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We construct, in discrete two-component systems with cubic nonlinearity, stable states emulating
Skyrmions of the classical field theory. In the 2D case, an analog of the baby-Skyrmion is built on
the square lattice as a discrete vortex soliton of a complex field [whose vorticity plays the role of
the Skyrmion’s winding number (WN)], coupled to a radial “bubble” in a real lattice field. The
most compact quasi-Skyrmion on the cubic lattice is a toroidal structure, composed of a nearly
planar complex-field discrete vortex and a 3D real-field bubble; unlike its continuum counterpart
which must have WN = 2, this stable discrete state exists with WN = 1. Analogs of Skyrmions in
the 1D lattice are also constructed. Stability regions for all these states are found in an analytical
approximation and verified numerically. The dynamics of unstable discrete Skyrmions (which leads
to onset of lattice turbulence), and their stabilization by external potentials are explored too.

I. INTRODUCTION

Intrinsic localized modes in nonlinear lattices have
drawn much attention [1] due to their relevance to var-
ious physical systems, including optical waveguide ar-
rays [2], photonic crystals [3], Bose-Einstein conden-
sates (BECs) trapped in deep optical lattices [4], and
Josephson-junction ladders [5]. A wide variety of species
of these modes have been predicted and observed, such
as bright and dark optical discrete solitons [6, 7] in ar-
rays of semiconductor waveguides [7], multi-dimensional
solitons in photonic lattices [8], discrete vortices, super-
vortices and multipoles in 2D [9–11] and 3D [12] settings,
lattice dipoles [13], multi-component solitons [14], soliton
trains [15], necklace solitons [16], discrete gap solitons
[17], twisted localized modes (TLMs) [18], and others.

These developments raise the question whether coun-
terparts of more complex structures known in contin-
uum media within field-theoretical contexts can be con-
structed in dynamical lattices. Challenging objects of
this type are three-dimensional (3D) Skyrmions, pro-
posed to in the field theory as models of nucleons [19].
Their 2D counterparts, baby-Skyrmions in the sigma-
model [20], may account for the disappearance of antifer-
romagnetism and the onset of high-Tc superconductivity
[21], as well as formation of the ground state in quantum-
Hall ferromagnets [22]. Skyrmion-like objects have also
been predicted in BECs [23]. On the other hand, lat-
tice Skyrmions were considered in the Heisenberg model
of magnetism, and as electron spin textures in quantum
Hall systems [24].

In this work, we construct Skyrmion-emulating dis-
crete structures as stable 2D and 3D lattice solitons with
topological properties resembling those of Skyrmions in

∗URL: http://nlds.sdsu.edu/
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the continuum theory. The newly found states may be
relevant not only to lattice media per se, but also to the
quantization of the original Skyrme model, as its non-
renormalizability [25] makes it necessary to put it on a
lattice.

We aim to construct discrete quasi-Skyrmions in the
standard nonlinear-lattice model, viz., the discrete non-
linear Schrödinger (DNLS) equation. It provides for a
universal envelope equation for nonlinear Klein-Gordon
lattice models, and serves as a direct model for BECs
trapped in strong lattices [4] and crystals built of mi-
croresonators [26]; in addition, the two-dimensional
DNLS equation is a model of optical waveguide arrays
[2, 6]. Based on the hedgehog ansatz (HA) [19], static 3D
Skyrmions necessarily involve three scalar fields, hence
their dynamical description requires, at least, two com-
plex fields. Therefore, in this work we study a two-
component DNLS equation. This model is by itself di-
rectly relevant to waveguide arrays [14], when the light is
carried by different polarizations or frequencies, and to
BEC mixtures of two different spin states [27].

After introducing the model, we construct 2D analogs
of baby-Skyrmions on the square lattice and their 1D
counterparts, and then extend them into toroidal quasi-
Skyrmions on the cubic lattice, which are the most com-
pact (hence most experimentally relevant) 3D objects
with the Skyrmion-emulating topology. Stability regions
for all the states are found in an analytical approxima-
tion and verified via numerical computation of stability
eigenvalues. Simulations of the evolution of unstable lat-
tice quasi-Skyrmions reveals an onset of lattice turbu-
lence. We also show that a parabolic external trapping
potential, which is a necessary ingredient of the BEC set-
ting, may additionally stabilize the lattice objects of the
Skyrmion type.
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II. THE MODEL AND ANALYTICAL

