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ABSTRACT 

This work concentrates upon the Mimetic discretization of elliptic partial differential 
equations (PDE).  Numerical solutions are obtained and discussed for one-dimensional ODE on 
uniform and irregular grids and two-dimensional PDE on uniform grids.  The focal point is to 
develop a scheme that incorporates the full tensor case on uniform grids in 2-D.  The numerical 
results are then compared to previous well-established methods.  Based on its conservative 
properties and global second order of accuracy, this Mimetic scheme shows higher precision in 
the tests given, especially on the boundaries.   

1. INTRODUCTION 

Mimetic discretization – described as “discretizing a continuum theory” - constructs a 
discrete mathematical analog with a description of continuum mechanics, in which it preserves 
the conservation or constitutive law’s properties and behaviors.  Mimetic discretizations are 
represented by discrete operators, such as Divergence and Gradient that satisfy constraints of 
conservation or constitutive law.  These operators are then substituted into the system of partial 
differential equations or integral equations accordingly.  Basically, they mimic the behaviors 
within the continuum mechanics problems or imitate the symmetry properties of the continuum 
differential operators to obtain a highly accurate and meaningful interpretation of the underlying 
physical properties of continuum problems [6] and [7].   

Specifically, one example of conservation properties satisfied by differential operators 
includes the special case of the general Stokes theorem written as 

ò ò
¶

=
M M

ωdω , 
(1.1) 

in which, M is a compact oriented n-manifold with the boundary M¶ , ω is (n-1) form on M, and 
dω is the exterior derivative of ω.  Equation (1.1) is applied to the sub-manifolds of R2 and R3, 
hence yields the classical Stokes’ theorem as well as the Divergence theorem and Green’s 
theorem.  The convenient use of Stokes’ Theorem lies at the coordinate free description of 
continuum mechanics.  In addition, Stokes’ Theorem possesses an innate physical interpretation 
within applications of physics such as electromagnetism and fluid mechanics.  These properties 
of Stokes’ Theorem become essential for building the divergence and gradient operators in the 
Mimetic Method. 

By letting ω = v(t)u(t) on the interval [0, 1], equation (1.1) becomes the following 
expression: 
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. (1.2) 

A discrete form of the conservation law needs to be constructed to satisfy local 
conservation at every cell interval, as well as to fulfill the global conservation for the entire 
investigated interval.   Consequently, these conservation properties will be validated within the 
underlying region of the boundary value problem.   

In figure 1.1, the cell spacing is uniform with a magnitude of (h = 1/n) over the interval, 
[0, 1] in 1-D.  Because the investigated interval is divided equally into n sub- intervals, each node 
has a coordinate at xi = (i*h) in which (0    i   n) including x0 and xn as the left and right 
boundary nodes, respectively.  Each cell has a cell centered point, i.e., [xi, xi+1] includes the 
center coordinate xi+1/2. 

 

 
Figure 1.1.  1-D staggered uniform grid. 

Let u(x) and v(x) be two real valued scalar functions and defined on the real-value 
interval, [0, 1].  Some investigated function vectors can be descriptively defined as 

Vector uc as evaluated at the centers of cells: 
T

2
1n

2
3

2
1c ))u(x ,  ),u(x ),(u(x  u

-
¼= . 

Vector ucb as evaluated at the centers of cells, the left boundary, and the right boundary: 
T

n
2

1
2

3
2

10cb ))u(x ),u(x ,  ),u(x ),u(x ),(u(x  u
-

¼=
n

. 

Vector v as evaluated at the nodes of cells, including the boundaries: 
T

n210 )) v(x,  ), v(x), v(x),(v(x  v ¼= , 

where D denotes the difference approximation for the divergence operator as applied upon the 
function at the nodes of cells, and G denotes the difference approximation for the gradient 
operator as applied upon the function at the cell centers and boundaries. 

2. DISCRETE DIVERGENCE THEOREM IN CASTILLO-GRONE APPROACH 

In general, the Castillo-Grone approach [4], as expressed by the law of conservation for 
equation (1.2), is depicted in a discrete inner product form over the staggered grids by the 
following: 

cb
uBv,

Pcb
Guv,

Qc
uv,D̂ =+ , (2.1) 

in which the weigths P and Q are positive definite matrices that are used to determine the forms 

of the D and G matrices, respectively. D̂  is the matrix D augmented with the top and bottom 
rows containing only zeros. 

Let Q be the identity matrix in R(n+2)x(n+2) and P be within R(n+1)x(n+1) equal to 
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then the support operator method can be obtained [8].  In this method, divergence is second order 
over the interior of the domain as well as the boundaries (D2-2-2) and its gradient is second order 
within the interior of the domain but first order at the boundaries (G1-2-1). 

The boundary operator B for support operator, called B1, is defined in the subspace 
R(n+2)x(n+1) as 

1)(n2)(n
R
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+´+
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LL

. (2.3) 

These matrices in combination with the law of conservation, equation (2.1), will yield 
matrix operators D and G for the Support Operators Method in 1-D staggered grids [8], such 
that: 
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and 
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3.  MIMETIC OPERATORS 

The Mimetic method discussed in [4] can be used to construct discrete divergence and 
gradient operators of any even order of accuracy.  Here the second order operators will be the 
main focus for study and analysis.  The Mimetic operators are constructed with the Castillo-
Grone method are second order within the interior as well as at the boundaries.  Consequently, 
these operators are alternatively called as 2-2-2 scheme operators. 

The boundary operator B for the second order Mimetic discretization study, denoted as 

B
~

, is 
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The use of both B1 and B
~

 boundary operators is investigated for the Castillo-Grone 
Mimetic discretization.  Moreover, D and Q satisfy a discrete analogue of the divergence 
theorem, as in equation (2.1): 

cbcbc uv,B
~

PGuv,QuDv, =+ ,  

where Q is the identity and P is, 
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Therefore, the Mimetic second order divergence operator D and the gradient G on 1-D 
uniform grids can be inclusively determined from the law of conservation [4].  Both Mimetic 
divergence and gradient are second order within the interior of the domain as well as at the 
boundaries (D2-2-2 and G2-2-2 respectively): 
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In figure 3.1, the non-uniform grid constitutes the difference in spacing of divided sub-
intervals or cells.  Consequently, their discrete Gradient and Divergence equations are different 
from those in the case of uniform grids.  Both discrete Gradient and Divergence operators were 
discussed in [10]. 
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Figure 3.1.  1-D staggered non-uniform grid. 

