Models for the E0S of neutron star matter.

2.1 Hyperons

At the densities in the interior of neutron stars, the neuthemical potentialu", is likely
to exceeds the masses, modified by interaction&, df and possibly= hyperons [11]. Hence, in
addition to nucleons, neutron star matter is expected te Banificant populations of hyperons
and possibly eveA's [15]. If so, pure neutron matter would constitute an eetistate relative to
hyperonic (many-baryon) matter which, therefore, woulitkiy transform via weak reactions like

nN— p+e + Ve (2.1)

to the lower energy state. The chemical potentials assatiaith reaction (2.1) in equilibrium
obey the relation

p = pP (2.2)
where 1% = 0 since the mean free path of (anti) neutrinos is much sméiem the radius of
neutron stars. Hence (anti) neutrinos do not accumulaigeimseutron stars. This is different for
hot proto-neutron stars [16]. Equation (2.2) is a speciséaH the general relation

pX =BXu"—gfu® (2.3)
which holds in any system characterized by two conservejesaThese are in the case of neutron

star matter electric chargg), and baryon number chargBf. Application of Eq. (2.3) to thé\
hyperon B" = 1, ¢ = 0), for instance, leads to

ph=pn, (2.4)
Ignoring particle interactions, the chemical potentiahatlativistic particle of type is given by

WY = wolke,) = /mR 12, (2.5)

wherew(kg, ) is the single-particle energy of the particle dedits Fermi momentum. Substituting
(2.5) into (2.4) leads to

3
anzw/m?\—mﬁ:Nm*l:nz%:Zno, (2.6)
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wheremy = 1116 MeV andm, = 939 MeV was used. That is, if interactions among the padicle
are ignored, neutrons are replaced within neutron star matter at densities as low as two times the
density of nuclear matter. This result is only slightly edig by the inclusion of particle interactions
[11]. Aside from chemical equilibrium, the condition of etec charge neutrality of neutron star
matter,

ik + 3 oM —my) =0, (2.7)

X=p,2t, =" Att e ,u

whereM stands forrr~ or K~ mesons, plays a key role for the particle composition of nogut
star matter too. The last term in (2.7) accounts for the ptesssxistence of either @ or a
K~ meson condensate in neutron star matter, which will be d&smiin more detail in Sect. 2.2
below. Before, however, we illustrate the importance of. <) and (2.7) for the proton-neutron
fraction of neutron star matter. The beta decay and electipture processes among nucleans;
p+e +Veandp+e- — n+ Ve respectively, also known as nucleon direct Urca processesnly
possible in neutron star matter if the proton fraction egsesecertain critical value [17]. Otherwise
energy and momentum can not be conserved simultaneousthdse reactions so that they are
forbidden. For a neutron star made up of only nucleons amudreles, it is rather straightforward to
show that the critical proton fraction is around 11%. Thiofes fromkg, = ka +kr, combined
with the condition of electric charge neutrality of neutistar matter. The triangle inequality then
requires for the magnitudes of the particle Fermi momégta< ka + ke, and charge neutrality
dictates thakgr, = kr,. Substitutingkg, = kg, into the triangle inequality leads g, < 2kg, so
that for the particle number densities of neutrons and psotg < 8n,. Expressed as a fraction
of the system’s total baryon number density= n, + n,, one thus arrives atp/n > 1/9 ~ 0.11,
which is the figure quoted just above. Medium effects andattéons among the particles modify
this value only slightly but the presence of muons raises dhout 015. Hyperons, which may
exist in neutron star matter rather abundantly, producerines via direct Urca processes like
S~ —NA+e +veandA+e — I 4V [18]. The direct Urca processes are of key importance for
neutron star cooling, which will be discussed briefly in Séctin most cases, the nucleon direct
Urca process is more efficient than the ones involving hypeft9, 20].

2.2 Meson condensates

The pion or kaon meson fields may develop condensates in deas®n star matter. These
condensates would have two important effects on neutras. Stastly, they would soften the EoS
above the critical density for onset of condensation, whicluces the maximum neutron star mass.
Secondly, since the:rm > or <K~ > condensates can absorb as little or as much momentum as
required by the scattering processess <7 >— N+€ + Ve Of N4+ <K~ >— n+e~ + Ve, the
associated neutrino emissivities are very high which lgadgst neutron star cooling [20, 21]
(see Sect. 6). Since th€~ condensate process involves a change in strangenessoiigkly
by a factor sif 6 ~ 1/20 (6c denotes the Cabibbo angle) less efficient thanrthecondensate
process. However, medium effects can reduce the impaceofthcondensate on stellar cooling
by about one order of magnitude, making it comparable to ffigency of theK~ condensate.
Estimates predict the onsetaf condensation at densities aroumBi~ 2ng, with ng = 0.16 fm—3
the empirical nuclear matter density. However, this dgrisivery sensitive to the strength of the
effective nucleon particle-hole repulsion in the isospig- 1, spinS= 1 channel, which tends to
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suppressT condensation and may pusfl to much higher values. Similarly, depending on the
nuclear model, the threshold density for the onsef ofcondensationnX, is probably at least as
high as 4 [22, 23].

K~ condensation can only occur in neutron star matter if thetele chemical potential equals
the effective in-medium meson mass, according to the sctieneactione™ — K~ + vg, with the
neutrinos leaving the star (see Fig. 2). This reaction waedollowed byn — p-+K~. By this
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Figure 2: The effective kaon massy, in nuclear matter and neutron star matter [4]. Data takem fi24]
and [22], respectively.

conversion the nucleons in the cores of newly formed neudtars can become half neutrons and
half protons [25]. The relatively isospin symmetric comiios achieved in this way resembles

the one of isospin symmetric atomic nuclei, which are madefiggual numbers of neutrons and

protons. Neutron star matter is therefore referred to is picture as nucleon matter, and neutron
stars constructed for such an EoS are referred to as nudiae25, 26, 27, 28].