CONSIDERATIONS

We introduce a vectorial DNLS equation for φ ≡
{

φ(1), φ(2)
}

on the cubic/square lattice,
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where the overdot stands for time derivative (or prop-
agation distance, in the optical-waveguide model), n =
{n1,2,3} or {n1,2} is the vectorial discrete coordinate in
the 3D and 2D lattices, C is a coupling constant, the dis-
crete D-dimensional Laplacian is ∆φn ≡

∑

|m−n|=1 φm−
2Dφn, and β is a relative strength of the onsite inter-
species interaction. Stationary solutions are looked for
as







φ
(1)
n = un exp(−iΛt),

φ
(2)
n = vn exp(−iΛt),

where Λ is the frequency (chemical potential, in the con-
text of BECs), and stationary lattice fields obey equa-
tions

{

Λun = C∆un − (|un|2 + β|vn|2)un,

Λvn = C∆vn − (|vn|2 + β|un|2)vn.

Note that the nonlinear terms in Eqs. (1) imply onsite
self-repulsion, while self-attraction can be transformed
into the present form by the usual staggering transfor-
mation [4, 18], φn ≡ (−1)n1+n2+n3 φ̃n for D = 3, or its
counterpart for D = 2.

We start by constructing Skyrmion-emulating lattice
configurations in the anti-continuum (AC) limit, C = 0;
in terms of the BEC, this bears similarities to the limit
case of a Mott insulator with fully confined atoms [28],
lending support, alongside the earlier works indicating
the relevant of discrete descriptions of such dynamical
superfluid-insulator transitions [29] and their quantita-
tive experimental verification [30], to the validity of such
a discrete model description. We then verify a possibil-
ity to continue solution branches to C > 0, by means of
fixed-point iterations (i.e., by using the Newton method
to identify solutions of the ensuing system of nonlinear
algebraic equations for given C). While arbitrary struc-
tures can be introduced in the AC limit, only true solu-
tions admit continuation to finite C.

The linear stability analysis is then performed for a
perturbed solution,







φ
(1)
n,pert =

(

un + ane
λt + bne

λ∗t
)

e−iΛt,

φ
(2)
n,pert =

(

vn + cne
λt + dne

λ∗t
)

e−iΛt,
(2)

where (an,bn, cn,dn) constitute an eigenmode of in-
finitesimal perturbations, and λ is the corresponding

eigenvalue [computed by the application of a standard
eigenvalue solver to the matrix formed by substitution of
the perturbed solution in Eqs. (1)]. The stationary solu-
tion is unstable if at least one pair of the eigenvalues has
Re(λ) 6= 0.

We first consider the 2D case and look for a representa-
tion of the vector field in the form of the above-mentioned
hedgehog ansatz for the baby-Skyrmion in the continuum
field theory is [20]; in the polar coordinates, r and θ, this
ansatz reads

Ψ=







sin(f(r)) cos(qθ)

sin(f(r)) sin(qθ)

cos(f(r))}






, (3)

with boundary conditions limr→0 f(r) = 0, and
limr→∞ f(r) = πN , with q and N being integers. The
latter may be combined into a single topological charge,
alias winding number, WN = [1 − (−1)N ]q/2. We aim
to construct a lattice ansatz emulating the continuum
ansatz in Eq. (3). In particular, combining the first two
components of the ansatz as Ψ1+ iΨ2, we obtain a com-
plex field with vorticity q. To consider a lattice analog
of the fundamental baby-Skyrmion, we set q = 1 and
N = 1, hence WN = 1. In this case, the complex field
represents a localized discrete vortex, which carries the
WN in the form of its vorticity, S (although the latter
is not related to a conserved angular momentum, which
does not exist on a lattice, S can be unambiguously de-
fined in lattice fields for D = 2 [9] and D = 3 [12]),
while the remaining real field takes the form of a bubble
in the quasi-radial direction on the lattice (see, e.g., Ref.
[31]), which helps to support the vortex. In fact, hedge-
hog ansatz (3) demonstrates that the WN of the baby-
Skyrmion may also be interpreted as the usual vorticity
in the continuum space. Thus, the 2D continuum hedge-
hog ansatz of Eq. (3) is directly transferred onto the 2D
lattice, with correspondence Ψ1 + iΨ2 → u and Ψ3 → v.
We note that a definition of a Skyrmion on the 2D lattice
through these asymptotic features was proposed in a dif-
ferent context in Ref. [32], but that work did not produce
actual solutions for lattice quasi-Skyrmions, which is our
objective here.

