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Abstract An adaptive finite element strategy is 
employed to solve the Perona-Malik model as 
modified by Catté, Lions, Morel and Coll for image 
processing by (often highly) nonlinear diffusion. 
FEMLAB® and MATLAB® are used to implement the 
experiments and they prove to be very suitable tools 
to run this type of problem. Refinement and 
coarsening of the grids are used as needed and the 
approach leads to unstructured grids where the 
efficiency of the remeshing strategy is demonstrated 
by obtaining very similar results as in the regular grid 
case, though with fewer unknowns. 
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processing – adaptive finite element method – 
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1 Physical Background 

 
The diffusion process (mass transfer) is the 

movement of matter from a high concentration to a 
low concentration. The equilibrium property is 
expressed by Fick’s law [1]: 
 

q D u! " #$ . (1) 
 

The concentration gradient u$  generates a flux 
q  which attempts to compensate for the gradient. 
The relation between the gradient u$  and the flux q  
is described by a positive definite symmetric matrix 
D , the diffusion tensor. For the isotropic 
(homogenous) case, one can replace the diffusion 
tensor with a scalar-valued ! the diffusivity d ! that 
describes the diffusion rate. For the most general 
anisotropic (inhomogeneous) case, one will have to 
use the diffusion tensor D . 

The phenomenon described above represents the 
transport of mass without creating or destroying any 
mass. Therefore, one can state the following 
continuity equation 
 

divtu q! " . (2) 
 

Substituting (1) in (2) yields the diffusion 

equation 
 

% &divtu D u! #$ . (3) 
 

In the context of image processing the 
concentration represents the values of the amplitude 
of the image ! gray level intensities or tones of gray. 
The diffusion tensor D  (or diffusivity d ) is 
commonly a function of the concentration u  and/or 
its derivatives, which leads to a nonlinear diffusion 
process.  
 
2 Nonlinear Diffusion Filtering 
 

During early 1980’s the classical transform and 
filter-based approaches to image processing [12], 
were replaced by the solving of parabolic PDEs. The 
work of Alvarez, Guichard, Lions and Morel [13] was 
fundamental in demonstrating that all scale-spaces 
that fulfill a few rather natural axioms are governed 
by parabolic PDEs, with the original image as initial 
condition. Within these, the parabolic equation 
proposed by Perona and Malik [2], which incorporate 
nonlinear diffusion filters, was a milestone in the 
novel field of image processing. 

Many of today’s PDE-based image processing and 
edge detection models are based on the classic 
Perona-Malik “anisotropic diffusion” method. A few 
models worth mentioning are curvature-driven 
equations such as the level set equation of Osher and 
Sethian [6], nonlinear total variation based models 
such as the noise removal algorithms of Rudin, Osher 
and Fatemi [7], active contour model (snakes) of Kass 
et al [15], and anisotropic vector-valued models such 
as those of Weickert [8] [9], Gerig et al [10], and 
Whitaker [11]. 

Based on the work of Bänsch and Mikula [3] we 
seek to find a numerical solution to the Perona-Malik 
model as modified by Catté, Lions, Morel and Coll 
[4] using adaptive finite element method. 

 
3 The Diffusion Model 
 

Today’s variations on the classic Perona-Malik 
model stem from the following form 

 

% &% &div 0tu g u u" $ $ ! . (4) 
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We adopt a modified version to this model by 
Catté- Lions- Morel- Coll: 

 

% &% & % &0divtu g G u u f u u'" $ ( $ ! " , (5) 
 

defined in the domain )  with boundary conditions 
0u* !  on +)  (where *  is the unit normal vector to 

the boundary of the domain ) ). The Neumann 
boundary conditions should guarantee that the 
filtering does not significantly affect the average grey 
value of the image. The initial condition is the 
original image % & % &00,u u!x x  in ) . 

In this model :g , ,-! !  is a non-increasing 

function with % &0 1g ! , % &g s  is smooth, and we 

required that % & 0g s -  for s -. . % &2G C'
./ !  is 

a smooth kernel, % &2
1G d' !0 x x

!
, 

2
G d C' '$ 10 x

!
, 

% &G' 2- xx  for 0' - , where 2x  is the Dirac delta 

at point x , % &0u L./ ) , and the convolution 

% & % &2
G u G u d' ' 3 3 3$ ( ! $ "0 x

!
" , where u"  is a 

linear and continuous extension of u  to 2! . 
The diffusion process is governed by the shape 

of the diffusivity function g , and the gradient u$  
acts as an edge detector. The forcing term % &0f u u"  
was not in the original Catté- Lions- Morel- Coll 
model. It was first introduced by Nordström [14] and 
it forces % &,u t x  to remain close to % &0u x , 
eliminating the need to choose a stopping time.  