2.3 H-dibaryons

A novel particle that could make its appearance in the caitameutron star is the so-called
H-dibaryon, a doubly strange six-quark composite with spid isospin zero, and baryon number
two [29]. Since its first prediction in the 1970s, the H-dysaw has been the subject of many
theoretical and experimental studies as a possible camdidaa strongly bound exotic state. In
neutron stars, which may contain a significant fraction\ohyperons, the\'s could combine
to form H-dibaryons, which could give way to the formation éfdibaryon matter at densities
somewhere above 3¢y [30, 31, 32] depending on the in-medium properties of theilb&igon.
For an attractive optical potentidlly, of the H-dibaryon at normal nuclear density the equation
of state is softened considerably, as shown in Fig. 3. Hrgdramatter could thus exist in the
cores of moderately dense neutron stars. H-dibaryons witttaum mass of about 2.2 GeV and
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Figure 3: EoS of neutron star matter accounting for a H-dibaryon coedte [32] Uy is the optical potential
of the H-dibaryon at normal nuclear density.

a moderately attractive potential in the medium of abldyt= —30 MeV, for instance, could go
into a boson condensate in the cores of neutron stars ifriiitirlg star mass is about that of the
Hulse-Taylor pulsar PSR 1913+1@, = 1.444M,, [32]. Conversely, if the medium potential were
moderately repulsive, arout}; = +30 MeV, the formation of H-dibaryons may only take place in
heavier neutron stars of masses greater than abéM.:Ll If formed, however, H-matter may not
remain dormant in neutron stars but, because of its in@iiabijjainst compression, could trigger
the conversion of neutron stars into hypothetical stratge $31, 33, 34].

2.4 Quark deconfinement

One item that came recently into particular focus concenespiossible existence of quark
matter in the cores of neutron stars [2, 5, 6]. The phaseitimm$rom confined hadronic matter to
deconfined quark matter is characterized by the consenvafibaryon charge and electric charge.
The Gibbs condition for phase equilibrium then is that the agsociated chemical potentials)
andu®, and the pressure in the two phases be equal [1, 35],

Pa(p™ 1o (X}, T) = Po(u™, p&,T). (2.8)

Py denoted the pressure of hadronic matter computed for a diaeinonic matter Lagrangian
2u({x}), where{x} denotes the field variables and Fermi momenta that chaizet@isolution
to the field equations of confined hadronic matter,

(iyH 0y —my) Wy (x) = Z MmxM(X) Wy (%), (2.9)
M=0,w,T,...
(OHou+mp)a(x) = 5 Tox PPy (x), (2.10)
X:psnvzs"'

plus additional equations for the other meson fieMs< w, 1T, p, ...). The pressure of quark matter,
Po, is obtainable from the bag model. The quark chemical piatisri“, ud, s are related to the
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Figure 4: Dependence of stellar compositions on neutron star spijjuénecyy, for the HV, Gi8%, and CFL

(from left to right) EoSs. The non-rotating stellar masséctecase is aboutdM,. vk denotes the Kepler
(mass-shedding) frequency of each sequence, discussedtirdS

baryon and charge chemical potentials as

1.2 1,01
p'=gut-gut pl=pt=gpt ot (2.11)

Equation (2.8) is to be supplemented with the two globatiaia for conservation of baryon charge
and electric charge within an unknown volumeontainingA baryons. The first one is given by

A

— = (1—n)ny(u", u8,T)+nno(u", ue,T), (2.12)

n
Vv

wheren =Vg/V denotes the volume proportion of quark matigy, in the unknown volum¥, and
ny andng are the baryon number densities of hadronic matter and quatter. Global neutrality
of electric charge within the volumé can be written as

Q

0=5 =01~ n)an (U™, 18 T)+nag(u",u%,T)+ac, (2.13)

with g; the electric charge densities of hadrons, quarks, andrsptBor a given temperatur€,
Egs. (2.8) to (2.13) serve to determine the two independesnaal potentials and the volume
V for a specified volume fraction of the quark phase in equilibrium with the hadronic phase.
After completionVg is obtained a¥q = nV. Because of Egs. (2.8) through (2.13) the chemical
potentials depend on the proportigrof the phases in equilibrium, and hence so also all progertie
that depend on them, i.e. the energy densities, baryon amgjeldensities of each phase, and
the common pressure. For the mixed phase, the volume pi@part quark matter varies from

0 < n <1 and the energy density is the linear combination of the thasps [1, 35],

e=1-n)en(u" 1% {x},T)+ne(u",u®T). (2.14)

Hypothetical neutron star compositions computed alongdlittes described above are shown in
Fig. 4. Possible astrophysical signals originating fromargudeconfinement will be discussed in
Sect. 5[1, 2, 36, 37].
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2.5 Color superconductivity of quark matter

There has been much recent progress in our understandingudf matter, culminating in the
discovery that if quark matter exists it ought to be in a caloperconducting state [5, 6, 38, 39].
This is made possible by the strong interaction among thekgwehich is very attractive in some
channels. Pairs of quarks are thus expected to form Coopsrvesly readily. Since pairs of quarks
cannot be color neutral, the resulting condensate willlbtiealocal color symmetry and form what
is called a color superconductor. The phase diagram of sattenis expected to be very complex
[5, 6]. This is caused by the fact that quarks come in threfergifit colors, different flavors, and
different masses. Moreover, bulk matter is neutral withpees to both electric and color charge,
and is in chemical equilibrium under the weak interactiomcpsses that turn one quark flavor into
another. To illustrate the condensation pattern brieflyneate the following pairing ansatz for the
guark condensate [40],

(WECYSWE ) ~ DePheq g1+ Do Py 1o+ Nge™Pogy fy3, (2.15)

wherey is a quark of color = (r,9,b) and flavorf, = (u,d,s), andg;j denotes the Levi-Civita
symbol. The latter is zero far= |, j =k, ork=1i; +1 for (i, j, k) an even permutation of (1,2,3);
and—1 for (i, j,k) an odd permutation of (1,2,3). The condensate is a Loreatars@antisymmetric
in Dirac indices, antisymmetric in color, and thus antisyetric in flavor. The gap parameters
A, A» and Az described-s, u-s andu-d quark Cooper pairs, respectively. The following pairing
schemes have emerged. At asymptotic densities+£ O or u — o) the ground state of QCD with
a vanishing strange quark mass is the color-flavor locked.Y@hRase (color-flavor locked quark
pairing), in which all three quark flavors participate syntirically. The gaps associated with this
phase are