Basically, the Gradient Operators for the non-uniform staggered grids over the 
investigated interval that is composed of n non-uniform divided sub- intervals have the following 
expressions: 

i. The gradient as defined on the left boundary node is: 

)(x)9(x)8(x

)u(x)9u(x)8u(x
(Gu)

2
3

2
10

2
3

2
10

0
-+-

-+-
= , (3.5a) 

where x0 is the left boundary nodal point, x1/2 is the center of the first divided sub- interval, and 
x3/2 is the center of the second divided sub-interval. 

ii. The gradient as defined at an interior nodal point, excluding the boundary nodes is: 

)(x)(x

)u(x)u(x
(Gu)

2
1i

2
1i

2
1i

2
1i

i

-+

-+

-

-
= , (3.6a) 

where i = 1, 2, …, n-1; xi+1/2 and xi-1/2 are centers of two adjacent divided sub- intervals, [xi, xi+1] 
and [xi-1, xi], respectively.  

iii. The gradient as defined on the right boundary node is: 

)(x)9(x)8(x

)u(x)9u(x)8u(x
(Gu)

2
3n2

1nn

2
3n2

1nn

n

--

--

-+-

-+-
= , (3.7a) 

where xn-1/2 and xn-3/2 are the centers of the last two divided sub- intervals, [xn-1, xn] and [xn-2, xn-

1], respectively. 
Let the spacing of the divided sub- interval of [xi-1, xi], hi, be 

1iii xxh --= . (3.8) 

Since xi-1/2 is the center of the divided sub- interval [xi-1, xi], 

2

xx
x i1i

2
1i

+
= -

-
, (3.9) 

in which i = 1, 2, …, n.  Thus equations (3.5a), (3.6a), and (3.7a) can be expressed in terms of the 
solution function u and cell spacing hi : 

21
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0 h7h
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= , (3.5b) 
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respectively, where i = 1, 2, …, n-1 for equation (3.6b). 
The Divergence on Non-Uniform Grids was also discussed in [10].  The Divergence 

Operator is evaluated at the center of each divided sub- interval where 

i1i

i1i

2
1i xx

)v(x)v(x
(Dv)

-

-
=

+

+

+
. (3.10a) 

This leads to 

1i

i1i

2
1i h

)v(x)v(x
(Dv)

+

+

+

-
= , (3.10b) 

in which, i = 0, 1, …, n-1 and v is the function evaluated at the nodes, including the boundaries. 

4. THE 2-2-2 SCHEME MIMETIC DISCRETIZATION ON 1-D GRIDS 

The boundary value problem is depicted with an Ordinary Differential Equation (ODE) 
by the following: 

]1[0,onf(x))grad(u)div( =- . (4.1) 
The Robin boundary conditions are applied on the left and the right boundaries of the 

interval as 
lb(0)uβu(0)α =¢- , (4.2) 

rb(1)uβu(1)α =¢+ . (4.3) 

In the case of using the discrete operators on this ODE (4.1) including the boundary 
equations (4.2) and (4.3), D and G, which are the Divergence and Gradient Operators 
respectively, will be replacing the corresponding continuous operators.  Thus, the discretization 
of this boundary value problem becomes 

buL)βBGA(α =-+ , (4.4) 
where matrix A within R(n+2) x (n+2) is defined as 
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The discrete Laplacian Operator, L, within R(n+2)x(n+2) can be expressed as 

2)(n2)(n
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The right hand side vector, b, within Rn+2 is determined as 
T

2
1

2
3

2
1 rb) ),f(x ,  ),f(x ),f(x (lb,  b

-
¼=

n
, (4.7) 

where lb and rb are the right-hand side scalar values for the left and right boundary conditions, 
respectively.  Right hand side function, f, is evaluated at the central points of each divided sub-
interval.  Constants α and β drive the Dirichlet and Neumann terms in the boundary conditions, 
respectively. 

The solution vector u, within Rn+2 is defined as 
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10 ))u(x ),u(x ,  ),u(x ),u(x ),(u(x u 

-
¼=

n
. (4.8a) 

If the B
~

Operator is used instead of the B1 Operator, then the discretization of the 
boundary value problem becomes 

bu~L)GB
~

βA(α =-+ , (4.9) 

where u~  is the solution vector within Rn+2 corresponding to B
~

 Operator in equation (4.9), 
T

n1/2-n3/21/20 ))(xu~ ),(xu~ , ),(xu~ ),(xu~ ),(xu~(  u~ ¼= . (4.8b) 

5.  THE MIMETIC DISCRETIZATION ON 2-D UNIFORM GRIDS 

The main goal is to investigate the use of Mimetic Discretization for solving the elliptic 
partial differential equation (PDE) with the mathematical model in 2-D such that: 

Vy)(x,ony)f(x,y))u(x,(K Î=Ñ××Ñ- , (5.1) 
which can be also written as, 

Vonfu)graddiv(K =×-  (5.2) 

where V is ])y,(y  )x,[(x ULUL ´ .  

The solution to this elliptic equation, u(x, y) involves the pressure of the flow in the 
reservoir simulation problem, where K is a symmetric, positive definite and second order tensor 
matrix.  Scalars xL and xU are the lower and upper boundaries, respectively, in the x-direction, 
and yL and yU are the lower and upper boundaries, respectively, in the y-direction within 2-D 
space. Let V be the two-dimensional space region, except at the boundaries. 

Uniform grids are defined by the spatial steps, ∆x and ∆y, inscribed within [xL, xU] and 
[yL, yU] respectively. 

