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The Configuration Interaction method is used to demonstrate that there is an electronically stable
state of positronic calcium with an orbital angular momentum of L = 1. This prediction relies on
the use of an asymptotic series to estimate the variational limit of the energy. The best estimate of
the binding energy is 37 meV. A discussion of the structure of the system is also presented.

PACS numbers: 36.10.-k, 36.10.Dr, 34.85.+x, 71.60.+z

In 1997 the existence of positron-atom bound states
was demonstrated by two independent calculations [1, 2]
of the e+Li ground state. Subsequently, it has been
shown that at least nine other atoms can attach a
positron and form an electronically stable bound state
[3]. Besides its intrinsic interest, the knowledge that
positrons can form bound states has been crucial to re-
cent developments in understanding the very large anni-
hilation rates that occur when positrons annihilate with
various molecules in the gas phase [4–7]. The problem
of explaining the large annihilation rates had remained
essentially unresolved almost since the first experiments
[8–10]. While the possible influence of bound states
upon the annihilation rate had been conjectured [11, 12],
the lack of hard evidence for the existence of positron-
atom bound states had certainly inhibited development
of compound state models of positron-molecule annihi-
lation [12–15]. The prevailing view on positron binding
[16] has changed to such an extent over the last decade
that a positron-atom (or positron-molecule) interaction
potential that supports a positron bound state can now
be regarded as mundane [17].

One feature of the atomic calculations is that binding
has only been seen for spherically symmetric states. The
angular momentum of the parent atom ground state and
the positron-atom composite state are always zero [3].
Another feature is that binding occurs to atoms with an
ionization energy close to 6.80 eV (the Ps binding energy)
and the binding energies are largest for atoms with their
ionization energies closest to 6.80 eV [3].

While the existence of positron binding to atoms (and
molecules) is now accepted, the question of whether
these complexes have excited states is largely unexplored.
Whether such states exist is best determined by calcu-
lations that are sufficiently sophisticated to accurately
model the delicate interplay of attractive and repulsive
coulomb interactions with the additional complication of
an angular momentum barrier. (We note the prediction
of a 2Po state of e+Mg by Gribakin et al [18]. How-
ever, the many body theory of Gribakin et al is known to
grossly overestimate the strength of the positron-atom in-

teraction [3, 19–21] and so the result has never been taken
seriously.) First, it is necessary to identify what is meant
by an excited state. The states of interest should have
the same long-range dissociation channel as the lower ly-
ing positronic atom ground state. This is to distinguish
these systems from states which are better described as
a positron bound to an excited state of the atom (an
example is the metastable e+He(3Se) state [22]).

The present letter describes some very large configu-
ration interaction (CI) calculations of the e+Ca system
that indicate the presence of a 2Po state with a binding
energy of ≈ 37 meV with respect to the lowest energy
Ca+(4s) + Ps(1s) dissociation channel (the ionization
energy of the Ca atom is less than 6.80 eV). This system
is the first representative of a new class of positron-atom
bound states whose existence is more surprising than that
of the Ca− 2Po negative ion [23, 24].

The CI method as applied to positron-atom systems
with two valence electrons and a positron has been dis-
cussed previously [20, 25, 26], but a short description is
worthwhile. The model Hamiltonian is initially based
on a Hartree-Fock (HF) wave function for the neutral
atom ground state. One- and two-body semi-empirical
polarization potentials are added to the potential field
of the HF frozen-core and the parameters of the core-
polarization potentials defined by reference to the spec-
trum of Ca+ [20]. The effective Hamiltonian for the sys-
tem with 2 valence electrons and a positron was

H = −
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2
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Vp2(ri, r0) . (1)

The direct potential (Vdir) represents the interaction with
the HF 1s22s22p63s23p6 electron core. The direct part
of the core potential is attractive for electrons and re-
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pulsive for the positron. The exchange potential (Vexc)
between the valence electrons and the HF core was com-
puted without approximation.

The one-body polarization potential (Vp1) was a semi-
empirical polarization potential with the functional form

Vp1(r) = −
∑

!m

αdg2
! (r)

2r4
|"m〉〈"m|. (2)

The factor αd is the static dipole polarizability of the core
and g2

! (r) = 1−exp
(

−r6/ρ6
!

)

is a cutoff function designed
to make the polarization potential finite at the origin.
The core dipole polarizability was set to 3.16 a3

0 while
the ρ! were adjusted to reproduce the Ca+ spectrum [20]
(the Ca+ energy is −0.43628653 Hartree in the model po-
tential while experiment gives −0.436278 Hartree [27]).
The same cutoff function has been adopted for both the
positron and electrons. The two-body polarization po-
tential (Vp2) is defined as

Vp2(ri, rj) =
αd

r3
i r3

j

(ri · rj)gp2(ri)gp2(rj) . (3)

where gp2(r) is chosen to have a cutoff parameter ob-
tained by averaging the ρ!. This model has been used
to describe the calcium spectrum to quite high accuracy
[20, 28].