Nz~Ny=N =A, (2.16)
and the quark condensates of the CFL phase are approxinoéitly form
(WECHWE) ~ e er1x, (2.17)

with color and flavor indices all running from 1 to 3. Sin&‘éaxsfafbx = 5%55) - 6;’;52 one sees
that the condensate (2.17) involves Kronecker delta fanstithat link color and flavor indices.
Hence the notion color-flavor locking. The CFL phase has tstenvn to be electrically neutral
without any need for electrons for a significant range of dicahpotentials and strange quark
masses [41]. If the strange quark mass is heavy enough tanbeeiy then up and down quarks
may pair in the two-flavor superconducting (2SC) phase. Oplossible condensation patterns
are CFLK? [42], CFL-K* and CFLs1®~ [43], gCFL (gapless CFL phase) [40], 1SC (single-
flavor-pairing) [40, 44, 45], CSL (color-spin locked phaptg], and the LOFF (crystalline pairing)
[47, 48, 49] phase, depending aom, u, and electric charge density. Calculations performed for
massless up and down quarks and a very heavy strange quaskmas «) agree that the quarks
prefer to pair in the two-flavor superconducting (2SC) phalkere

A3 >0, and A=A;=0. (2.18)
In this case the pairing ansatz (2.15) reduces to

(WECYYE) O Aeape 2. (2.19)
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Here the resulting condensate picks a color direction (Ju Im the example (2.19) above), and
creates a gap at the Fermi surfaces of quarks with the other two out of tro@lers (red and
green). The gapless CFL phase (gCFL) may prevail over thedEl2SC phases at intermediate
values ofmZ/u with gaps given obeying the relation

Az >Ny > A1 > 0. (2.20)

For chemical potentials that are of astrophysical integest 1000 MeV, the gap is between 50 and
100 MeV. The order of magnitude of this result agrees witledations based on phenomenolog-
ical effective interactions [39, 50] as well as with pertatitle calculations fou > 10 GeV [51].
We also note that superconductivity modifies the equaticstaié at the order aiz/u)? [12, 52],
which is even for such large gaps only a few percent of the balkrgy. Such small effects may
be safely neglected in present determinations of modelthéoequation of state of quark-hybrid
stars. There has been much recent work on how color suparctivity in neutron stars could
affect their properties (see Refs. [5, 6, 47, 53, 54, 55] afickences therein). These studies reveal
that possible signatures include the cooling by neutringsgion, the pattern of the arrival times
of supernova neutrinos, the evolution of neutron star miggfields, rotational stellar instabilities,
and glitches in rotation frequencies.

Aside from neutron star properties, an additional test ¢drcsuperconductivity may be pro-
vided by upcoming cosmic ray space experiments such as AR[Sfl ECCO [57] As shown
in Ref. [58], finite lumps of color-flavor locked strange canatter (see Sect. 2.6), which should
be present in cosmic rays if strange matter is the ground sfathe strong interaction, turn out
to be significantly more stable than strangelets withoubrefthvor locking for wide ranges of
parameters. In addition, strangelets made of CFL strangtenabey a charge-mass relation of
Z/A 0 A-Y3, which differs significantly from the charge-mass relatirstrangelets made of or-
dinary strange quark matter. In the latter caé\ would be constant for small baryon numbérs
andZ/A 0 A~2%/3 for large A [10, 58, 59]. This difference may allow an experimental t#SEFL
locking in strange quark matter [58].

2.6 Absolute stability of strange quark matter

So far we have assumed that quark matter forms a state ofrrhiggter in energy than atomic
nuclei. This most plausible assumption, however, may notdyeect [60, 61, 62], since for a
collection of more than a few hundrexl d, s quarks, the energy per barydg/A, of quark matter
can be just as well below the energy per baryon of the moskestabmic nuclei, nickel and iron.
This is known as the strange quark matter hypothesis. Theeper baryon irr®Fe, for instance,
is given by M(°6Fe)c?/56 = 9304 MeV, with M(°®Fe) the mass of thé®Fe atom. A simple
estimate shows that for strange quark matter describedeoi¥tii bag modelE /A = 4B/ 3,
so that bag constants 8= 57 MeV/fm? (i.e. BY/4 = 145 MeV) andB = 85 MeV/fm? (B4 =
160 MeV) would place the energy per baryon of strange quaritematE/A = 829 MeV and
915 MeV, respectively, which correspond to strange quarktenahich is absolutely bound with
respect to nuclear matter [10]. If this were indeed the aasgiron star matter would be metastable
with respect to strange quark matter, and all neutron stasald in fact be strange quark stars

1See J. Madsen’s contribution on strange matter in cosmipaglished elsewhere in this volume.
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Figure 5: EoS of strange quark matter surrounded by nuclear mattern¥dximal possible nuclear matter
density is determined by neutron drip which occurgats:= 0.24 MeV/fm® (4.3 x 10! g/cm®). Any
nuclear density that is smaller than that is possible. Asxam@le, we show here the EoS for a chosen
density ofgcrus= 104 MeV/fm? (108 g/cn).