The construction of the desired lattice structure for
D = 2 proceeds by setting up a discrete vortex (alias
vortex cross) at C = 0. To this end, we assign the

complex field, u, a nonzero absolute value,
√
Λ, and

phases 0, π/2, π, 3π/2, at four sites surrounding the ori-
gin, (n1, n2) = (1, 0), (0, 1), (−1, 0) and (0,−1) [9]. In
the same AC limit, the radial bubble in the real field
is seeded by setting v0,0 =

√
Λ, vn1,n2

= 0 at the above-

mentioned set of four sites, and vn1,n2
= −

√
Λ elsewhere.

The thus constructed lattice ansatz indeed closely emu-
lates the baby-Skyrmion in the continuum. Note that we
have chosen the minimal spatial size for it; the size may
be made larger in the AC limit, but this would adversely
affect the stability [33], and, generally, the possibility to
create the pattern in the experiment. It is easy to con-
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struct higher-order lattice baby-Skyrmions, whose core
will be a planar discrete vortex with S = 2, 3, .... How-
ever, the minimum size of such object is essentially larger
than of its fundamental counterpart, with S = 1 [10],
while the stability region is much smaller, hence it would
be harder to observe it in the experiment. We also note in
passing that, while arbitrary configurations can be chosen
at the anti-continuum limit of C = 0, only a small subset
of these, satisfying stringent Lyapunov-Schmidt condi-
tions (developed for one-component systems in [33, 34];
an example for multi-component systems is given in [35])
will survive for non-trivial couplings.

A cross section of the 2D seed ansatz also suggests
a possibility to build an analog of the lattice baby-
Skyrmion for D = 1, in terms of 1D complex and real lat-
tice fields, un and vn, by adopting un=

√
Λ(δn,1−δn,−1),

v0 =
√
Λ, v1 = v−1 = 0 and vn = −

√
Λ for |n| > 1, in

the AC limit. This 1D structure essentially consists of a
twisted localized mode (TLM) [18] in the complex field,
coupled to a bubble [31] in the real one (see Fig. 1). This
1D state is possible only in the lattice setting, as TLMs
do not exist in the continuum.

Proceeding to the search for discrete analogs of
Skyrmions for D = 3, we notice that a variety of such
structures can be generated from the baby-Skyrmion con-
structed, as described above, on the 2D lattice. We limit
the consideration to the simplest (most compact, hence
easiest for the experimental realization) seed pattern for
D = 3, which is defined, in the AC limit, by taking the
complex field precisely as in the above planar configura-
tion in the central plane, n3 = 0, and as un,n3

= 0 and

vn,n3
= −

√
Λ elsewhere (for n3 6= 0). At finite C, this

seed continues into a true 3D lattice solution, in which
the complex field, un, is a flat 3D vortex (alias vortical
torus [12]), while the real field, vn, is shaped as a 3D bub-
ble. In this 3D configuration, the role of the WN, which
keeps value 1, inherited from the quasi-2D seed, is played
by the vorticity of the 3D vortex. Comparing this lattice
solutions with known types of Skyrmions in the 3D field
theory, we conclude that it emulates not the fundamental
state, which is based on the spherically symmetric hedge-
hog ansatz [19], but rather the toroidal di-Skyrmion,
which is a stable solution in the continuum model for
D = 3 (it is interpreted as a model of the deuteron [36]).
However, in the continuum limit the toroidal Skyrmion
exists only with WN = 2 (this WN may also be inter-
preted as the topological charge of the 3D vortex, which
lies at the core of the di-Skyrmion), while our results
demonstrate that its more compact stable toroidal ana-
log with WN = 1 exists on the 3D lattice, thus being the
most favorable target for experiments (with binary BECs
in deep 3D optical lattices or with microresonator crys-
tals). In fact, it is easy to construct higher-order toroidal
lattice quasi-Skyrmions with WN ≥ 2, whose core will
be a higher-order 3D lattice vortex; however, we expect
that, as well as in the case of D = 2, the size of such of
objects will be larger, and stability region smaller than
in the case of WN = 1.
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FIG. 1: (Color online) The one-dimensional discrete analog
of the baby-Skyrmion. Left and right panels in the top row
show norms N1 =

∑

n
|un|

2 and N2 =
∑

n
(Λ− |vn|

2), as well
as two most unstable eigenvalues versus coupling C (the verti-
cal dashed line is the analytically predicted instability onset).
Left and right panels in the middle and bottom rows display,
respectively, the solution for C = 0.05 and C = 0.15, and
the corresponding spectral planes (λr, λi) of the eigenvalues,
λ = λr + iλi. In this figure and below, results are presented
for β = 1/4 and Λ = 2. This case is generic, as revealed by
systematic simulations.