In the case of Robin Boundary Conditions, at the boundary V¶ : 
Vy)(x,onψugradKβuα ¶Î=×+ , (5.3) 

where α is the scalar value in the Dirichlet term, β is the scalar value in the Neumann term, and ψ 
is the given right-hand function at the boundary, V¶ .  In the case of (β = 0), equation (7.3) 
reduces to Dirichlet boundary conditions on V¶ .  Physically, the flux, w, in this particular 
context is defined as 

ugradKuGw ×== , (5.4) 
where G notation for 2-D case has been changed from the 1-D case, in which G is denoted as 
Gradient.  In 2-D, G is applied on the function u becoming the flux.  To write the elliptic PDE 
problem in a matrix equation representation, let A, D, and B be matrix operators as defined in 
[9]: 

î
í
ì

¶Î×+

Î×-
=

,Vy)(x,withugradKuα

Vy)(x,withu)graddiv(K
Au  (5.5) 

î
í
ì

¶Î

Î-
=

,Vy)(x,with0

Vy)(x,withdiv(Gu)
Dw  (5.6) 

where D is the Divergence Operator on the flux. 

î
í
ì

¶Î+

Î
=

,Vy)(x,withuGuα

Vy)(x,with0
Bu  (5.7) 

where B is the Boundary Operator, and the Robin boundary conditions are used. 
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Also let F be a vector defined as: 

î
í
ì

¶Î

Î
=

Vy)(x,withψ

Vy)(x,withf
F  (5.8) 

where F is the right-hand side vector function of the matrix equation system. 
Therefore, the left hand side matrix, Operator A is represented by the following 

expression: 
GDBA ×+= . (5.9) 

Moreover, the elliptic partial differential equation including the boundary conditions can 
be expressed in terms of the matrix equation system as: 

FGuDBu =×+ . (5.10) 
The accuracy for solving this elliptic partial differential equation depends precisely upon 

the discrete Divergence operator D, discrete operator G for the flux, and discrete Boundary 
Operator B.  Both discrete D and G Operators will be incorporated with the B1 Boundary 
Operator to determine the matrix equation system for 2-D case.  

For a better understanding of 2-D discretization, two figures are displayed in order to 
interpret the layout of the Gradient, Divergence, solution function, and the tensor coefficients.  
Figure 5.1 is an illustration of (5x5) 2-D staggered uniform grids with a natural lexicographic 
ordering for Divergence, Gradient, and Tensor components whereas figure 5.2 is an illustration 
of (5x5) 2-D staggered uniform grids for the coordination of various solution function points. 

5.1. Definition of 2-D Uniform Grids 

Let the investigated region be either a rectangle or a square in 2-D space, where i is 
denoted by the subscript in the x-direction, j is denoted by the subscript in the y-direction, and 
the interval on the x-direction is divided into n equal sub- intervals, while the interval in the y-
direction is divided into m equal sub- intervals.  The domain can be discretized as follows: 

In the x-direction:  xi = i∆x 
The subscript i is constrained by: 

n  i 0 ££ . (5.11) 
Hence, the investigated interval is defined on the interval [x0, xn]. 

The grid size on the divided sub- interval is defined by:   
∆xi+1 = xi+1 – xi , (5.12) 

with i = 0, 1, …, n-1.  Hence, there are (n+1) nodes and n sub- intervals. 
All sub-intervals are equally divided, hence:   

∆x1 = ∆x2 = … = ∆xn )
n

  x-x
( 0n= . (5.13) 

The center of each divided sub- interval has the following coordinate:  

)
2

  xx
(x 1ii

2
1i

+

+

+
= . (5.14) 

Similarly, in the y-direction, yj = j∆y where subscript j is constrained by:   
m  j 0 ££ . (5.15) 

The grid size of each sub- interval is defined by:   
∆yi+1 = yi+1 – yi . (5.16) 

with j = 0, 1, …, m-1; there are (m+1) nodes and m sub- intervals. 
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Figure 5.1.  Gradient, divergence, and tensor components on 2-D uniform grids. 

All sub-intervals are equally divided, i.e,   

∆y1 = ∆y2 = … = ∆ym )
m

y  -y
( 0m= . (5.17) 

In 2-D, the grid cells are divided equally and inscribed within four nodes, (xi, yi), (xi+1, 
yi), (xi, yi+1), (xi+1, yi+1).  The area of the cell is denoted as VCi+1,j+1.  All grid cells are either 
rectangles or squares dependent upon the sizes of x-coordinate and y-coordinate sub-divided 
intervals.  Hence, 

VCi+1,j+1 = ∆xi+1 ∆yi+1 . (5.18) 
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Figure 5.2.  Solution function on 2-D staggered uniform grids. 

In the particular case of uniform grids, all of the cell volumes are equal: 
    VC1,1 = VC1,2 = … = VC1,m 
= VC2,1 = VC2,2 = … = VC2,m 

….. 
= VCn,1 = VCn,2 = … = VCn,m . 

(5.19) 

5.2. Definition of Discrete Tensor Coefficient 

In the general case, if K is a full tensor expressed by the following (2x2) Matrix:  

 úû

ù
êë

é
=

2221

1211

KK
KK

K , (5.20) 

in which K11 is referred to Kx, K22 is referred to Ky, K12 is referred to Kxy, and K21 is referred to 
as Kyx.  Moreover, for some cases, Tensor K is just a diagonal tensor taking the form: 
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Occasionally, the diagonal tensor K takes the simple form as an identity matrix with K11 
= K22 = 1, i.e., 

úû
ù

êë
é=

10
01K . (5.22) 

Components of Tensor, K can be defined using continuous or discontinuous functions 
which could cause problems for numerical method implementation. 
As described in figure 7.1 of the staggered 2-D uniform grids, the tensor coefficient K is defined 
at the centers of grid cells, and is denoted as: 

K(xi+1/2,yj+1/2) = Ki+1/2, j+1/2 , 
where i = 0, 1, …, n-1 and j = 0, 1, …, m-1. 

5.3. Definition of Discrete Solution Function 

Figure 5.2 describes the staggered distribution of the solution function along the grids.  
At the interior, the solution function u is defined at the centers of grid cells and is denoted as: 

u(xi+1/2, yj+1/2) = ui+1/2, j+1/2 , 
for i = 0, 1, …, n-1 and j = 0, 1, …, m-1. 

