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We study the mobility of solitons in lattices with χ(2) (second-harmonic-generating) nonlinearity.

Contrary to what is known for their χ(3) counterparts, we demonstrate that discrete quadratic
solitons can be mobile not only in the one-dimensional (1D) setting, but also in two dimensions
(2D), in any direction. We identify parametric regions where an initial kick applied to a soliton
leads to three possible outcomes, namely, staying put, persistent motion, or destruction. On the
2D lattice, the solitons survive the largest kick and attain the largest speed along the diagonal
direction. The dynamics of the solitons is also studied in an analytical approximation, based on the
corresponding Peierls-Nabarro potential.

Introduction. In the past several years, tremendous
progress has been made in studies of nonlinear dynami-
cal systems on lattices [1]. To a considerable extent, this
development was driven by the continuing expansion of
physical applications, such as optical beams in waveguide
arrays [2], Bose-Einstein condensates in deep optical lat-
tices [3], transformations of the DNA double strand [4],
and so on.

A ubiquitous dynamical-lattice system is represented
by the discrete nonlinear Schrödinger equation [1, 2, 5]
with cubic (χ(3)) nonlinearity. It has been used to model
a variety of experimental settings and demonstrate the
formation of discrete solitons, lattice modulational insta-
bility, buildup of the Peierls-Nabarro (PN) barrier im-
peding the motion of solitons, diffraction management,
soliton interactions, etc. [6–11].

Substantial activity has also been aimed at lattices
with the quadratic (χ(2)) nonlinearity, which was orig-
inally introduced to describe the dynamics of Fermi-
resonance interface modes in multilayered systems based
on organic crystals [12]; more recently, a variety of solu-
tions have been reported in that context [13]. Recently,
the interest in χ(2) lattices was boosted by the experimen-
tal realization of discrete χ(2) solitons in nonlinear optics
[14]. A variety of topics have been studied in this con-
text both theoretically and experimentally, including the
formation of 1D and 2D solitons [15–17] (see also reviews
[18, 19]), modulational instability in periodically-poled
LiNb waveguide arrays [20], few-site lattices [21], χ(2)

photonic crystals [22], cavity solitons [23], multi-color lo-
calized modes [24], etc.

A fundamental difference of χ(2) continua from their
χ(3) counterparts [25] is that they feature no collapse in
2D and 3D cases [26], which paves the way to create
stable 2D [27] and 3D [28] quadratic solitons. On the
other hand, due to the presence of the collapse in 2D
and 3D χ(3) continua, lattice solitons in the correspond-
ing discrete setting are subject to quasi-collapse. Thus,
they only exist with a norm exceeding a certain threshold

value [29], and they are strongly localized (on few lattice
sites), hence 2D and 3D χ(3) solitons are strongly pinned
to the lattice and cannot be motile [30].

The absence of the trend to the catastrophic self-
compression in the 2D χ(2) medium suggests that the
corresponding lattice solitons may be broad and there-
fore mobile, being loosely bound to the lattice. The aim
of this work is to investigate the mobility of 1D and, es-
pecially, 2D solitons in χ(2) lattices. Besides potential
applications to photonics, the topic presents fundamen-
tal interest, revealing a family of mobile solitons in 2D
lattices. Thus far, the only example of mobility was pro-
vided by solitons in a 2D lattice with saturable nonlinear-
ity [30] (the Vinetskii-Kukhtarev model [31], in which the
mobility of 1D solitons was examined in Ref. [32]). Ex-
perimentally, 1D mobility of strongly anisotropic 2D gap
solitons was observed in a (continuous) photorefractive
medium with a square photonic lattice [33].

In this work, we identify parametric regions of sta-
ble motion of χ(2) solitons on 1D and 2D lattices and
anisotropy of the 2D mobility of the discrete solitons (for
motion off the principal directions on the lattice). First,
we introduce the model and develop an analytical ap-
proach to the mobility of solitons based on the analysis
of the respective PN barrier. Then, systematic numerical
results for the soliton mobility in 1D and 2D lattices are
reported.
The model and analytical results. Following Ref. [17],

we introduce a system of equations for the fundamental-
frequency (FF) and second-harmonic (SH) waves,
ψm,n(t) and φm,n(t) on the 2D lattice (its 1D counterpart
will be considered too):

i
d

dt
ψm,n = −

(

C1∆2ψm,n + ψ?m,nφm,n

)

, (1)

i
d

dt
φm,n = −1

2

(

C2∆2φm,n + ψ2
m,n + kφm,n

)

, (2)

where ∆2um,n ≡ um+1,n + um−1,n + um,n+1 +
um,n−1 − 4umn, the FF and SH lattice-coupling con-
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stants are C1 and C2, and k is the mismatch param-
eter. In addition to the Hamiltonian, Eqs. (1) and
(2) conserve the norm (Manley-Rowe invariant), I =
∑

m,n

(

|ψm,n|2 + 2 |φm,n|2
)

.