[10, 63, 64]. As outlined just above, strange quark mattexfected to be a color superconductor
which, at extremely high densities, should be in the CFL phasis phase is rigorously electrically
neutral with no electrons required [41]. For sufficientlygla strange quark masses, however, the
low density regime of strange quark matter is rather exjctéorm a 2SC phase (or possibly other
phases) in which electrons are present [5, 6]. The presdraleatrons causes the formation of an
electric dipole layer on the surface of strange matter, wkicables strange quark matter stars to
carry crusts made of ordinary nuclear matter [8, 9, 65]. Th&imal possible density at the base of
the crust (inner crust density) is determined by neutrom, @vhich occurs at about410! g/cm3.
This somewhat complicated situation of the structure afrgfe matter enveloped in a (chemically
equilibrated) nuclear crust can be represented by a prdpece for the EoS which consists of
two parts [66]. At densities below neutron drip it can be esgnted by the EoS of Baym-Pethick-
Sutherland, while the high-density part, consisting ofrsfje quark matter, can be described by
the bag model EoS (see Fig. 5). The EoS is characterized Igndicant discontinuity in density
between strange quark matter and nuclear crust mattersattreselectric dipole gap where the
pressure of the nuclear crust at its base equals the predfsirange matter at its surface [2, 4, 66].
One crucial astrophysical test of the strange quark magteothesis is whether strange quark
stars can give rise to the observed phenomena of pulsanagitén the crust quake model an oblate
solid nuclear crust in its present shape slowly comes ouqofibrium with the forces acting on it
as the rotational period changes, and fractures when thteupustress exceeds the sheer strength
of the crust material. The period and rate of change of pesiodly heal to the trend preceding
the glitch as the coupling between crust and core re-estabiieir co-rotation. The existence of
glitches may have a decisive impact on the question of whéltlkeestrange quark matter hypothesis
holds or not. From the calculations in [66] it is known thag thtio of the crustal moment of inertia

10
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to the star’s total moment of inertidgrysy/ liotal, Varies between 1® and 10° at the maximum
mass. If the angular momentum of the pulsar is conserveckiquake then the relative frequency
change and moment of inertia change are equal and one aati{&3]

AQ Al AT Torst

= > ~ (10°-10%f, with 0<f<1. (2.21)
Q lo | |

Herelp denotes the moment of inertia of that part of the star whasguiency is changed in the
guake. It might be that of the crust only, some fraction, éroélthe star. The factolf in Eq.
(2.21) represents the fraction of the crustal moment otiméhnat is altered in the quake, i.d.=
|Al]/1cust: Since the observed glitches have relative frequency @sah@,/Q = (107° —107°),

a change in the crustal moment of inertiafofs 0.1 would cause a giant glitch even in the least
favorable case [66]. Moreover, one finds that the observederaf the fractional change in the
spin-down rateQ, is consistent with the crust having the small moment oftiaeralculated and
the quake involving only a small fractiohof that, just as in Eg. (2.21). To this aim we write [66]

AQ  AQ/Q Al AQ/Q | lost

g == 10 1to 10 f 2.22
Q AQ/Q 1o AQ/Q o > ( 010 f, (2.22)

where use of Eq. (2.21) has been made. Equation (2.22) yéetusall f value in the rangd <
(10~*to 1071), in agreement witf < 107! established just above. Here measured values of the
ratio (AQ/Q)/(AQ/Q) ~ 107 to 104 for the Crab and Vela pulsars, respectively, have been used.

An improved discussion of the surface gap below strangecstiats has been performed very
recently in Ref. [67]. In addition to the electrostatic fescdescribed above, this study includes
gravity too. The properties of the gap are investigated foide range of parameters assuming both
color-flavor locked and noncolor-flavor locked strange staes. It is found that the maximally
allowed inner crust density is generally lower than that efitnon drip. This does not alter the
overall form of the EoS shown in Fig. 5, however. Another riesting finding concerning the
surface properties of strange stars was recently publishi@df. [68]. In this paper it is found that,
depending on the surface tension of nuggets of strange matteterogeneous crust comprised
of nuggets of strange quark matter embedded in an uniforotrefebackground may exist in the
surface region of strange stars. This heterogeneous stistag surface would have a negligible
electric field which would make the existence of an ordinawglear crust, which requires a very
strong electric field, impossible.

3. Models of compact stars

Neutron stars are objects of highly compressed matter gatibageometry of space-time
is changed considerably from flat space. Thus models of siach are to be constructed in the
framework of Einstein’s general theory of relativity coméd with theories of superdense matter.
The effects of curved space-time are included by couplirgeiiergy-momentum density tensor
for matter fields to Einstein’s field equations. The gengradivariant Lagrangian density is

=YL+ Ls, (3.2)

11
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where the dynamics of particles is introduced through th&end&agrangian%y added to the
gravitational Lagrangiad/s. The latter is given by

L5 =9"?R=g"?g"" Ryy, (3.2)

whereg"” andR,,, denote the metric tensor and the Ricci tensor, respectiélg latter is given
by
Ry = rza,v_rgv7a+rgv rﬁa_rgarﬁv’ (3.3)

where commas followed by a Greek letter denote derivativssrespect to space-time coordinates,
e.g.,y = d/0x’ etc. The Christoffel symbolE in (3.3) are defined as

1
Egg)\ (gu)\7v +gw\7u - guv,)\) . (3-4)

The connection between both branches of physics is provgdeinstein’s field equations

o}
M =

1
GH =R — Zg"R=81TH" (¢, P(e)), (3.5)

(u,v =0,1,2,3) which couples the Einstein curvature ten€af!, to the energy-momentum den-
sity tensor, THY, of the stellar matter. The quantitig§V andR in (3.5) denote the metric tensor
and the Ricci scalar (scalar curvature) [2]. The tenBbY contains the equation of state(e),
of the stellar matter discussed in Sect. 2. In general, &imstfield equations and the many-body
equations were to be solved simultaneously since the bargnd quarks move in curved space-
time whose geometry, determined by Einstein’s field equatits coupled to the total mass energy
density of the matter. In the case of neutron stars, as fasalbphysical situations for which the
long-range gravitational forces can be cleanly separated the short-range forces, the deviation
from flat space-time over the length scale of the strongactasn,~ 1 fm, is however practically
zero up to the highest densities reached in the cores of sach(some 1 g/cm3). This is not
to be confused with the global length scale of neutron starsQ km, for whichM /R ~ 0.3, de-
pending on the star’s mass. That is to say, gravity curvesesgige only on a macroscopic length
scale but leaves it flat to a very good approximation on a mapic length scale. To achieve an
appreciable curvature on a microscopic scale set by thagsirteraction, mass densities greater
than~ 10%° g/cm3 would be necessary [69]! This circumstance divides thetcocison of models
of compact stars into two distinct problems. Firstly, thieets of the short-range nuclear forces on
the properties of matter are described in a comoving pragference frame (local inertial frame),
where space-time is flat, by the parameters and laws of $petddivistic many-body physics.
Secondly, the coupling between the long-range gravitatibeld and the matter is then taken into
account by solving Einstein’s field equations for the giidnal field described by the general rel-
ativistic curvature of space-time, which determines tludbgl structure of the stellar configuration.
For many studies of neutron star properties it is sufficientréat neutron star matter as a
perfect fluid. The energy-momentum tensor of such a fluidvsrgby

