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1. Introduction

In the past few years, the dynamics of Bose-Einstein condensates (BECs) have become a topic of intense
theoretical and experimental investigation as has been evinced by numerous recent books [43, 44] and review
articles [15, 28, 30, 33, 35, 40]. This is a development that has accentuated the interest of the nonlinear
wave community in nonlinear Schrödinger type equations. This is because at the mean-field level [15, 43, 44]
the inter-atomic interactions in the BECs can be approximated very well by a pair interaction potential in
the form of a δ-function, which, in turn, leads to a quartic term in the mean-field Hamiltonian and therefore
to a nonlinear Schrödinger type equation for the BEC dynamics. The interesting new feature, however, in
comparison with earlier settings where such equations emerged including e.g. optical fibers [4, 31], is the
existence of a variety of external potentials, e.g., a parabolic potential, confining the atoms in a magnetic
trap.
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The two-dimensional setting of nearly planar (so-called “pancake”) condensates [6] is perhaps espe-
cially interesting since it provides the possibility for a variety of rather complex structures, while remaining
tractable for computationally demanding, numerical bifurcation/stability studies. Among these structures,
we highlight the experimentally realized vortices [38, 39] and vortex lattices [3, 16] among numerous other
theoretically proposed waveforms such as Faraday waves [48], ring dark solitons [49], and soliton/vortex
necklaces (see, e.g., [19] for a recent discussion and references therein). For these reasons, it is this two-
dimensional context that we aim at addressing herein.

The governing equation for a two-dimensional Bose-Einstein condensate in a rotating coordinate frame
is given by

i∂tq +∆q + ωq + a|q|2q = iΩ∂θq + Vext(x )q, (∂θ := x∂y − y∂x) (1.1)

where q ∈ C is the mean-field wave-function, a ∈ {−1,+1} is the nonlinear interaction (a = +1 implies
an attractive interaction, whereas a = −1 implies a repulsive interaction), ω ∈ R is a free parameter and
represents the chemical potential, and Vext(x ) : R2 7→ R represents the trapping potential (see [2, 5, 7, 9,
10, 25, 29, 39] and the references therein for further details). The term Ω corresponds to the frequency of
the rotation. In this paper it will be assumed that the BEC is subjected to a magnetic trapping potential
only, i.e.,

Vext(x ) = |x |2. (1.2)

The interested reader should consult [1] for a discussion on the validity of equation (1.1) as the governing
equation in the case of a pancake trap.

Our purpose here will be to determine the existence and linear stability of rotating waves such as ring-
like structures, soliton necklaces, vortex necklaces, and the so-called multi-pole states (e.g., quadrupoles
and octupoles) in the limit of weak atomic interactions (see Figure 1). Vortex necklaces have been realized
experimentally in [17], and have been discussed from a theoretical and numerical viewpoint in [13, 20].
The solutions found in [13] require that the magnetic trap be nonrotating. The multi-pole state given in
equation (3.9) has been found numerically in [36].

As it will be seen in this text, when considering nonrotating waves, i.e., Ω = 0, the only linearly stable
solution of those considered herein is the vortex necklace. For rotating waves whose rotation frequency is

Ω = −2 + 4
1

`
, ` ∈ N\{1},

it will be seen herein that the ring-like structure is linearly stable for ` ≥ 6, and is unstable otherwise. The
multi-pole and vortex will continue to be unstable; in fact, as ` increases the number of unstable eigenvalues
also increases. While the algebraic complexity prevented a calculation for the other two structures, it is
suspected that the soliton necklace will continue to be unstable, and the vortex necklace will continue to be
stable.

Our exposition will be structured as follows. After determining the spectra of the appropriate linear
operator in Section 2 we present the existence theory. The subsequent stability analysis requires two steps:
the location of small eigenvalues, and the location of O(1) eigenvalues with small real part. The analytical
results are corroborated in Section 7 by numerical computations. Finally, as a first step in the path towards
understanding lattices of the relevant structures, including lattices of vortices constructed experimentally in
[3, 16], in Section 8 we briefly discuss how one can use these earlier building block solutions to construct
multi-ring solutions. We conclude with some final thoughts and open questions.