Stationary solutions are looked for as
{ψm,n(t), φm,n(t)} = {e−iωtΨm,n, e

−2iωtΦm,n}, where
the localized lattice distributions Ψm,n,Φm,n are real
for fundamental solitons, and may be complex for more
elaborate patterns, such as vortices [17]. To set discrete
solitons in motion, one must overcome the PN barrier,
i.e., the energy difference between static solitons which
are centered, respectively, on a lattice site and between
sites. To derive an analytical approximation for the
barrier, we consider the continuum limit, with stationary
functions Ψ and Φ depending on the radial variable,
which is the continuum limit of r ≡

√

(m2 + n2) /C1,
and obeying the equations

ωΨ+ (Ψ′′ +Ψ′/r) + ΨΦ = 0 ,

(4ω + k) Φ + C (Φ′′ +Φ′/r) + Ψ2 = 0, (3)

where C ≡ C2/C1. In this limit, the soliton is ap-
proximated by the following ansatz, with ω < 0 and
χ ≡ (4ω + k) /C < 0,

{

Ψ
Φ

}

=

{

A

B/
√
2

}

√

√

√

√

sinh
(

2
√

{|ω|, |χ|}r
)

√

{|ω|, |χ|}r

× sech
(

2
√

{|ω|, |χ|}r
)

.

These expressions have the correct asymptotic form at

r→∞, {Ψ,Φ} ∼ r−1/2 exp
(

−
√

| {ω, χ}r
)

. Substituting

the ansatz in Eqs. (3) and demanding its validity at r →
0, one obtains B = (23/3)|ω|, A = (23/3)

√

ω (4ω + k).
The Hamiltonian corresponding to axisymmetric solu-

tions of the continuum equations is

H = π

∫

∞

0

rdr
[

2 (Ψ′r)
2
+ C (Φ′r)

2 − 2ΦΨ2 − kΦ2
]

= π

∫

∞

0

rdr
(

2ωΨ2 + 4ωΦ2 +ΦΨ2
)

, (4)

where the derivatives were eliminated using integration
by parts and Eqs. (3). To find the PN potential, we
apply the lattice discretization to final expression (4) by
defining Hlatt=

1
2

∫∫ (

2ωΨ2 + 4ωΦ2 +ΦΨ2
)

g(x, y) dxdy,
with the grid function,

g(x, y) ≡
+∞
∑

m,n=−∞

δ(x−m)δ(y − n) =
+∞
∑

p,q=−∞

e2πi(px+qy). (5)

In the quasi-continuum approximation (which implies
small |ω| and |χ|), the leading terms in Hlatt correspond
to (p, q) = (±1, 0) and (0,±1) in Eq. (5), and yield the
PN potential with an exponentially small amplitude,

U = (U0/4) [cos (2πξ) + cos (2πη)] , (6)

t

n
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FIG. 1: (Color online) Space-time contour plots of |ψm,n|
2

and |φm,n|
2 for the FF and SH fields (top and bottom panels)

in the 1D lattice with periodic boundary conditions, for C1 =
C2 = 1, ω = −0.25, k = 0.25, and shove strengths S = 0.4
and 3.0 (left and right panels). The boosted soliton sets in
stable motion in the former case, and is destroyed in the latter
case.

where (ξ, η) are the coordinates of the soliton’s cen-
ter. In particular, the second term in Hlatt domi-
nates for |χ| > 2|ω|, which corresponds to numerical
results presented below (with ω = −0.25, χ = −0.75).
Then, fitting the slowly varying part of the integrand
in Hlatt to a Gaussian, we obtain the height of PN
barrier as U0 = −α

(

|ω|3/|χ|
)

exp
(

−3π2/(10|χ|)
)

, with

α ≡ (8π/15)232 ≈ 886.
Numerical Results. In the 1D and 2D cases alike,

we used lattices with periodic boundary conditions, in
order to allow indefinitely long progressive motion of
solitons. First, we found standing lattice-soliton solu-

tions
{

Ψ
(0)
m,n,Φ

(0)
m,n

}

, by means of fixed-point iterations.

Next, dynamical simulations were initialized by applying
a shove (kick) to those solutions, which corresponds to
initial conditions

{ψm,n, φm,n} = e
i S

C1,2
(m cos θ+n sin θ)

{

Ψ(0)
m,n,Φ

(0)
m,n

}

, (7)

where S and θ determine the size and orientation of the
shove vector.

Examples of stable motion and destruction of the 1D
lattice soliton, to which, respectively, a moderate and
strong shove were applied are displayed in Fig. 1, and
systematic results, obtained with variation of S and
C1 = C2, are summarized in Fig. 2. Soliton destruc-
tion was registered if the kicked soliton would eventually
lose > 30% of its initial norm. For coupling strengths
corresponding to Fig. 1, the initial kicks of different sizes
S give rise, practically, to two outcomes only, viz., sta-
ble motion or destruction. However, for weaker couplings
(i.e., stronger discreteness), “localization” is also possi-