At the boundaries, the solution function u is defined at the center of the boundary edges 
including the left, right, bottom, and top edges. On the vertical edges, the solution function is 
denoted as, 

i. For the left boundary (x = x0): 
u(x0, yj+1/2) = u0, j+1/2 . 

ii. For the right boundary (x = xn): 
u(xn, yj+1/2) = un, j+1/2 . 

On the horizontal edges, the solution function is denoted as follows: 
i. For the bottom boundary (y = y0): 

u(xi+1/2, y0) = u i+1/2, 0 . 
ii. For the top boundary (y = ym): 

u(xi+1/2, ym) = ui+1/2, m , 
where i = 0, 1, …, n-1 and j = 0, 1, …, m-1. 

5.4. Definition of Boundary Operator 

Similarly to the case above, the Boundary Operator B is defined at the center of edges of 
the boundary grid cells: 

On the vertical edges, B is denoted as follows: 
i. For the left boundary: 

B(x0, yj+1/2) = B0, j+1/2 . 
ii. For the right boundary, 

B(xn, yj+1/2) = B0, j+1/2 . 
On the horizontal edges, B is denoted as follows: 
i. For the bottom boundary, 

B(xi+1/2, y0) = Bi+1/2, 0 . 
ii. For the top boundary,  
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B(xi+1/2, ym) = Bi+1/2, m , 
where i = 0, 1, …, n-1 and j = 0, 1, …, m-1.  The boundary operator is applied upon the gradient 
operator G to create the (BG) Operator in the boundary condition equations. 

5.5. Definition of Discrete G Operator 

The discrete G operator is defined separately in each component; the x-component 
denoted as Gx and the y-component denoted as Gy.  The natural ordering is shown in figure 5.1 
for both the x- and y-components.  For Gx, it is evaluated at the centers of vertical edges and is 
denoted as: 

 G  )y ,Gu(x u G
2

1ji,
2

1jixk ++
== , 

where i = 0, 1, …, n, j = 0, 1, …, m-1, and k is an integer assigned by natural ordering.  Hence, k 
is defined as 

k = j(n+1) + (i+1); 
then k is iterated numerically as: 

k = 1, 2, …, (m)(n+1). 
For Gy, the gradient is evaluated at the centers of horizontal edges and will be denoted as: 

j,
2

1ij
2

1iyt G  )y ,Gu(x u G
++

== , 

where i = 0, 1, …, n-1, j = 0, 1, …, m, and t is an integer assigned by natural numeric ordering. 
Hence, t is defined as 

t = i(m+1) + (j+1), 
then t is iterated numerically as: 

t = 1, 2, …, n(m+1). 

5.6. Definition of Discrete D Operator 

At the interior, the discrete Divergence Operator is defined on the function v at the 
centers of the grid cells as: 

Dv(xi+1/2, yj+1/2) = Dvi+1/2, j+1/2 . 

5.7. Definition of Adjusted Mimetic Gradient 

Let G
~

 be the adjusted gradient operator in either x- or y-component and approximated 
as, 

grad G
~

@ . 

As G be the gradient for x- and y-component.  Thus the relation of G
~

 and G is defined as 

G
~

K G ×= . 

5.7.1.  Adjusted Gradient on the X-Component 
At the left boundary: 

]u)
3

1
(u(3))u

3

8
)[(

∆x

1
(u)G

~
(

2
1j,

2
3

2
1j,

2
1

2
1j0,)

2
1j(0, ++++

-+-= , (5.23) 

where j = 0, 1, 2, …, m-1 and ∆x is the divided sub- interval of the x-component. 
On the interior: 
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]u)[u
∆x

1
(u)G

~
(

2
1j,

2
1i

2
1j,

2
1i)

2
1j(i, +-+++

-= , (5.24) 

where i = 1, 2, …, n and j = 0, 1, …, m-1. 
At the right boundary: 

]u)
3

8
(u(3))u

3

1
)[(

∆x

1
(u)G

~
(

2
1jn,

2
1j,

2
1n

2
1j,

2
3n)

2
1j(n, ++-+-+

+-= , (5.25) 

where j = 0, 1, …, m-1. 

5.7.2. Adjusted Gradient on the Y-Component 
At the bottom boundary: 

]u)
3

1
(u(3))u

3

8
)[(

∆y

1
(u)G

~
(

2
3,2

1i2
1,

2
1i0,

2
1i0),

2
1(i ++++

-+-= , (5.26) 

where i = 0, 1, …, n-1 and  ∆y is the divided sub- interval of the y-component. 
On the interior: 

]u)[u
∆y

1
(u)G

~
(

2
1j,

2
1i

2
1j,

2
1ij),

2
1(i -++++

-= , (5.27) 

where j = 1, 2, …, m and i = 0, 1, …, n-1. 
At the top boundary: 

]u)
3

8
(u(3))u

3

1
)[(

∆y

1
(u)G

~
(

m,
2

1i
2

1m,
2

1i
2

3m,
2

1im),
2

1(i +-+-++
+-= , (5.28) 

where i = 0, 1, …, n-1. 

5.7.3. Gradient on the X-Component 
The discrete gradient on x- component in 2-D is determined with the scheme as described 

in [1], [2], and [3]. 
At the left boundary, 

.]u)G
~

()(Ku)G
~

())[(K
2

1
(

u)G
~

()(K(Gu)

1)j,
2

1(1)j,
2

1(12j),
2

1(j),
2

1(12

)
2

1j(0,)
2

1j(0,11)
2

1j(0,

++

+++

++

=

 (5.29) 

On the interior, 

.]u)G
~

()(Ku)G
~

()(K

u)G
~

()(Ku)G
~

())[(K
4

1
(

u)G
~

()(K(Gu)

)1j,
2

1(i1)j,
2

1(i121)j,
2

1(i1)j,
2

1(i12

j),
2

1(ij),
2

1(i12j),
2

1(ij),
2

1(i12

)
2

1j(i,)
2

1j(i,11)
2

1j(i,

+++++-+-

++--

+++

++

++

=

 (5.30) 

At the right boundary, 

,]u)G
~

()(Ku)G
~

())[(K
2

1
(

u)G
~

()(K(Gu)