The CI basis was constructed by letting the two elec-
trons and the positron form all the possible total angular
momentum LT = 1 configurations, with the two electrons
in a spin-singlet state, subject to the selection rules,

max("0, "1, "2) ≤ J , (4)

min("1, "2) ≤ Lint , (5)

(−1)(!0+!1+!2) = −1 . (6)

In these rules "0, "1 and "2 are respectively the orbital
angular momenta of the positron and the two electrons.
We define 〈E〉J to be the energy of the calculation with
a maximum orbital angular momentum of J .

The two-electron-positron calculations with non-zero
total angular momentum were first validated against the
previous LT = 1 PsH calculations of Tachikawa [29]. Us-
ing their Gaussian-type orbitals we reproduced their re-
ported energy and annihilation rates (note that the PsH
states with LT > 0 are unbound).

The Hamiltonian for the e+Ca 2Po state was diagonal-
ized in a CI basis constructed from a very large number
of single particle orbitals, including orbitals up to " = 14.
There was a minimum of 14 radial basis functions for each
". The largest calculation was performed with J = 14
and Lint = 3 and gave a CI basis dimension of 874888.
The parameter Lint does not have to be particularly large
since it is mainly concerned with electron-electron corre-
lations [20]. The resulting Hamiltonian matrix was diag-
onalized with the Davidson algorithm [30], and a total of
4000 iterations were required for the largest calculation.

TABLE I: Results of CI calculations for the e
+Ca 2Po state as

a function of J , and for Lint = 3. The total number of config-
urations is denoted by NCI . The 3-body energy of the state,
relative to the energy of the Ca2+ core, is given in Hartree.
The threshold for binding is −0.68628653 Hartree, and ε gives
the binding energy (in Hartree) against dissociation into Ps
+ Ca+(4s). The values of 〈E〉∞ were determined at J = 14.

J NCI 〈E〉J εJ

1 10094 -0.64319380 -0.04309273

2 34244 -0.64976077 -0.03652576

3 79198 -0.65519252 -0.03109401

4 140168 -0.66104645 -0.02524009

5 206822 -0.66626528 -0.02002126

6 278754 -0.67046020 -0.01582633

7 352156 -0.67372823 -0.01255830

8 426832 -0.67626613 -0.01002041

9 501508 -0.67824946 -0.00803707

10 576184 -0.67981518 -0.00647135

11 650860 -0.68106444 -0.00522209

12 725536 -0.68207134 -0.00421520

13 800212 -0.68289035 -0.00339618

14 874888 -0.68356185 -0.00272468

〈E〉∞ ε∞

1-term eq.(7) -0.68648706 0.0002005

2-term eq.(7) -0.68739784 0.0011113

3-term eq.(7) -0.68763826 0.0013517

The energy of the e+Ca 2Po state as a function of J
is given in Table I. The binding energy is defined as
ε = −(0.68628653 + E). None of the calculations give
an energy lower than the Ca+(4s) + Ps(1s) threshold.
The main technical problem afflicting CI calculations of
positron-atom interactions is the slow convergence of the
energy with J [3, 26, 31, 32] and the present calculation
is no exception to the rule. One way to determine the
J → ∞ energy, 〈E〉∞, is to make use of an asymptotic
analysis. It has been shown that successive increments,
∆EJ = 〈E〉J − 〈E〉J−1, to the energy can written as an
inverse power series [26, 33–36], viz

∆EJ ≈
AE

(J + 1

2
)4

+
BE

(J + 1

2
)5

+
CE

(J + 1

2
)6

+ . . . . (7)

The J → ∞ limit, has been determined by fitting sets
of 〈E〉J values to asymptotic series with either 1, 2 or
3 terms. The coefficients, AE , BE and CE for the 3-
term expansion are determined at a particular J from 4
successive energies (〈E〉J−3, 〈E〉J−2, 〈E〉J−1 and 〈E〉J ).
Once the coefficients have been determined it is easy to
sum the series to ∞ and obtain the variational limit.
Application of asymptotic series analysis to helium has
resulted in CI calculations reproducing the ground state
energy to an accuracy of ≈10−8 Hartree [36, 37]. Figure
1 shows the estimates of 〈E〉∞ as a function of J .



3

-6.0

-4.0

-2.0

0.0

2.0

6 8 10 12 14

ε (
un

its
 o

f 1
0-3

Ha
rtr

ee
)

〈E〉J〈E〉∞ 1-term

〈E〉∞ 2-term

〈E〉∞ 3-term

e+Ca 2Po

J

FIG. 1: The binding energy (in units of Hartree) of the 2Po

state of e
+Ca as a function of J . The directly calculated

energy is shown as the solid line while the J → ∞ limits
using eq. (7) with 1, 2 or 3 terms are shown as the dashed
lines. The Ca+(4s) + Ps(1s) dissociation threshold is shown
as the horizontal solid line.