ble: if S is below a lower critical value, S
(0)
cr , the soliton

survives without acquiring any velocity. This outcome is
explained by noting that the kinetic energy, Ekin ∼ S2,
imparted to the soliton by the shove, may be insufficient
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FIG. 2: A diagram in the plane of the coupling strength,
C1 = C2, and shove strength, S, showing different outcomes of
kicking the quiescent soliton in the 1D lattice, for ω = −0.25
and k = 0.25. (“localization” means that the soliton remains
quiescent).
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FIG. 3: (Color online) Same as Fig. 1 and with the same pa-
rameters, but in the 2D periodic lattice, for the propagation
in the diagonal (45 degrees, top panels) and off-diagonal (π/9
relative to the lattice bonds, bottom panels) directions. The
right panels display snapshots of the moving solitons in the
FF (top) and SH (bottom) fields at t = 0, 30, 50, while the
left panels show trajectories of the soliton’s center. Dashed
and solid line represent the soliton center in the n and m di-
rections. In the diagonal propagation, the two lines coincide.

to overcome the PN barrier; since its height decays ex-
ponentially with the increase of the intersite coupling,
the “localization” region in Fig. 2 is very small. Thus,
general features of the 1D situation are summarized as

follows: (i) for S < S
(0)
cr , the soliton remains quiescent;

(ii) for S
(0)
cr < S < Scr, it sets in a state of persistent

motion; (iii) for S > Scr, the soliton is destroyed.

We now turn to the 2D setting, which is more interest-
ing for two reasons. First, as noted above, in the 2D case
the mobility is a highly nontrivial feature, absent in the
case of the χ(3) nonlinearity; second, it is interesting to
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FIG. 4: (Color online) Features of the soliton motion in the
2D periodic lattice, for C1 = C2 = 1, k = 0.25, ω = −0.25.
The top left panel shows the velocity versus the shove strength
S directed along the lattice bonds (at angle θ = 0); the ver-
tical dashed line indicates the value of Scr, beyond which the
soliton is destroyed. The top right panel depicts Scr as a func-
tion of the orientation of the initial kick, θ. For given S = 0.4,
the ensuing velocity of the motion is shown versus θ in the
bottom left corner. In addition, the bottom right panel shows
the analytically predicted PN potential.

study anisotropy of the mobility, i.e., its dependence on
the orientation of the initial kick relative to the lattice.
Figure 3 shows two examples of stable motion: one along
the lattice diagonal, and, to our knowledge, the first ever
example of motion in an arbitrary direction (neither di-
agonal, nor along the bonds) on the lattice.

In Fig. 4, we summarize the dependence of the mobility
on the shove strength, S, and direction, θ, of the initial
kick. The “localization” of the 2D soliton (no motion at

all) is observed in interval S < S
(0)
cr (S

(0)
cr ≈ 0.02 in the

top left panel of Fig. 4). Other generic outcomes again
amount to motion at a finite velocity, which depends on
S, and destruction by a strong kick, if S > Scr.

Particularly noteworthy features, specific to the 2D
setting, are presented in the top right and bottom left
panels of Fig. 4, viz., dependences of Scr and established
velocity on θ. These features demonstrate that the prop-
agation direction easiest to sustain the motion on the
square lattice is along the diagonal, as the motion in this
direction persists up to the largest value of Scr, and is
fastest for given S. Both observations may be explained
by the fact that the height of the analytically predicted
PN potential (6) is smallest along in the diagonal direc-
tion, as shown by bottom right panel in Fig. 4. Of course,
a lattice solitary wave cannot move straight along the di-
agonal; however, it may periodically split along the two
lattice directions and recombine at the site located di-
agonally across from the splitting point, which is indeed
observed in our numerical data.

We have also examined the situation with C2 < C1,

and obtained similar results, but with larger S
(0)
cr . In the
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special case of C2 = 0 (no coupling in the SH field), mov-
ing solitons cannot be generated, which is easy to explain:
with C2 = 0, Eq. (2) yields Φm,n = −Ψ2

m,n/(4ω+k), and
the substitution of this in Eq. (1) makes the model equiv-
alent to one with the cubic nonlinearity, where steadily
moving 2D discrete solitons do not exist.
Conclusions. In this work, we examined the mobility

of solitons in 1D and 2D lattices with the quadratic non-
linearity. We have shown that the solitons feature stable
motion much easier than their counterparts in 1D lattices
with the cubic nonlinearity, and they may also be mobile
on the 2D lattice, where the cubic solitons cannot move at
all. In the 2D lattice, we have for the first time reported
a possibility of motion of the soliton in an arbitrary di-
rection (neither axial nor diagonal), the motion along

the diagonal being most persistent. A qualitative expla-
nation for these features was provided by the analytical
approximation for the 2D Peierls-Nabarro potential.

It may be interesting to extend the analysis to other
1D and, especially, 2D models, where mobile solitons may
be expected, such as systems with competing nonlinear-
ities (the cubic-quintic model [34], or the Salerno model
with competing on-site and inter-site cubic terms [35]).
A full proof of the existence of traveling lattice solitons is
a challenging computational [36] and mathematical [37]
problem.

PGK gratefully acknowledges support from NSF-DMS-
0204585 and NSF-CAREER. RCG and PGK acknowl-
edge support from NSF-DMS-0505663.
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