Acknowledgments. PGK gratefully acknowledges the support of NSF-DMS-0204585 and NSF-CAREER,
and numerous discussions with D.J. Frantzeskakis in the initial stages of this work. PGK and RCG also
acknowledge the support of NSF-DMS-0505663. The work of TK is partially supported by the NSF under
grant DMS-0304982, and by the ARO under grant 45428-PH-HSI.
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2. Spectrum for the linear problem

In order to perform the Lyapunov-Schmidt reduction, it is important that one has a thorough under-
standing of σ(L), where upon recalling the form of the potential given in equation (1.2)

L := −∆+ iΩ∂θ + r2

= −∂2
r −

1

r
∂r −

1

r2
∂2
θ + iΩ∂θ + r2.

(2.1)

If one uses a Fourier decomposition and writes

q(r, θ) =

+∞
∑

`=−∞

q`(r)e
i`θ, (2.2)

then the eigenvalue problem Lq = λq becomes the infinite sequence of linear Schrödinger eigenvalue problems
in the radial variable for ` ∈ Z:

L`q` = λq`, L` := −∂2
r −

1

r
∂r +

`2

r2
+ r2 − `Ω. (2.3)

Concerning the operator L` it is well-known that for each fixed ` ∈ Z there is a countably infinite sequence
of simple eigenvalues {λm,`}∞m=0, with

λm,` := 2(|`|+ 1) + 4m+ `Ω, (2.4)

such that the eigenfunction qm,`(r) corresponding to λm,` has precisely m zeros; furthermore, the eigenfunc-
tions do not depend on Ω. With respect to the operator L one then has that for each λm,` there exist the
real-valued eigenfunctions qm,`(r) cos(`θ) and qm,`(r) sin(`θ). This implies that if ` 6= 0, then the eigenvalue
is not simple, and has geometric multiplicity no smaller than two. Finally, it is known that if λ ∈ σ(L), then
λ = λm,` for some pair (m, `) ∈ N0 × Z. Since λm,` = λm′,`′ if and only if

Ω = −2− 4
m′ −m
`′ − ` , (2.5)

if Ω = 0 one has that the operator L has semisimple eigenvalues with multiplicity greater than two for
m+|`| ≥ 2. If |Ω| = 2, then there are an infinite number of eigenvalues with infinite multiplicity; consequently,
it will henceforth be assumed that |Ω| < 2 (also see [32, Section 4]).

Assumption 2.1. The rotation frequency Ω satisfies |Ω| < 2.

Without loss of generality, henceforth assume that ` ∈ N0. One of the goals of this paper will be to study
the structure of the solutions that arise from eigenvalues of L having multiplicity three. For example, when
Ω = 0 it is clear that λ1,0 = λ0,2 = 6; furthermore, this eigenvalue has a multiplicity of three. In this paper
we will restrict our attention to the case that λ1,0 = λ0,`′ = 6 for some `′ ∈ N0. One sees that this holds
when Ω = Ω`′ , where

Ω`′ := −2 + 4
1

`′
. (2.6)

Note that −2 < Ω`′ ≤ 0 for `′ ≥ 2. Now, when Ω = Ω`′ one has that λm,` = 6 if and only if

`

`′
+m = 1,

i.e., (m, `) ∈ {(1, 0), (0, `′)}. Thus, for Ω = Ω`′ one has that λ = 6 is an eigenvalue of multiplicity three for
L; furthermore, a basis for the eigenspace is given by ker(L − 6) = Span{q1,0(r), q0,`′ cos `′θ, q0,`′ sin `′θ}.
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Proposition 2.2. Suppose that `′ ∈ N\{1}. When Ω = Ω`′ , where Ω`′ is given in equation (2.6), one has
that λ = 6 is an eigenvalue of L with geometric multiplicity three. Furthermore,

ker(L − 6) = Span{q1,0(r), q0,`′ cos `′θ, q0,`′ sin `′θ}.