The different extrapolations all give energies below the
dissociation threshold and indicate that the e+Ca 2Po

state is electronically stable. The energy of the three-
term extrapolation does seem to have stabilized at a bind-
ing energy of ≈0.00135 Hartree (37 meV). The two-term
binding energy is slightly smaller but does seem to be
approaching the three-term estimate. The one-term esti-
mate of 〈E〉∞ is also bound, although its binding energy
is smaller. The precise estimates of 〈E〉∞ evaluated at
J = 14 are given in Table I.

Since the binding energy is small it is desirable to ex-
amine the areas of uncertainty in the model and com-
putation to determine whether they could invalidate the
prediction.

The interaction between the core and valence electrons
was tested quite simply by adjusting the core polarizabil-
ity by ±5% (leading to a change of ±0.16% in the neutral
Ca ionization energy). When this was done, the overall
change in the e+Ca 2Po binding energy at J = 14 was
±0.00013 Hartree, i.e. ±10% of the final binding energy.

Choosing the polarization potential cutoff function for
the positron to be the same as the electron will lead to the
binding energy being underestimated. First, it is known
from calculations on the rare gases that the positron po-
larization potential is more attractive than the equiva-
lent electron potential [38–40]. Also, the ab-initio calcu-
lations on the small systems, e+He(3Se) and e+Li have
given larger binding energies (by 1-2%) than calculations

using model potentials to represent the core [41, 42].
The lack of completeness in the finite dimension radial

basis is also not an issue. Computational investigations
have revealed that accurate prediction of the ∆EJ energy
increments requires a larger basis as J increases [26, 36].
This results in the typical CI partial wave expansion with
a fixed dimension radial basis for the different "-values
having an inherent tendency to underestimate the bind-
ing energy [26, 36].

Finally, a computational null experiment was per-
formed on the PsH system. This system does not have
a 2Po bound state. A calculation of almost identical size
to the e+Ca system was performed. An unbound system
would be expected to have an 〈E〉∞ that asymptotes to
the threshold energy, or to a value above threshold, and
this is what is seen to occur in Figure 2.
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FIG. 2: The binding energy, ε = −(0.75+E), of the PsH 2Po

system as a function of J . The directly calculated energy is
shown as the solid line while the 〈E〉∞ limits using eq. (7) are
shown as the dashed lines.

A e+Ca valence annihilation rate of Γ = 1.42 × 109

sec−1 has also been determined using an asymptotic anal-
ysis similar to that used for the energy [21, 26]. This
large annihilation rate suggests that a large fraction of
the wave function consists of a Ca++Ps(1s) cluster [3].

The system is compact despite its small binding energy
and the mean positron radius for a converged calculation
was estimated at 〈rp〉 ≈ 8.7 a0. The e+Ca ground state
with a binding energy 14 times larger has almost the
same 〈rp〉 [21]. However, the large r form of the 2Po

wave function must have a Ca+(4s) + Ps(1s) structure
with the Ps(1s) center of mass being in an L = 1 state
with respect to the residual ion. The centrifugal barrier
associated with the non-zero angular momentum acts to
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confine the positron probability distribution.
The present calculations indicate that positronic cal-

cium has a 2Po excited state. The existence of both 2Se

and 2Po states of e+Ca makes optical detection a pos-
sibility. While the present calculation does not present
an absolute variational proof of binding (the calculation
would have to be extended to J ≈ 20 for this to occur),
the evidence in support of the excited state is strong. It
is worth noting that extrapolating finite dimension basis
sets to the variational limit is quite common in the field
of quantum chemistry [43].

One consequence of this result lies in the area of
positron annihilation. It has been shown that a low en-
ergy p-wave shape resonance can lead to very large values
of Zeff [44]. It is possible for thermally averaged values of
Zeff to exceed 104 since the energy dependence of Zeff for
a p-wave shape resonance is reasonably compatible with
a Maxwell-Boltzmann energy distribution. The existence
of p-wave shape resonances are certainly plausible given
the existence of the 2Po bound state and provides another
reaction that can contribute to the very large annihila-
tion rates seen in gas-phase experiments [4, 8–10]. And
very recently, Zeff peaks in the annihilation spectra for
dodecane (C12H26) and tetradecane (C14H30) have been
tentatively identified as a positronically excited bound
state associated with the C-H stretch mode [45, 46].

The authors would like to thank Dr. Masanori
Tachikawa for access to unpublished data on systems
with non-zero angular momentum. These calcula-
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South Australian Partnership for Advanced Computing
(SAPAC) and SDSU Computational Sciences Research
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