Proceeding to the stability analysis for the lattice
quasi-Skyrmions, we first examine it through the dis-
persion relation of Eqs. (1) linearized around such so-
lutions (i.e., we aim to find the continuous spectrum
of small perturbations, from which unstable eigenvalues
may emerge). Accordingly, far from the center, the per-
turbation with infinitesimal amplitudes (a,b, c,d) [see
Eq. (2)] is







φ1 = a ei(ωt+k·n) + b e−i(ω?t+k·n)

φ2 = −
√
Λ + c ei(ωt+k·n) + d e−i(ω?t+k·n),

in terms of Eq. (2), λ ≡ iω. Then, for k oriented along
a lattice axis (i.e., for 1D plane waves with k · n = kn),
the linearization of Eqs. (1) yields

ω = ±
[

Λ (1− β)− 4C sin2(k/2)
]

,

and

ω = ±
√

[Λ + 4C sin2(k/2)]2 − Λ2.
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From these dispersion relations and their straightforward
extensions for D = 2 and D = 3, we find the spectral
bands of the real excitation frequencies

|ω| <
√

(Λ + 4CD)2 − Λ2

for the second component and
{

Λ (1− β)− 4CD < |ω| < Λ (1− β) for β < 1

Λ (β − 1) < |ω| < Λ (β − 1) + 4CD for β > 1

for the first component. It is easy to check that these two
bands have opposite Krein signatures [37], hence their
merger, which occurs, with the increase of C, at

C(D)cr =
Λ

4D
·
{

(1− β)2/[2(2− β)], for β < 1,

√

β2 − 2β + 2− 1, for β > 1,
(4)

(recall D is the dimension of the lattice), generates a set
of unstable complex eigenvalues. Thus, the lattice quasi-
Skyrmions are predicted to be stable in the interval of

0 ≤ C < C
(D)
cr [note that the stability interval is absent

if β = 1, in which case Eq. (1) is a discrete version of the
Manakov’s system].

III. NUMERICAL RESULTS

Findings produced by the numerical computations for
D = 1 are summarized in Fig. 1, which shows norms of
the two components of the solution defined with respect
to the boundary conditions, N1 =

∑

n
|un|2 and N2 =

∑

n
(Λ−|vn|2), and most unstable eigenvalues (computed

on the 1D lattice with 600 sites). In this case, Eq. (4)

predicts C
(D=1)
cr ≈ 0.0804, while the numerical finding

is 0.083 (the destabilization occurs via the collision of
two spectral bands, as expected). It is worthwhile to
note here that the oscillatory instability which sets in

at C = C
(D=1)
cr remains extremely weak at C . 0.1, as

shown in the inset of Fig. 1. Examples of stable and
unstable 1D solutions are included too, for C = 0.05 and
C = 0.15, respectively.

Numerically found results for the analogs of the baby-
Skyrmion on the 2D lattice are displayed in Fig. 2, for

which the prediction of Eq. (4) is C
(D=2)
cr ≈ 0.0402, while

the respective numerical value is ≈ 0.042 (see the inset
in Fig. 2).

Figure 3 shows an example of the toroidal lattice struc-
ture emulating the 3D Skyrmion, constructed as de-
scribed above, with the complex field carrying the vor-
ticity in the horizontal plane, and the real field featur-
ing a 3D radial bubble. Here, the analytical prediction

is C
(D=2)
cr ≈ 0.027, while the numerically found critical

value is 25% higher, ≈ 0.034028. The example in Fig. 3
shows a weakly unstable solution, for C = 0.05.