ThY _ dx* dx’

= 47 g7 (e+P) +¢"P. (3.6)
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Figure 6: Mass—radius relations of non-rotating (left panel) andtiog (right panelQ = Qg) neutron stars
computed for different E0S€2k denotes the general relativistic Kepler (mass sheddieg)uency.

For non-rotating spherically symmetric stars the metrig th& rather simple form
ds = —*dt2 + M dr? +r2d6? + r?sinfo d¢?, (3.7)

whered(r) andA(r) are radially varying metric functions. From (3.7) one reafighe following
covariant components of the metric tensor,

g[t = _eZ(D(I')’ grr = eZ/\(I') ) 996 = rza g(P(P = rZSinze) (38)
so that the only non-vanishing Christoffel symbols are

r{t = e2®(r)_2A(r) q),(r)’ r%l’ = q),(r)a r::r = /\,(r)a rree = _l, I—;P(p = r_l, rree =—T e_ZA(r),

o _ cosf

b= g [p=—rsiro g 2NN I'foq, — —siné cosh, (3.9)

where primes denote differentiation with respect to tha@atacbordinate. Substituting (3.6) and
(3.9) into Einstein’s field equations leads to the generaltikéstic equations of hydrostatic equi-
librium discussed first by Tolman [70] and Oppenheimer-9iflk71],

P Amrsp
apr)  emme) (1 ad) (1)
ar 12 1 _ 2m(r) ' (3.10)
r

Note that we use geometrized units, where the gravitationaktant and velocity of light are
G =c=1sothatM. = 1.475 km. The boundary condition to (3.10H§ = 0) = P(&.), whereeg;
denotes the energy density at the star's center, whichitaesta parameter. Equation (3.10) is to
be integrated out to a radial distance whiefe) = 0 which determines the star’s radil®, The mass
contained in a sphere of radiug< R), denoted bym(r), follows fromm(r) = 4 [5dr’ r'? g(r").
The star’s total gravitational mass is thus givenNdy= m(R). Figure 6 shows the mass-radius
relationships of both non-rotating as well as rotating seges of neutron stars for the sample
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EoSs discussed in Sect. 2. The non-rotating sequenceslatiers® of the Tolman—Oppenheimer—
Volkoff equation shown in (3.10). The construction of ringtsequences will be discussed shortly
below. Figure 7 shows the gravitational mass of non-ragatia well as rotating neutron stars as
a function of central star density. Stars to the right of thepective mass peaks in each panel are
unstable against radial oscillations and thus cannot stabty in nature. Also shown in these plots
are the evolutionary (constant stellar baryon numBgipaths that isolated rotating neutron stars
would follow during their stellar spin-down evolution caaksby the emission of magnetic dipole
radiation and a wind of"—e~ pairs. Figure 7 reveals that CFL stars may spend consigenadle
time in the spin-down phase than their competitors of theesan@ss. Another point that we want to
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315 115¢ 115}
=
p=
1t 1t 1
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e (MeV/fim®)

Figure 7: Mass—central energy relations for the sample equationste mtroduced in Sect. 2.

make is that all equations of state are able to support nestess of canonical mads, ~ 1.4M.
Neutron stars more massive than aboMt.2 on the other hand, are only supported by equations of
state that exhibit a very stiff behavior at asymptotic deées; disfavoring the presence of hyperons,
meson condensates, or quarks. Knowledge of the maximunibpmossass of neutron stars is of
great importance for two reasons. Firstly, because thesaighown neutron star mass imposes a
lower bound on the maximum mass of a theoretical model. Vagsine neutron star candidates
are J0751+1807 (2'32M,, [72]), Vela X1 (188+ 0.13M,, if the inclination angle of the system
is i = 90°; an inclination angle of = 7(° increases the star's mass t@2+ 0.17M., [73]), and
Cyg X-2 (1784 0.23M,, [74]. Titarchuck and Shaposhnikov obtain for Cyg X—2 a lowsrss of
1.4440.06M, [75]). The second reason is that the maximum mass of neutaos is essential in
order to identify solar-mass black hole candidates [76, 77]

The structure equations of rotating compact stars are deraddly more complicated that those
of non-rotating compact stars [2]. These complicationsehheir cause in the rotational deforma-
tion, that is, a flattening at the pole accompanied with aatdslowup in the equatorial direction,
which leads to a dependence of the star's metric on the polardmate, 8, in addition to the
mere dependence on the radial coordinate Secondly, rotation stabilizes a star against gravi-
tational collapse. A rotating star can therefore carry mmoess than a non-rotating star. Being
more massive, however, means that the geometry of spaeeigichanged too. This makes the
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Figure 8: Dragging of local inertial frames (Lense-Thirring effecused by 1.4 M, neutron stars rotating
at 2 ms. The frequenay is defined in Eq. (3.13).

metric functions associated with a rotating star depencherstar’s rotational frequency. Finally,
the general relativistic effect of the dragging of localrited frames implies the occurrence of an
additional non-diagonal terng!?, in the metric tensog"¥. This term imposes a self-consistency
condition on the stellar structure equations, since thergxb which the local inertial frames are
dragged along by the star is determined by the initially wwkm stellar properties like mass and
limiting rotational frequency. The covariant componerftthe metric tensor of a rotating compact
star are thus given by [2, 78]

gt =~ +Y0?, gp=—Yw, gr =€, gog = €+, ggp = *¥, (3.11)
which leads for the line element to
d’ = guydxdx’ = — eV dt? + ¥ (dp— wdt)’ + 4 de%+ e dr?. (3.12)