1)j,
2

1(n1)j,
2

1(n12j),
2

1(nj),
2

1(n12

)
2

1j(n,)
2

1j(n,11)
2

1j(n,

+-+---

+++

++

=

 (5.31) 

where i = 1, 2, …, n and j = 0, 1, …, m-1. 
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5.7.4. Gradient on the Y-Component 
The discrete gradient on the y- component in 2-D is determined with the scheme as 

described in [1], [2], and [3]. 
At the bottom boundary, 

.]u)G
~

()(Ku)G
~

())[(K
2

1
(

u)G
~

()(K(Gu)

)
2

11,(i)
2

11,(i21)
2

1(i,)
2

1(i,21

0),
2

1(i0),
2

1(i220),
2

1(i

++

+++

++

=

 (5.32) 

On the interior, 

.]u)G
~

()(Ku)G
~

()(K

u)G
~

()(Ku)G
~

())[(K
4

1
(

u)G
~

()(K(Gu)

)
2

1j1,(i)
2

1j1,(i21)
2

1j(i,)
2

1j(i,21

)
2

1j1,(i)
2

1j1,(i21)
2

1j(i,)
2

1j(i,21

j),
2

1(ij),
2

1(i22j),
2

1(i

++++++

-+-+--

+++

++

++

=

 (5.33) 

At the top boundary, 

,]u)G
~

()(Ku)G
~

())[(K
2

1
(

u)G
~

()(K(Gu)

)
2

1m1,(i)
2

1m1,(i21)
2

1m(i,)
2

1m(i,21

m),
2

1(im),
2

1(i22m),
2

1(i

-+-+--

+++

++

=

 (5.34) 

where j = 1, 2, …, m and i = 0, 1, …, n-1. 

5.8. Tensor Coefficients and the Harmonic Average 

As shown in the 2-D Gradient expressions, equations (5.29-5.34), the tensor coefficients 
are evaluated in the middle of edges for both the x- and y-component.  However, according to 
the definition of tensor coefficients, they are only defined at the centers of the grid cells.  
Therefore, the tensor coefficients in the middle of edges can be computed by interpolation.  The 
interpolation is performed by using harmonic averages, as it is described by the following: 

5.8.1. Tensor Coefficients on the X-Component 
At the left boundary, 

)
2

1j,
2

1(vu)
2

1j(0,vu )(K)(K
++

= , (5.35) 

where u, v = 1, 2 and j = 0, 1, …, m-1. 
On the interior, 

)
2

1j,
2

1(ivu)
2

1j,
2

1(ivu

)
2

1j,
2

1(ivu)
2

1j,
2

1(ivu

)
2

1j(i,vu
)(K)(K

)(K)2(K
)(K

+++-

+++-

+ +
= , (5.36) 

where u, v = 1, 2; i = 1, 2, …, n; and j = 0, 1, …, m-1. 
At the right boundary, 

)
2

1j,
2

1(nvu)
2

1j(n,vu )(K)(K
+-+

=  (5.37) 

where u, v = 1, 2 and j = 0, 1, …, m-1. 

5.8.2. Tensor Coefficients on the Y-Component 
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At the bottom boundary, 

)
2

1,
2

1(ivu,0)
2

1(ivu )(K)(K
++

= , (5.38) 

where u, v = 1, 2 and i = 0, 1, …, m-1. 
On the interior, 

)
2

1j,
2

1(ivu)
2

1j,
2

1(ivu

)
2

1j,
2

1(ivu)
2

1j,
2

1(ivu

j),
2

1(ivu )(K)(K

)(K)2(K
)(K

++-+

++-+

+ +
= , (5.39) 

where u, v = 1, 2; j = 1, 2, …, m; and i = 0, 1, …, n-1. 
At the top boundary, 

)
2

1m,
2

1(ivum),
2

1(ivu )(K)(K
-++

= , (5.40) 

where u, v = 1, 2 and i = 0, 1, …, n-1. 

5.9. Mimetic Evaluation of D(Gu) 

Because the Divergence is defined at the centers of the grid cells, the discretization 
scheme can be determined by the following: 

∆y

(Gu)(Gu)

∆x

(Gu)(Gu)
  D(Gu)

j),
2

1(i1)j,
2

1(i)
2

1j(i,)
2

1j1,(i

)
2

1j ,
2

1(i

++++++

++

-
+

-
= , (5.41) 

where i = 0, 1, …, n-1 and j = 0, 1, …, m-1. 

5.10. Mimetic Implementation of Boundary Condition 

In the general case, if Robin boundary conditions are utilized, then the B1 Boundary 
operator is applied for the 2-D Discretization with the re-use of equations (4.2) and (4.3) for x- or 
y-component. 

For the x-component or left and right boundary conditions: 

2
1jp,

2
1jp,

b(Gu)βuα
++

=m , (5.42) 

and for the y-component or bottom and top boundary conditions: 

q,
2

1iq,
2

1i
b(Gu)βuα

++
=m . (5.43) 

in which i = 0, 1, …, n-1; j = 0, 1, …, m-1; p = 0, n; q = 0, m; b is the boundary right hand side 
function; α is the scalar value to drive the Dirichlet term; and β is the scalar value to drive the 
Neumann term. 

5.11. 2-D Mimetic Discrete Equation System 

By combining all of the Mimetic Operator expressions, equations (5.23) – (5.43), a linear 
matrix equation system will be resulted with the size of (M x M) with M = nm + 2(n + m), n be 
the number of divided sub- intervals in the x-component, and m be the number of divided sub-
intervals in the y-component.  
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6. NUMERICAL ERROR COMPUTATION 

The errors and the convergence rates for the Mimetic method are computed using the 
mean square norm and the maximum norm for various test problems.  The mean square norm is 
defined in [5] take the form in 1-D: 

2
1

2
1-n

2
nn

2
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2
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0i 2
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2
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2
1

2
00L2hL2

]h))u(x(U

h ))u(x(Uh))u(x[(U up-U  E

-+

-+-==
+

-

=
++å

, (6.1) 

and in 2-D: 
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The max norm is obtained by the following: 
For 1-D, 

)u(xUmax,)u(xUmaxmax up-U  E
2

1i
2

1i

1n

0i
ii

n0,imaxhmax ++

-

==
--== , (6.3) 

and for 2-D, 
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in which Ui+1/2 or Ui+1/2, j+1/2 represent the approximations given by the scheme to the exact 
solution u(xi+1/2) or u(xi+1/2, yj+1/2) respectively.   