3. Existence

3.1. Lyapunov-Schmidt reduction

For some `′ ≥ 2, set Ω = Ω`′ , where Ω`′ is given in equation (2.6). Rewrite the steady-state problem
associated with equation (1.1) as

L`′q − ωq − a|q|2q = 0, (3.1)

where the operator L`′ is given in equation (2.3). Using the result of Proposition 2.2, write

q = (x1q1,0(r) + y1q0,`′(r) cos `
′θ + y2q0,`′(r) sin `

′θ) ε1/2 +O(ε), ω = 6 +∆ω ε+O(ε3/2), (3.2)

where x1, y1, y2 ∈ C. Now, equation (3.1) is invariant under the gauge symmetry q 7→ qeiφ, and under the
spatial SO(2) symmetry of rotation. The equivariant Lyapunov-Schmidt bifurcation theory guarantees that
the bifurcation equations have the same symmetries as the underlying system (e.g., see [12]). Consequently,
without loss of generality one may assume in equation (3.2) that x1 ∈ R and y2 ∈ iR. Upon doing so
equation (3.2) becomes

q = (x1q1,0(r) + y1q0,`′(r) cos `
′θ + iy2q0,`′(r) sin `

′θ) ε1/2 +O(ε), ω = 6 +∆ω ε+O(ε3/2), (3.3)

where now one has that x1, y2 ∈ R, and y1 ∈ C.

It is now time to perform the Lyapunov-Schmidt reduction. First, an explicit calculation yields that

q1,0(r) =

√

1

π
(1− r2)e−r2/2, q0,`′(r) =

√

2

`′!π
r`
′

e−r
2/2. (3.4)

Set

g0 :=

∫ ∞

0

rq41,0(r) dr =
1

8

1

π2

g`′ :=

∫ ∞

0

rq40,`′(r) dr =
(2`′)!

4`′(`′!)2
1

π2

g0`′ :=

∫ ∞

0

rq21,0(r)q
2
0,`′(r) dr =

`′
2 − `′ + 2

2`′+3

1

π2
,

(3.5)

and note that the evaluations of the integrals in equation (3.5) are possible as a result of equation (3.4).
Further set

µ :=
a∆ω

g0π
, g1 :=

g0`′

g0
, g2 :=

g0`′

g`′
, cg :=

g2
g1
, (3.6)

and note that explicit representations of these quantities are available via equation (3.5). Substitution of
equation (3.3) into equation (3.1), applying the Lyapunov-Schmidt reduction, and using the definitions in
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equation (3.6) yield the bifurcation equations:

0 = x1

[

µ+ 2x2
1 + g1(2|y1|2 + y2

1 + y2
2)
]

0 = cgµy1 + g2x
2
1(2y1 + y∗1) +

3

4
|y1|2y1 +

1

4
y2
2(2y1 − y∗1)

0 = y2

[

cgµ+ g2x
2
1 +

1

4
(2|y1|2 − y2

1) +
3

4
y2
2

]

.

(3.7)

The zero set of equation (3.7) will be studied in the next two subsections.

Figure 1: (Color online) Some of the solutions to equation (3.1) when `′ = 5, and for Ω = Ω`′ (=
−6/5) given in equation (2.6). The top two panels and the bottom left one correspond
to real-valued solutions, whereas the bottom right panel is a complex-valued solution.
The top left panel is a ring, the top right panel is a multi-pole, the bottom left panel is
a soliton necklace, and the bottom right panel is a vortex necklace.

3.2. Real-valued solutions

When considering real-valued solutions to equation (3.1), one must assume in equation (3.7) that y2 = 0
and y1 ∈ R. Upon doing so equation (3.7) becomes the reduced system:

0 = x1

[

µ+ 2x2
1 + 3g1y

2
1

]

0 = y1

[

cgµ+ 3g2x
2
1 +

3

4
y2
1

]

.
(3.8)
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There are three solutions to equation (3.8): the pure mode solutions (that will be called, respectively, the
ring and multi-pole solutions in what follows),

(

x2
1

y2
1

)

= −1

2
µ

(

1
0

)

,

(

x2
1

y2
1

)

= −4

3
cgµ

(

0
1

)

, (3.9)

and what will henceforth be termed the soliton necklace solution,

(

x2
1

y2
1

)

= − 2µ

3(1− 6g1g2)

(

3(1/4− g2)
3cg(2/3− g1)

)

. (3.10)

In order for the solution in equation (3.10) to be valid, one must have that (1/4− g2)(2/3− g1) > 0. It can
be checked numerically via the use of equation (3.6) that this inequality holds for all `′ ∈ N\{1, 6} (recall
that we are assuming that `′ ≥ 2). Furthermore, for all of the solutions given above one must have that
µ < 0, i.e., sign(a∆ω) < 0.