The next step is to simulate the evolution of unsta-
ble solutions. With a cascade of secondary instabili-
ties produced by collisions between the spectral bands
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FIG. 2: (Color online) Same as in Fig. 1 for the lattice
analog of the two-dimensional (baby-) Skyrmion. Left and
right paired panels pertain, respectively, to C = 0.025 and
C = 0.075, displaying, respectively, stable and unstable so-
lutions. The top, middle, and bottom rows of the solution
profiles display contours of real and imaginary parts of the
complex field, and the real field, respectively.

beyond the primary instability threshold [given by Eq.
(4)], one may expect that the corresponding multitude
of unstable eigenmodes leads to dynamical chaos (“lat-
tice turbulence”), especially because the critical eigen-
modes, belonging to the continuous spectrum, are delo-
calized at the instability thresholds. This expectation
is borne out by the simulations, as shown in Fig. 4 for

C = 0.149 > C
(D=1)
cr for D = 1. The weakly unstable

configurations remain undisturbed for a while, but, at
sufficiently long times (t ≈ 650 in Fig. 4), the instabil-
ity generates spatial chaos in the real-field component,
and breathings in its complex counterpart. This dynam-
ics persists indefinitely long (unless effects of boundary
conditions come into the play). A transition to chaotic
behavior is also observed for D = 2, with the onset of
the instability taking place e.g., at t ' 220 in the case of
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C = 0.099 > C
(D=2)
cr , as well in simulations on the 3D

lattice.

We also considered the influence of external potentials,
which is relevant to BEC, as explained above. The lat-
ter amounts to adding a term (Ω2/2)n2φ to Eqs. (1).
As seen in Fig. 5, the real-field pattern acquires a finite
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FIG. 5: (Color online) The most unstable eigenvalue for the
one-dimensional lattice quasi-Skyrmion (top), and an example
of a restabilized field configuration and the respective eigen-
values for C = 0.115 (middle and bottom) in the presence of
the trapping potential with Ω = 0.1.

size in this case, as per the Thomas-Fermi approxima-
tion [38]. The main novel feature induced by the trap
is the appearance of gaps in the linearization spectrum.
The overall shape of the respective dependence of the
largest unstable eigenvalue on C (top panel of Fig. 5)
traces its counterpart in Fig. 1, which pertains to the spa-
tially uniform system, but the gaps lead to restabilization
of the discrete quasi-Skyrmions in certain intervals. For
instance, the 1D solution is stable for 0.083 ≤ C ≤ 0.099
and 0.113 ≤ C ≤ 0.115, where it is unstable without the
trapping potential. The same restabilization mechanism
is found also for D = 2 and 3 (not shown here).

IV. CONCLUSIONS

We have constructed lattice structures that emulate
2D and 3D Skyrmions on the dynamical lattice with
the cubic nonlinearity, and also provide for a 1D lattice
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counterpart of the Skyrmions. The discrete analogs of
2D (baby-) Skyrmions were built following the hedgehog
ansatz, and, accordingly, their structure resembles that
of 2D Skyrmions in the continuum, combining a vortex
soliton in the complex field and a radial bubble in a real
field, that support each other. Also similar to the 2D
continuum Skyrmions, the winding number (WN) of the
2D quasi-Skyrmion is represented by the vorticity of the
complex field. The 3D lattice analog of the Skyrmion
was built as a toroidal one, which is the most compact
3D pattern of the Skyrmion type, i.e., the one which is
most relevant to the experiment. The WN of the discrete
toroidal quasi-Skyrmion is represented (as well as in the
toroidal Skyrmions in the 3D continuum field theory) by
the topological charge of the 3D complex-field vortex,
which constitutes its core. However, unlike its contin-
uum counterpart which may only exist with WN = 2,
stable toroidal quasi-Skyrmions on the lattice exist with
WN = 1 (higher-order states, with WN ≥ 2, can be read-
ily constructed too). We have investigated the stability
of the 1D, 2D, and 3D discrete quasi-Skyrmions in an
analytical approximation (which is the first example of
a direct analytical approach to the stability problem for
Skyrmion-like structures in any setting), and verified it

by numerical computation of the eigenvalues. We have
also demonstrated that the evolution of unstable discrete
Skyrmions leads to the onset of lattice turbulence. A
possibility of further stabilization of the Skyrmions by
means of external confining potentials was highlighted
too. More sophisticated types of 2D and 3D lattice quasi-
Skyrmions, can be built too. In particular, the nearly
planar vortex lying at the core of the 3D state may be
replaced by a non-planar vortex cube [12]. Moreover,
there is a possibility to construct zero-WN lattice quasi-
Skyrmions, by placing a planar quadrupole [10] or cubic
octupole [12] at the core. Results obtained in these di-
rections will be reported elsewhere.
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