 
4 The Diffusion Model 
 

We employ an adaptive meshing scheme to solve 
a nonlinear stationary problem and use the successive 
mesh regenerations to provide the scale steps. 
Refinement and coarsening of the grids are used as 
needed. The approach leads to unstructured grids by 
using the efficient mesh regeneration or remeshing 
technique [5]. 

The model to solve is (5) where the diffusivity 
function takes the form % & % &21 1g s s! ,  and the 

forcing term % & % &0 0f u u u u4" ! " " , where 4  is a 
constant. For the kernel G'  we use Gaussian 
distribution in two dimensions (assuming the mean is 
zero) 
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where 5  is the standard deviation. The kernel has 
been normalized to avoid the brightness of the image 
from increasing. 

 
5 Numerical Experiments 

 
This example involves a 256 256=  pixel image 

composed of simple geometric patterns where the 
original image has been perturbed via the MATLAB 
function imnoise using Gaussian white noise with 
constant mean and variance (in this example the mean 
is 0 and the variance is 0.01). Two different cases are 
presented. In the first case we run the time-dependent 
model (5) using a regular grid of 65,536 degrees of 
freedom (DOF). Each DOF corresponds to each pixel 
and its value represents one grey tone (0 thru 255). In 
the second case we run the non-linear steady-state 
model using adaptive grid starting from the regular 
grid (65,536 DOF). 

The original image and the perturbed image are 
shown in figure 1 and figure 2, respectively. The 
processed images are shown in figures 3 through 6. 
The adaptive finite element approach employs only 1 
iteration (iteration 0 corresponds to the initial regular 
grid) to reach the level of diffusion obtained after 47 
time-steps with the regular grid (time-dependant 
model). We use a pixel-wise correlation coefficient to 
compare the similarity between two images. Other 
image statistics such as the standard deviation (STD), 
the mean, and the coefficient of variation (CoV) are 
also shown below each image. 

The computational effort necessary to run the 
experiments on a computer equipped with a 1.50GHz 
Intel® Pentium® processor and 1.25 GB of RAM is 
shown in table 1. The adaptive finite element 
approach proves to perform very efficiently despite 
the high nonlinearity of the problem, and very few 
iterations are needed to reach convergence for each 
mesh case because of the good initial condition 
adopted.  

 
Table 1 

Experiment Case CPU time 
Regular grid, 47 iteration 285.230 s 
Adaptive grid, 1 iteration 116.668 s 
Adaptive grid, 2 iterations 153.230 s 
Adaptive grid, 5 iterations 274.124 s 

 
 

 



 

  
Fig. 1. Original image Fig. 2. Noisy image, STD 101.6430,  

mean 116.9876, CoV 0.8688, SNR 0.2227 

  

Fig. 3a. Solution after 47 time-steps, 
STD 97.9955, mean 116.9821, CoV 1.1860, CPU 285.23 s 

Fig. 3b. Regular mesh with 65,536 DOF 

  
Fig. 4a. Solution after 1 iteration using adaptive mesh, 

STD 89.0348, mean 125.2020, CoV 1.4062, 
Correlation coefficient 0.99973854209736, CPU 116.668 s 

Fig. 4b. Adaptive mesh with 54,488 DOF 



 

  
Fig. 5a. Solution after 2 iterations using adaptive mesh, 

STD 88.2264, mean 125.7386, CoV 1.4252 
Correlation coefficient 0.99972061269544, CPU 153.23 s 

Fig. 5b. Adaptive mesh with 52,072 DOF 

  
Fig. 6a. Solution after 5 iterations using adaptive mesh, 

STD 88.1398, mean 125.6871, CoV 1.4260, 
Correlation coefficient 0.99966519090267, CPU 274.124 s 

Fig. 6b. Adaptive mesh with 45,696 DOF 

  
Conclusions Adaptive finite element is employed 

to solve the Perona-Malik model modified by Catté, 
Lions, Morel and Coll for image processing by 
nonlinear diffusion. The employment of adaptive grid 
proved to be a very efficient approach where 
considerably fewer DOF are necessary to produce 
similar results to the regular grid case. By using the 
remeshing approach based on the 2L -norm, nodes are 
placed following the edges of the image which allows 
very good edge preservation. 
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