Lemma 3.1. There are three distinct real-valued solutions to equation (3.1). The pure mode solutions, i.e.,
the ring and the multi-pole, are given by

q ∼ x1q1,0(r)ε
1/2, q ∼ y1q0,`′(r) cos(`′θ)ε1/2,

respectively, where x1, y1 are given in equation (3.9). The soliton necklace solution is given by

q ∼ (x1q1,0(r) + y1q0,`′(r) cos(`
′θ)) ε1/2,

where the pair (x1, y1) is given in equation (3.10). The soliton necklace solution exists for all `′ ∈ N\{1, 6}.
Finally, all of the solutions require that a∆ω ∈ R−. See Figure 1.

Figure 2: (Color online) The vortex necklace solution to equation (3.1) when `′ = 5 (see the
bottom right panel in Figure 1). The left panel is the modulus of the solution, and the
right panel is the phase.
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3.3. Complex-valued solutions

Now let us find complex-valued solutions to equation (3.1). Upon setting y1 := seiψ, where s ∈ R+,
equation (3.7) becomes

0 = x1

[

µ+ 2x2
1 + g1((2 + ei2ψ)s2 + y2

2)
]

0 = s

[

cgµ+ g2(2 + e−i2ψ)x2
1 +

3

4
s2 +

1

4
(2− e−i2ψ)y2

2

]

0 = y2

[

cgµ+ g2x
2
1 +

1

4
(2− ei2ψ)s2 +

3

4
y2
2

]

.

(3.11)

Note that equation (3.11) requires that (x1, s, y2) ∈ R × R+ × R, and further note that the imaginary part
of equation (3.11) satisfies the system

s2 sin 2ψ = 0,

(

g2x
2
1 −

1

4
y2
2

)

sin 2ψ = 0. (3.12)

First suppose that s = 0, so that equation (3.11) collapses to

0 = x1

[

µ+ 2x2
1 + g1y

2
2

]

0 = y2

[

cgµ+ g2x
2
1 +

3

4
y2
2

]

.
(3.13)

The only solution not already considered in Section 3.2 is given by what will henceforth be called a vortex

necklace,
(

x2
1

y2
2

)

= − 2µ

3− 2g1g2

(

3/4− g2
cg(2− g1)

)

. (3.14)

In order for the solution in equation (3.14) to be valid one must have that (3/4− g2)(2− g1) > 0. It can be
checked numerically via the use of equation (3.6) that this inequality holds for all `′ ∈ N\{1}. Furthermore,
for the solution in equation (3.14) to be valid one must again have that µ < 0.

Now suppose that s 6= 0, which by equation (3.12) necessarily implies that ψ = 0 (mod π/2). Under this
restriction the real part of equation (3.11) becomes

0 = x1

[

µ+ 2x2
1 + g1((2 + cos 2ψ)s2 + y2

2)
]

0 = s

[

cgµ+ g2(2 + cos 2ψ)x2
1 +

3

4
s2 +

1

4
(2− cos 2ψ)y2

2

]

0 = y2

[

cgµ+ g2x
2
1 +

1

4
(2− cos 2ψ)s2 +

3

4
y2
2

]

.