In general, the order of convergence q can be approximated with: 

)
h

h
log(

)
E

E
log(

  q

2

1

2

1

= , (6.5) 
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where h1 and h2 are the grid sizes of the sub- intervals producing the truncation errors, E1 and E2 
respectively, and it is supposed that h1 > h2; hence, E1 > E2.  If the approximated scheme is in 2-
D, h1 and h2 above are computed by h1 = max (∆x1, ∆y1) and h2 = max (∆x2, ∆y2). The 
convergence rate or the order of the convergences for the max norm errors and the mean square 
norm errors should be approximately equal to each other.  In this case, the approximation should 
be convergent to second order. 
 

7.  ONE-DIMENSIONAL TEST CASES 

The 1-D schemes on uniform and non-uniform grids were used to solve this particular 
boundary value problem. 

Problem 1: 

1][0,onf(x)
dx

u(x)d
2

2

=- , (7.1) 

with the Robin boundary conditions: 
1(0)uβu(0)α -=¢- , (7.2) 

0(1)uβu(1)α =¢+ , (7.3) 
where: 

1e

eλ
f(x)

λ

xλ2

-

-
= , 

λeα -= , 

λ

1e
β

λ -
= , 

1λ -= . 
 

7.1. 2-2-2 Scheme on 1-D Uniform Grids 

As depicted in tables 7.1 and 7.2, both the mean square errors and the max errors showed 
second order convergence, which was compliant with the analysis of the second order Mimetic 

Operators.  Moreover, the solutions of the discretization, which includes the B
~

 boundary 
operator, had slightly smaller errors than those using the B boundary operator when uniform 
grids were used.   

 

Table 7.1. Results for 2-2-2 Scheme on Uniform Grids with B1 Operator 

Mean Square Max 
n 

Error Order Error Order 
100 3.36E-06  6.23E-06  
200 8.31E-07 2.0167 1.56E-06 1.9998 
400 2.07E-07 2.0087 3.92E-07 2.0000 
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Table 7.2. Results for 2-2-2 Scheme on Uniform Grids with B
~

 Operator 

Mean Square Max 
n 

Error Order Error Order 
100 3.29E-06  6.28E-06  
200 8.21E-07 2.0011 1.57E-06 1.9998 
400 2.05E-07 2.0004 3.92E-07 2.0000 

A deep analysis and investigation of the comparison in errors between B
~

and B1 
Operators could also be found in [7]. 

7.2. 2-2-2 Scheme on 1-D Non-Uniform Grids 

In generating non-uniform grids with n different grid sizes, a smooth function was 
utilized over the interval [a, b] with each node having a coordinate at [10]: 

2

i (i)
n

ab
ax úû

ù
êë

é -
+= , (7.4) 

where, i = 0, …, n; x0 = a; and xn = b since a = 0 and b = 1. 
Similarly, as shown in tables 7.3 and 7.4, both the mean square errors and the max errors were 
convergent to the second order approximation by using the 2-2-2 Mimetic discretization scheme 

on non-uniform grids.  The discretization with the B
~

Operator presents better results in terms of 
errors induced than those with the B1 Operators. 

Table 7.3. Results for 2-2-2 Scheme on Non-Uniform Grids with B1 Operator 

Mean Square Max 
n 

Error Order Error Order 
10 2.40E-03  3.60E-03  
20 5.41E-04 2.1505 9.01E-04 1.9980 
40 1.26E-07 2.1022 2.25E-04 2.0026 

 

Table 7.4. Results for 2-2-2 Scheme on Non-Uniform Grids with B
~

 Operator 

Mean Square Max 
                n 

Error Order Error Order 
10 2.20E-03  3.40E-03  
20 5.20E-04 2.0808 8.79E-04 1.9517 
40 1.24E-07 2.0709 2.22E-04 1.9855 

 

8. TWO-DIMENSIONAL TEST CASES ON UNIFORM GRIDS 

The elliptic PDE given in equation (5.2) was written as, 
y)f(x,u)grad(Kdiv =- , (8.1a) 

using the discrete operators, equation (8.1a) becomes 
y)f(x,Gu)(KD =-  (8.1b) 
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With the exception of Problem 2 which is explained below, if Robin boundary conditions 
are applied, then equations (5.42) and (5.43) are used with α and β both set to 1.  On the other 
hand, if Dirichlet Boundary Conditions are applied, then equations (5.42) and (5.43) are used 
with α equal to 1 and β set to 0. 

8.1. Discretization with Identity Tensor 

Problem 2: the 2-D differential equation (8.1b) defined on [0, 1] x [0, 1] includes the 
right hand side equation, f(x, y) which is set to: 

1)(e*2

eλ
y)f(x,

λ

2

y)(xλ

2

-
=

+

, for λ = 1. (8.2) 

The α and β values from Robin Boundary Conditions of equations (5.42) and (5.43) are 
set as 

λeα -= , (8.3) 

λ

1e
β

λ -
= . (8.4) 

The Identity tensor is defined with 

úû
ù

êë
é=

10
01K  (8.5) 

Tensor K corresponds to identity tensor introduced in equation (8.1a).  Thus, the exact solution 
for this problem is given with 

1)(e

e
y)(x,u

λ

2

y)(xλ

exact

-
=

+

. (8.6) 

The application of Mimetic discretization was obviously straightforward since the tensor 
was an identity matrix.  Both the mean square errors and the max errors, as obtained in table 8.1, 
were shown to be convergent on the second order approximation. 