Here each metric function, i.e, ¢/, u andA, as well as the angular velocities of the local inertial
frames,w, depend on the radial coordinatend polar anglé and implicitly on the star's angular
velocity Q. Of particular interest is the relative angular frame diagdrequencyw, defined as

w(r,0,Q) =Q—w(r,0,Q), (3.13)

which is the angular velocity of the std®, relative to the angular velocity of a local inertial frame,
w. Itis this frequency that is of relevance when discussimgy titational flow of the fluid inside the
star, since the magnitude of the centrifugal force acting finid element is governed—in general
relativity as well as in Newtonian gravitational theory—ttne rate of rotation of the fluid element
relative to a local inertial frame [79]. In contrast to Newi@n theory, however, the inertial frames
inside (and outside) a general relativistic fluid are notest with respect to the distant stars, as
pointed out just above. Rather, the local inertial framesdragged along by the rotating fluid.
Depending on the internal stellar constitution, this dffssn be quite strong, as shown in Fig. 8 for
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Table 1: Properties of neutron stars composed of nucleons and hypér/), nucleons, hyperons, and
normal quarks (@330), and nucleons, hyperons, and color-superconductinckgérL).

HV Gg‘&go CFL HV Gg‘&go CFL
v=0 | v=0 | ww=0| vw=850Hz| vx« =940 Hz | vx =1400 Hz
& (MeV/fm3) 361.0 | 814.3 | 2300.0 280.0 400.0 1100.0
I (km3) 0 0 0 223.6 217.1 131.8
M (Mz) 1.39 1.40 1.36 1.39 1.40 1.41
R (km) 14.1 12.2 9.0 17.1 16.0 12.6
Zy 0.1889| 0.2322| 0.3356 0.2374 0.2646 0.3618
ZF 0.1889| 0.2322| 0.3356| —0.1788 —0.1817 —-0.2184
ZB 0.1889| 0.2322| 0.3356 0.6046 0.6502 0.9190
Os14 (cm/?) 1.1086| 1.5447 | 3.0146 0.7278 0.8487 1.4493
T/W 0 0 0 0.0894 0.0941 0.0787
BE (My) 0.0937| 0.1470| 0.1534 0.0524 0.1097 0.1203
Veq/C 0 0 0 0.336 0.353 0.424

rotating 2 ms neutron stars. For a very compact neutron staaining a color-superconducting
CFL core, as in our example, one reads off from this figurettie@tocal inertial frames at the star’s
center rotate at about half the star’s rotational frequengy = 0) ~ Q/2. This value drops to
about 15% for the local inertial frames located at the stqggator. The scenarios shown in Fig.
8 may be of great importance for binary millisecond neutrtamssin their final accretion stages,
where the accretion disk approaches the star very closely.

Table 1 summarizes the impact of strangeness on seveigling properties of non-rotating
as well as rotating neutron stars. The latter spin at thepeetive Kepler frequencies. One sees
that the central energy densitsy, spans a very wide range, depending on particle composition
The surface redshift is of importance since it is connectedbiserved neutron star temperatures
through the relatio* /Ter = 1/(1+ Z). CFL quark stars may have redshifts that are up to 50%
higher than those of conventional stars. Finally, we alsswsin Table 1 the surface gravity of
stars,gs 14 [80], which again may be up to 50% higher for CFL stars. Theotuantities listed are
the rotational kinetic energy in units of the total energyhef star,T /W, the stellar binding energy,
BE, and the rotational velocity of a particle at the star's ¢qui2].

4. Limiting rotational periods

4.1 Mass shedding from the equator

No simple stability criteria are known for rapidly rotatirsgellar configurations in general
relativity. However, an absolute limit on rapid rotationsist by the onset of mass shedding from
the equator of a rotating star. The corresponding rotatimeguency is known as the Kepler
frequencyQg. In classical mechanics, the expression for the Kepleufeagy, determined by the
equality between the centrifugal force and gravity, is flganbtained aQx = /M/R3. In order
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Figure 9: Moment of inertia of several sample neutron stars.

to derive the general relativistic counterpart of thistiela one applies the extremal principle to
the circular orbit of a point mass rotating at the star's éguaincer = 6 = const for a point mass
there, one hadr = d6 = 0. The line element (3.12) then reduces to

d¢ = (¢ — ¥ (Q — w)?) dt?. (4.1)

Substituting this expression info= fssf ds wheres; ands, refer to points located at that particular
orbit for whichJ becomes extremal, gives

J :/szdt\/ez"—ew(Q—w)z. 4.2)

Applying the extremal conditiodJ = 0 to Eq. (4.2) and noticing that = e¥~V (Q — w) then leads
to the following relation,

oy 5, -, Jw Vi ov 5,

Wezv - o€ V—Eez =0. (4.3)
It constitutes a simple quadratic equation for the orbitdbeityV of a particle at the star’'s equator.
One thus obtains for the Kepler frequerRy (Kepler periodPx) the final relation [2],

w v/ w 2 21
O —wt Xy -uw [V <_ —V) P = == 4.4
A TR \/W’+ zw,ew = Pc=go (4.4)

which is to be determined self-consistently at the stansagéay (primes denote radial derivatives).
For most neutron star matter equations of state, the Keplesghobtained for 4 M., neutron stars
scatters around 1 ms. One exception to this are strange quatikr stars. These are self-bound
and, thus, tend to possess smaller radii than conventi@uaitan stars, which are bound by gravity
only. Because of their smaller radii, strange stars canstétid mass shedding down to periods of
around 0.5 ms [66, 81]. CFL stars reside between these limits
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Figure 10: Temperature dependence of the critical angular veld@iyf rotating neutron stars. The left
panel shows the gravitational radiation drivermode instability suppressed by shear and bulk viscosity.
Right panel: comparison dF-mode instability withr-mode instability. (Data from Refs. [82, 83].)