(3.15)

Recall that the goal is to find solutions not already found in Section 3.2. The radially symmetric vortex
solution is given by ψ = 0 (mod π) with

x1 = 0,

(

s2

y2
2

)

= −cgµ
(

1
1

)

. (3.16)

Now, suppose that all the variables in equation (3.15) are to be nonzero. If ψ = π/2 (mod π), then by the
SO(2) spatial symmetry the solution to be found is equivalent to that given in equation (3.14). Hence, finally
assume that ψ = 0 (mod π). In this case the solution is given by





x2
1

s2

y2
2



 = − µ

2(6g1g2 − 1)





1− 4g2
cg(−2 + 4g1 − 4g1g2)

2cg(6g1g2 − 1)



 . (3.17)
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A straightforward computation using equation (3.6) shows that the solution in equation (3.17) is valid if and
only if `′ = 6. It is extremely interesting to note that this is complementary to those values of `′ for which
the soliton necklace given in equation (3.10) exists.

Lemma 3.2. There are three distinct complex-valued solutions to equation (3.1). The radially symmetric
vortex is given by

q ∼ y2q0,`′(r)ei`
′θε1/2,

where y2 is given in equation (3.16). The vortex necklace solution is given by

q ∼ (x1q1,0(r) + iy2q0,`′(r) sin(`
′θ)) ε1/2,

where the pair (x1, y2) is given in equation (3.14). Finally, for `′ = 6 there exists an additional solution
which is given by

q ∼ (x1q1,0(r) + sq0,`′(r) cos(`
′θ) + iy2q0,`′(r) sin(`

′θ)) ε1/2,

where the triple (x1, s, y2) is given in equation (3.17). All of the solutions require that a∆ω ∈ R−. See
Figure 1 and Figure 2.

4. Stability: preliminary discussion

The theory leading to the determination of the spectral stability of the solutions found in Section 3 will
depend upon the results presented in [22, Section 4] and [23, 24, 42]. Upon taking real and imaginary parts
via q := u + iv, and linearizing equation (1.1) about a complex-valued solution Q = U + iV , one has the
eigenvalue problem

JLu = λu , (4.1)

where

J :=

(

0 1
−1 0

)

, L := (L`′ − ω) − a
(

3U2 + V 2 2UV
2UV U2 + 3V 2

)

.

For equation (4.1) let kr represent the number of real positive eigenvalues, kc the number of eigenvalues
in the open first quadrant of the complex plane, and k−i the number of purely imaginary eigenvalues with
positive imaginary part and negative Krein sign. The Krein signature of a simple eigenvalue λ ∈ iR+ is given
by

K := sign(〈Re(uλ),LRe(uλ)〉), (4.2)

where the associated eigenfunction of equation (4.1) is given by uλ (see [23, Section 2.2] for more details).
In equation (4.2) 〈·, ·〉 refers to the inner product on an appropriate Hilbert space.

Let n(L) correspond to the number of negative eigenvalues of the symmetric operator L (finite as a
consequence of Assumption 2.1), and let z(L) = dim(ker(L)). Suppose that z(L) = k with an orthonormal
basis for ker(L) being given by ker(L) = Span{φ1, . . . , φk}. For j = 1, . . . , k let ψj be defined by JLψj = φj .
The result of [24] states that

kr + 2k−i + 2kc = n(L)− n(D), (4.3)

where

D ij := 〈ψi,Lψj〉, i, j = 1, . . . , k. (4.4)

If the underlying solution is real-valued, i.e., V ≡ 0, then equation (4.3) can be refined. In this case set

L+ := L`′ − ω − 3aU2, L− := L`′ − ω − aU2, (4.5)
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so that equation (4.1) becomes

L+u = −λv, L−v = λu. (4.6)

Suppose that

ker(L±) = Span{φ±1 , . . . , φ±k±}, k− + k+ = k,

and further suppose that

L+ψ
−
j = −φ−j , (j = 1, . . . , k−); L−ψ

+
j = φ+

j , (j = 1, . . . , k+).

One then has that D = diag(D+,D−), with

(D±)ij := 〈ψ∓i , L±ψ∓j 〉, (4.7)

and equation (4.3) can be rewritten as

kr + 2k−i + 2kc = [n(L+)− n(D+)] + [n(L−)− n(D−)]. (4.8)

Furthermore, one has the lower bound

kr ≥ |[n(L+)− n(D+)]− [n(L−)− n(D−)]| . (4.9)

Now consider the solutions described in Section 3. Since U, V = O(√ε), one has that in equation (4.1)

L = (L`′ − 6) +O(ε).