Table 8.1. Results for Problem 2 Using Robin Boundary Conditions 

Mean Square Max 
n 

Error Order Error Order 
10 4.56E-05  1.04E-04  
20 1.08E-05 2.0792 2.86E-05 1.8645 
40 2.57E-06 2.0699 7.49E-06 1.9331 

 

8.2. Discretization with Diagonal Tensor 

The following problem was solved in [3] by the C-square Grid Method. 
Problem 3: the right hand side function of the (PDE) equation (8.1b) is defined on [0, 1] x 

[0, 1], 

cos(y)]11sin(x)y12xy[60y)f(x, 2 -+-= . (8.7) 
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Both Dirichlet and Robin Boundary Conditions are investigated and the diagonal tensor 
matrix is as follows: 

úû
ù

êë
é=

10
010K . (8.8) 

Thus, the exact solution to the PDE defined on [0, 1] x [0, 1] is, 

cos(y)sin(x)yyxu 43 ++= . (8.9) 

Results from using the Mimetic method in the case of Dirichlet Boundary Conditions 
were determined and displayed in table 8.2, which also includes the results of C-square Grids 
from [3] as a comparison. 

The diagonal tensor with K11 (= 10) is much larger than K22 (= 1), i.e., the tensor 
coefficient for the gradient in the x-component was larger than the tensor coefficient for the 
gradient in the y-component.  The attempt was to create unbalanced gradient terms between the 
x- and y-component in the discretization.  As a result, the equation system becomes much more 
unstable and difficult to solve in comparison to the identity tensor approach.  For both Dirichlet 
and Robin Boundary Conditions, the mean square errors and the max errors were convergent to 
the second order approximation, as shown in tables 8.2 and 8.3.  In addition, the Mimetic method 
introduced considerably smaller errors than C-Square Grid Method from [3] with the same 
degree of complexity or number of divided grids as applied to the Dirichlet Boundary 
Conditions, shown in table 8.2. 

Table 8.2. Results for Problem 3 Using Dirichlet Boundary Conditions 

Mean Square Max 
n Error 

(Mimetic)  
Error 

(C-Square Grids) 
Order 

(Mimetic) 
Error 

(Mimetic) 
Order 

(Mimetic) 
10 2.90E-04 3.73E-04  9.09E-04  
17 7.53E-05 1.21E-04 2.5387 2.26E-04 2.6237 
20 5.09E-05 8.54E-05 2.4074 1.44E-04 2.7658 
33 1.65E-05 2.95E-05 2.2456 3.48E-05 2.8384 
65 4.11E-06 6.96E-06 2.0542 6.87E-06 2.3931 

 

Table 8.3. Results for Problem 3 Using Robin Boundary Conditions 

Mean Square Max 
n 

Error Order Error Order 
10 4.00E-03  4.40E-03  
17 1.30E-03 2.1181 1.50E-03 2.0280 
20 9.67E-04 1.8182 1.10E-03 1.9084 
33 3.51E-04 2.0261 4.17E-04 1.9387 
65 8.95E-05 2.0151 1.08E-04 1.9867 

8.3. Discretization with Full Tensor 

The following problem was solved by the Support Operator Method and results could be 
found [9].   
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Problem 4: the right hand function for the elliptic PDE equation (8.1) is defined on [0, 
1]x [0, 1] by the following: 

yx22 e)yxyx(12y)f(x, +++-= . (8.10) 

The tensor K corresponds to the full matrix: 

úû
ù

êë
é=

21
12K . (8.11) 

Therefore, the exact solution to this problem is given by: 
yxeu = . (8.12) 

In case of Dirichlet Boundary Conditions, results are determined by the Mimetic 
Numerical Method and compared against the ones obtained by the Support Operator method [9], 
shown as in table 8.4. 

Table 8.4. Results for Problem 4 Using Dirichlet Boundary Conditions 

 
As the tensor was extended to a full matrix from a diagonal one, the complexity of the 

discretization increased dramatically.  However, the element values of the tensor were relatively 
small ranging from 1 to 2.  Hence, although the left-hand side matrix of the equation system 
resulting from the discretization was far more populated when going from a diagonal tensor to a 
full tensor, the equation system from the full tensor was much more stable when comparing its 
condition numbers to those of the diagonal tensor case.  As shown in tables 8.4 and 8.5 for both 
Dirichlet and the Robin Boundary Conditions respectively.  The mean square errors and the max 
errors were consistently convergent to second order of approximation.  The Mimetic method had 
far better results than the Support Operator Method when applying Dirichlet Boundary 
Condition.  Especially at n = 17, 33, and 65, the Mimetic method introduced substantially 
smaller errors than the Support Operator Method. 

Table 8.5. Results for Problem 4 Using Robin Boundary Conditions 

Mean Square Max 
n 

Error Order Error Order 
10 2.20E-03  8.00E-03  
17 7.58E-04 2.0088 3.50E-03 1.5579 
20 5.44E-04 2.0408 2.60E-03 1.8290 
33 1.96E-04 2.0374 1.10E-03 1.7177 
65 4.96E-05 2.0277 3.54E-04 1.6725 

Mean Square Max 
n Error 

(Mimetic)  
Error 

(Supp. Operator) 
Order 

(Mimetic) 
Error 

(Mimetic) 
Order 

(Mimetic) 
10 1.80E-03   4.40E-03  
17 6.21E-04 1.06E-03 2.0067 1.60E-03 1.9064 
20 4.49E-04  1.9872 1.20E-03 1.7701 
33 1.66E-04 2.58E-04 1.9907 4.48E-04 1.9660 
65 4.29E-05 6.36E-05 1.9945 1.18E-04 1.9691 
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8.4. Discretization with Full and Discontinuous Tensor 

The following problem was solved by the Support Operator method in [9]. 
Problem 5: the right-hand side function to the elliptic PDE equation (8.1) as defined on  

[-1, 1] x [-1, 1] with a discontinuity at x = 0 is defined as 

î
í
ì

>-

<++
=

.0xifcos(y)exp(x)2

0xifsinyxcosy)siny(2
y)f(x,

j

j
 (8.13) 

The full tensor matrix, K, with the continuity at x = 0, is 
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And the exact solution to the PDE is  
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in which j  = 1. 

Because of this discontinuity, results are obtained as the combination of two defined two-
unit rectangles, ([-1, 0] x [-1, 1]) and ([0, 1] x [-1, 1]) which are (x < 0) and (x > 0) zones, 
respectively.  