As a last topic of this section, we briefly discuss the moménnertia of a rotationally de-
formed star described by the metric in Eq. (3.12). For suatsghe moment of inertia is given

by

T R(8) e+P(¢g) Q-w
1(Q)=2m | do dr gt tHHvHY : 4.5
(@) 7T/o /o ' - _(w-0Q)2 Q (4.5)
Figure 9 shows that the crustal fraction of the moment oftia@f a neutron star may be around
50% smaller if the star contains a very soft phase of matker duark matter. This may be of
relevance for pulsar glitch models and the modeling of the-gtitch behavior of pulsars.

4.2 Gravitational radiation reaction driven instabilitie s

Rotational instabilities in rotating stars, known as gi@ional radiation driven instabilities,
are probably setting a more stringent limit on rapid stet@ation than mass shedding. These
instabilities originate from counter-rotating surfacénational modes which at sufficiently high
rotational star frequencies are dragged forward. In thie ggravitational radiation, which in-
evitably accompanies the aspherical transport of matteys chot damp the instability modes but
rather drives them. Viscosity plays the important role ahgiang these instabilities at a sufficiently
reduced rotational frequency such that the viscous dampitggand power in gravity waves are
comparable. The most critical instability modes that areetlr unstable by gravitational radiation
are f-modes and-modes. Figure 10 shows the stable neutron star frequeificiedy f-modes
were operative. One sees that hot as well as cold neutron cdarrotate at frequencies close to
mass shedding, because of the large contributions of shdasudk viscosity, respectively, for this
temperature regime. The more recently discoveratbde instability may change the picture com-
pletely, as can be seen too from Fig. 10. These modes aradnatable by gravitational radiation
over a considerably wider range of angular velocities ttenftmodes (cf. dashed curve labeled
(m= 2) r-mode instability). In stars with cores cooler tharl(® K, on the other hand, themode
instability may be completely suppressed by viscous phemanso that stable rotation would be
limited by the f-mode instability again [82].
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Figure 11: Critical rotation frequencies versus Figure 12: Same as Fig. 11, but for 2SC quark
stellar temperature for CFL strange stars [85]. stars [85].

Figures 11 and 12 are the counterparts to Fig. 10 but cadouffmr strange stars made of
CFL and 2SC gquark matter, respectively [84, 85]. Thmode instability seems to rule out that
pulsars are CFL strange stars, if the characteristic timfedor viscous damping afmodes are
exponentially increased by factors fA/T as calculated in [84]. An energy gap as smalhas
1 MeV was assumed. For much larger gapa ef 100 MeV, as expected for color superconducting
guark matter in the CFL phase, the entire diagram wouldim@de unstable. The full curve in Fig.
11is calculated for a strange quark masef= 200 MeV, the dotted curve fans= 100 MeV. The
box marks the positions of most low mass X-ray binaries (LMXBB6], and the crosses denote
the most rapidly rotating millisecond pulsars known. Alasige stars above the curves would
spin down on a time scale of hours due to th@ode instability, in complete contradiction to the
observation of millisecond pulsars and LMXBs, which woulterout CFL quark matter in strange
stars (see, however, Ref. [87]). Figure 12 shows the critatation frequencies of quark stars as
a function of internal stellar temperature for 2SC quarksst&or such quark stars the situation is
less conclusive. Rapid spin-down, driven by thmode gravitational radiation instability, would
happen for stars above the curves.

5. Astrophysical signals of quark deconfinement

5.1 Isolated, rotating neutron stars

Whether or not quark deconfinement occurs in neutron stakesranly very little difference
to their static properties, such as the range of possible@samnd radii, which renders the detection
of quark matter in such objects extremely complicated. ayg be strikingly different for isolated,
rotating neutron stars which spin down, and thus become oorn@ressed, because of the emission
of magnetic dipole radiation and a wind of electron-positpairs. For some rotating neutron stars
the mass and initial rotational frequency may be just suahttie central density rises from below
to above the critical density for dissolution of baryon®ititeir quark constituents. If accompanied
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by a pronounced shrinkage of the neutron star, as is the oagbe neutron star shown in the
central panel in Fig. 4, the star's moment of inertia couldrade dramatically. As shown in [88],
the moment of inertia can decrease so anomalously thatld e»en introduce an era stellar spin-
up that may last foro 108 years. Since the dipole age of millisecond pulsars is abduyéars,
one may roughly estimate that about 10% of the solitary seilond pulsars could be in the quark
transition epoch and thus could be signaling the ongoingge®of quark deconfinement. Changes
in the moment of inertia reflect themselves in the brakingind, of a rotating neutron star, as can
be seen from [4, 88, 89]

Qf"z_s 1 +3I'Q+1"Q% . 3I'Q+1"Q?
Q2 l+1'Q 21+1'Q 7

(5.1)

where dots (primes) denote derivatives with respect to {{d)eThe last relation in (5.1) constitutes
the non-relativistic limit of the braking index [90]. It idhwious that these expressions reduce to
the canonical liminh = 3 if | is independent of frequency. Evidently, this is not the daseapidly

Table 2: Dominant neutrino emitting processes in neutron star dbsgperons and quarks are absent [21].