The fact that z((L`′ − 6) ) = 6 implies that for equation (4.1) there will be six eigenvalues of O(ε). Some of
these eigenvalues will remain at the origin due to the symmetries present in equation (1.1). Unfortunately, the
perturbation calculations presented in Section 5 will be insufficient to fully determine the spectral stability
of the solutions, as they describe only those eigenvalues for equation (4.1) of O(ε). It is possible that O(1)
eigenvalues of opposite sign collide, and hence create a so-called oscillatory instability associated with a
complex eigenvalue. This issue will be considered in Section 6.

5. Stability: small eigenvalues

There are two conserved quantities associated with equation (1.1) which are a consequence of symmetry:

N :=

∫∫

R2

|q(x )|2 dx ; Lz := −
∫∫

R2

Im(q(x ))∂θ Re(q(x )) dx ,

where ∂θ := x∂y−y∂x. The quantity N refers to the number of particles, while Lz refers to the total angular
momentum of the condensate. Consequently, for the linearized problem one typically has that λ = 0 is an
eigenvalue with some multiplicity. When discussing the solutions found in Section 3, one has the following
table regarding the multiplicity of the null eigenvalue:

geometric algebraic
Solution type

multiplicity multiplicity

radially symmetric moduli 1 2
not radially symmetric moduli 2 4

(5.1)
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The disparity is due to the fact that the null eigenfunctions associated with N and Lz are constant multiples
of each other for solutions of the form q(r)ei`θ, i.e., solutions with radially symmetric moduli. It is interesting
to note that the radially symmetric solutions do not have the maximal geometric multiplicity.

Regarding the nonzero eigenvalues of O(ε), the table in equation (5.2) summarizes the calculations of
the next subsection. Since kc = 0 in all cases, this quantity has not been included therein. If a = +1, then
in equation (5.2) one should interchange the entries associated with k+

i and k−i . Note that for all solutions
except for the soliton necklace one has that as `′ increases, i.e., as Ω`′ → −2+, the wave stabilizes (at least
with respect to the small eigenvalues).

a = −1 (repulsive)

Solution 2 ≤ `′ ≤ 5 `′ = 6 `′ ≥ 7
kr k−i k+

i kr k−i k+
i kr k−i k+

i

ring 2 0 0 0 2 0 0 2 0
multi-pole 1 0 0 1 0 0 0 1 0

soliton necklace 0 1 0 1 0 0
vortex 0 0 2 0 0 2 0 1 1

vortex necklace 0 1 0 0 1 0 0 1 0

(5.2)

5.1. Reduced eigenvalue problem: theory

Consider a general form of equation (4.1) under the following scenario:

J :=

(

0

− 0

)

, L = L0 + εL1,

with

L0 := diag(A0, A0), L1 :=

(

L1
+ B
B L1

−

)

. (5.3)

Here it is assumed that 0 < ε ¿ 1, and that the operators L1
± and B are self-adjoint on a Hilbert space X

with inner product 〈·, ·〉. Furthermore, it will be assumed that the operators satisfy the assumptions given
in [23, Section 2].

Assume that z(A0) = n ∈ N, and that the orthonormal basis for ker(A0) is given by

ker(A0) = Span{φ1, . . . , φn}. (5.4)

As seen in [22, Section 4], upon writing

λ = ελ1 +O(ε2), u =

n
∑

j=1

xj(φj , 0)
T +

n
∑

j=1

xn+j(0, φj)
T +O(ε),

the determination of the O(ε) eigenvalues to equation (5.3) is equivalent to the finite-dimensional eigenvalue
problem

JSx = λ1x ; J :=

(

0

− 0

)

, S :=

(

S+ S2

S2 S−

)

, (5.5)

where

(S±)ij = 〈φi, L1
±φj〉, (S2)ij = 〈φi, Bφj〉. (5.6)
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Now consider the special case that B = 0. Equation (5.5) then reduces to

S+u = −λ1v , S−v = λ1u , (5.7)

which can be rewritten as the system
S+S−v = −λ2

1v . (5.8)

For the perturbed problem suppose that z(L±) = n±, where 0 ≤ n± ≤ n. One then has the existence of two
orthonormal bases for ker(S±), say

ker(S±) = Span{a±1 , . . . ,a±n±}.