The Mimetic Method results for the Dirichlet Boundary Conditions were computed and 
the results for the Support Operator Method from [9] are shown in table 8.6.  In addition, the 
Mimetic results for the Robin Boundary Conditions are shown in table 8.7. 

Table 8.6. Results for Problem 5 Using Dirichlet Boundary Conditions 

Mean Square Max 
n Error 

(Mimetic)  
Error 

(Supp. Operator) 
Order 

(Mimetic) 
Error 

(Mimetic) 
Order 

(Mimetic) 
14 4.20E-03   4.90E-03  
16 3.20E-03 7.05E-03 2.0365 3.80E-03 1.9039 
20 2.00E-03  2.1063 2.40E-03 2.0594 
32 7.94E-04 1.73E-03 1.9661 9.68E-04 1.9314 
64 1.98E-04 3.96E-04 2.0028 2.45E-04 1.9801 

 

Table 8.7. Results for Problem 5 Using Robin Boundary Conditions 

Mean Square Max 
n 

Error Order Error Order 
14 5.30E-03  5.90E-03  
17 4.00E-03 2.1075 4.70E-03 1.7029 
20 2.50E-03 2.1063 3.40E-03 1.4510 
33 9.75E-04 2.0041 1.60E-03 1.6038 
65 2.39E-04 2.0275 5.30E-04 1.5948 
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If x < 0, then the tensor was the identity matrix, whereas in case of x > 0, the tensor was a 
full matrix, but with relatively small coefficients.  The two sets of results were then combined to 
determine the errors.  According to the results from tables 8.6 and 8.7, both the mean square 
errors and the max errors were convergent to second order approximation.  Importantly, the 
Mimetic method improved the mean square errors by approximately a half as compared to the 
Support Operator Method for Dirichlet Boundary Conditions. 

8.5. Discretization with Full Tensor as a Relatively Hard Example 

This problem was solved by the Uniform Cell Centered method and results could be 
found in [3].   

Problem 6: The right-hand side function to the elliptic PDE equation (8.1) defined on [0, 
1] x [0, 1] is given as 

y)]2(1x)2(118)x(x26)y(y22[y)f(x, 22 --+-----= , (8.16) 

where, the full tensor matrix with large coefficients is 

úû
ù

êë
é=

139
911K . (8.17) 

The exact solution to the problem is given by 

)y)(yx(xu 22 --= . (8.18) 

In the case of Dirichlet Boundary Conditions, results obtained by the Mimetic method 
were computed and displayed, as well as the ones from the Uniform Cell Centered method in 
tables 8.8 and 8.9. 

Table 8.8. Results for Problem 6 Using Dirichlet Boundary Conditions  

Mean Square Max 
n Error 

(Mimetic)  
Error 

(Cell-Centered) 
Order 

(Mimetic) 
Error 

(Mimetic) 
Order 

(Mimetic) 
10 5.73E-04 2.34E-02  1.20E-03  
17 2.08E-04 8.09E-03 1.9136 4.43E-04 1.8768 
20 1.51E-04 5.85E-03 1.9428 3.25E-04 1.9081 
33 5.67E-05 2.15E-03 1.9603 1.23E-04 1.9351 
65 1.48E-05 5.54E-04 1.9792 3.31E-05 1.9415 

 

Table 8.9. Results for Problem 6 Using Robin Boundary Conditions 

Mean Square Max 
n 

Error Order Error Order 
10 1.50E-03  4.80E-03  
17 5.27E-04 1.9699 2.50E-03 1.2293 
20 3.80E-04 2.0173 2.00E-03 1.3730 
33 1.36E-04 2.0565 9.72E-04 1.4406 
65 3.31E-05 2.0801 3.38E-04 1.5586 
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The full tensor coefficients were relatively large ranging from 9 to 13 (i.e. much greater 
than 1), but the diagonal tensor values were close to each other. Consequently, the x- and y-
component of the gradient become balanced.  However, because of these values of tensor 
coefficients, the problem was considered to be a relatively hard example.  For both Dirichlet and 
Robin Boundary Conditions, the mean square errors and the max errors were convergent to 
second order approximation, as shown in tables 8.8 and 8.9 respectively.  More importantly, the 
Mimetic method had improved the errors up to the order of 10-2 in comparison to the Uniform 
Cell-Centered method, in case of Dirichlet Boundary Conditions. 

9. CONCLUSION 

The second order Mimetic discretization method has been used to solve a general elliptic 
partial equation in 1-D and 2-D space.  The method was applied on 1-D staggered grids and 2-D 
staggered rectangular or square grids.  All of the results were consistent to obtain the second 
order approximation as expected.  The essential advantage of this method over others was the 
capability of the Mimetic Operators to obtain a second order approximation at the boundary as 
well as in the interior grids.  Hence, its overall performance yielded smaller mean square errors 
when compared to similar methodologies. 

In 1-D, both cases of uniform and non-uniform grids gave second order approximation 

for mean square errors and max errors.  In addition, the B
~

 boundary operator, which results from 
the discrete Divergence and Gradient operators satisfying a discrete analogue of the divergence 
theorem, provided slightly better results than those from the simple B1 boundary operator.   

In 2-D, the discretizations became more complicated after incorporating matrix tensor 
coefficients in comparison to the 1-D case, although it was implemented on uniform grids.  The 
tested numerical examples varied from diagonal to full, from continuous to discontinuous, and 
from small to big values for the tensor coefficients.  Results obtained were convergent to the 
second order approximation in both measured mean square and max errors.  Specially, the 
Mimetic method had shown a substantial improvement over other methods in terms of 
minimizing mean square errors.  

As for any future work, the following tasks should be considered: 
1. Second order operators should be investigated on non-orthogonal meshes instead of a 

uniform square or on rectangular grids in 2-D.   

2. High order Mimetic Operators, such as fourth or sixth order discrete operators should be 
employed on square, rectangular, or non-orthogonal grids such as tetrahedral grids. 

3. On a 3-D mesh, the problem for discretization could become very complex.  A concrete 
scheme for this particular investigation should be wisely constructed using high order 
Mimetic operators and thoroughly developed minimizing the complexity that 
discretization on 3-D grid volumes might create. 
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