Name Process Emissivity
(ergecm3s 1)
ModifiedUrcacycle | nin—n+p+e +ve
. ~ 2x10P1R T8 Slow
(neutron branch) N+p+e —n+n+Vve 8 9
Modified Urca cycle - U
p+n—p+p+te +Ve  1PIRTE Slo
(proton branch) ‘ p+p+e — p+n+Ve ° W
N+n—n+n+v+y
Bremsstrahlung n+p—n+p+v+yv ~10¥RTE Slow
p+Pp— P+ p+vtv
Cooper pair n+n— [[nn] +V+u ~5x10PIR T/ -
= Medium
formations p+p—Ipp+v+v ~Bx10°R T "
i n—p+e +V 7
Direct Urca cycle ‘ p+e9 N ~107'RT$ Fast
m~ condensate N <m >—n+e +ve ~10°°RT Fast
K~ condensate N+ <K >—n+e +ve ~10PRT® Fast

rotating neutron stars, and it also fails for stars that mmigpronounced compositional changes
(phase transitions) which alter the moment of inertia $igamtly. Under favorable circumstances,
these changes ih originating from the transition of confined hadronic matteéo quark matter,
may cause the braking index to deviate dramatically from Béwvicinity of the star’s frequency
where the phase transition to quark matter occurs. The esanfgmay even be so pronounced that
n(Q) — oo at the transition point [1, 2, 4, 90]. Such dramatic anonsdlien(Q) are not known for
conventional neutron stars (see left panel in Fig. 4), beedueir radii and thus moments of inertia
appear to vary smoothly witk [2, 4]. A counterexample to this, however, is discussed i].[9
The future astrophysical observation of strong anomati¢ise braking behavior of isolated pulsars
could thus be cautiously interpreted as a possible asteigalysignal for quark deconfinement in
neutron stars.

20



Strangeness in compact stars Fridolin Weber

Table 3: Dominant neutrino emitting processes in deconfined quatkemi1].

Name Process Emissivity Efficiengy
(ergen3s1)
Direct Urca cycle Ute —d+ve
d ~10°RT? Fast
(ud branch) d—ut+e +Vve 9
Direct Urca cycle Ut+e —s+ve
= ~10°RTS Fast
(usbranch) S—u+e +Ve 9
Modified Urca cycle +ut+e —Q+d+ve 1o 8
(ud branch) 8+d—>Q+u+e*+ve ~ 107 Ry Slow
Modified Urca cycle +u+e — Q+S+ Ve 018
(usbranch) 8+SHQ+U+e*ve ~10°R T Slow
Bremsstrahlungs QU+ o> +Q+v+v ~10°RTE Slow
' U+u— [uu+v+v ~ 25x10°R T/
Coope.r pair d+d —>’[d4 +VtV ~T5<10'RT  Medium
formations S+s— [s§+V+vV ~TBx10P1RTY

5.2 Accreting neutron stars

Accreting x-ray neutron stars provide a very interestingti@st to the spin-down of isolated
neutron stars. These x-ray neutron stars are being spun tine lagcretion of matter from a lower-
mass M1 <0.4M..), less-dense companion. If the critical deconfinementitlefasls within that of
the canonical pulsars, quark matter could already exigtemtbut will be spun out of such stars
as their frequency increases during accretion. This satehas been modeled in [92], where it
was found that quark matter remains relatively dormant éndbre of a neutron star until the star
has been spun up to frequencies at which the central dessityaut to drop below the threshold
density at which quark matter exists. As known from the disaan above, this could manifest
itself in a significant increase of the star's moment of ilmerfhe angular momentum added to a
neutron star during this phase of evolution is thereforesuaored by the star’s expansion, inhibiting
a further spin-up until the star's quark matter content feenlbcompletely converted into a mixed
phase of hadrons and quarks. Such accreters, therefodeptepend a greater length of time in the
critical frequencies than otherwise. For canonical acametates of 101°M./year the time span
can be on the order of ¥§ears. Hence, from this scenario, one would expect a greateber of
accreting x-ray neutron stars that appear near the samgefiey Evidence that accreting neutron
stars pile up at certain frequencies, which are well beloavrttass shedding limit, is provided by
the spin distribution of accreting millisecond pulsars thc and neutron stars in low mass X-ray
binaries observed with the Rossi X-ray Timing Explorer (R¥TThe proposed limiting mecha-
nisms responsible for this behavior is generally attridutegravity-wave emission caused by the
r-mode instability, or by a small stellar mass quadrupole eani93, 94, 95]. Supplemental to
these explanations, quark reconfinement (or, more genesttbng first-order like phase transition)
may be linked to this phenomenon as well [37, 92, 96, 97].

6. Cooling of neutron stars

The predominant cooling mechanism of hot (temperatures\aral~ 10'° K) newly formed
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Figure 13: Cooling behavior of a #M, neutron star for competing assumptions about the propesfie
superdense matter. Three distinct cooling scenariogyreef¢o as standard, intermediate, and enhanced can
be distinguished. The band-like structures reflect the maicgies inherent in the stellar EoS [2, 4].

neutron stars immediately after formation is neutrino siois, with an initial cooling time scale of
seconds. Already a few minutes after birth, the internatnoeustar temperature drops4010° K.
Photon emission overtakes neutrino emission when thenaitégmperature has fallen 1010 K,
with a corresponding surface temperature roughly two grdemagnitude smaller. Neutrino cool-
ing dominates for at least the first@ears, and typically for much longer in standard cooling
(modified Urca) calculations. The dominant neutrino emgtfprocesses in neutron star matter are
summarized in Tables 2 and 3. Figure 13 shows the outcomeatihgocalculations performed
for a broad collection of equations of state [2, 4] and colngeassumptions about the dominant
neutrino emitting processes. For recent overviews of paudtar cooling, see, for instance, Refs.
[21, 98]. We also refer to D. Blaschke’s contribution conél elsewhere in this volume.

7. Summary

It is often stressed that there has never been a more extitirgin the overlapping areas
of nuclear physics, particle physics and relativistic @stysics than today. This comes at a time
where new orbiting observatories such as the Hubble SpdeecBpe (HST), Rossi X-ray Timing
Explorer, Chandra X-ray satellite, and the X-ray Multi MirrMission (XMM) have extended
our vision tremendously, allowing us to observe compact@t@nomena with an unprecedented
clarity and angular resolution that previously were onhagimed. On the Earth, radio telescopes
(Arecibo, Green Bank, Parkes, VLA) and instruments usirapéide optics and other revolutionary
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techniques have exceeded previous expectations of whateaccomplished from the ground.
Finally, the gravitational wave detectors LIGO, LISA, antRGO are opening up a window for
the detection of gravitational waves emitted from comptadtas objects such as neutron stars and
black holes. This unprecedented situati