Now let b
±
j be such that

S+b
−
j = −a

−
j , (j = 1, . . . , n−); S−b

+
j = a

+
j , (j = 1, . . . , n+).

Following [23, Section 3.3] one has that the D± given in equation (4.7) are to leading order

(D±)ij = 〈b∓i ,S±b
∓
j 〉. (5.9)

Consequently, when considering the eigenvalues of O(ε) one can rewrite equation (4.8) and equation (4.9) as

kr + 2k−i + 2kc = [n(S+)− n(D+)] + [n(S−)− n(D−)]

kr ≥ |[n(S+)− n(D+)]− [n(S−)− n(D−)]| .
(5.10)

Remark 5.1. Since equation (5.7) describes a finite-dimensional system, one also has that

kr + 2k+
i + 2kc = [p(S+)− p(D+)] + [p(S−)− p(D−)],

where k+
i represents the number of purely imaginary eigenvalues with positive imaginary part and positive

Krein sign. Here p(A) refers to the number of positive eigenvalues for the symmetric matrix A.

5.2. Reduced eigenvalue problem: real-valued solutions

Recall equation (4.6) and equation (5.3). In this case one has B = 0 with

L1
+ = −∆ω − 3U2, L1

− = −∆ω − U2,

where Uε−1/2 is given in Lemma 3.1 for each solution under consideration. Following the notation in
equation (5.4), for j = 1, . . . , 3 write

φ1 := q1,0(r), φ2 := q0,`′(r) cos(`
′θ), φ3 := q0,`′(r) sin(`

′θ).

Consider the first solution given in equation (3.9), i.e., the radially symmetric ring which satisfies µ +
2ax2

1 = 0. Recall that as a consequence of equation (5.1) there will be four nonzero eigenvalues of O(ε).
Upon using equation (5.6) one eventually sees that

S+ = −g0πax2
1 diag (4, 3g1 − 2, 3g1 − 2) , S− = −g0πax2

1 diag (0, g1 − 2, g1 − 2) . (5.11)

Upon following the reasoning leading to equation (5.9) one has that D = D+ with

D+ =

(

− 1

4g0ax2
1

)

=⇒ n(D+) =

{

0, a = −1
1, a = +1.

(5.12)
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Upon using equation (3.6) one has that g1 < 2 for all `′ ≥ 2, whereas g1 − 2/3 > 0 for `′ = 2, . . . , 5, and is
negative otherwise. Finally, for the matrices given in equation (5.11) the eigenvalue problem of equation (5.7)
is particularly easy to solve, and one sees that the nonzero eigenvalues are given by

λ2
1 = −(g0πax2

1)
2(g1 − 2)(3g1 − 2). (5.13)

Thus, to leading order the two nonzero eigenvalues in the closed right-half of the complex plane are semi-
simple with multiplicity two. By equation (5.13) one clearly sees that to leading order kr = 2 for `′ = 2, . . . , 5.
However, by equation (5.10) one can conclude that kr = 2 to all orders in the perturbation expansion. If
`′ ≥ 6, and if a = −1, then by applying equation (5.10) and Remark 5.1 one has that

k−i + kc = 2, k+
i + kc = 0;

thus, k−i = 2 and kc = 0. If a = +1, then the conclusion is that k+
i = 2. In either case, via an energy

argument one has that kc = 0 to all orders in the expansion, for kc ≥ 1 requires the collision of eigenvalues
having opposite sign.

Now consider the second solution given in equation (3.9), i.e., the multi-pole solution which satisfies
cgµ+3ay2

1/4 = 0. In this case referencing equation (5.1) yields that there will be only two nonzero eigenvalues
of O(ε). Upon using equation (5.6) one eventually sees that

S+ = −g`′πay2
1 diag

(

3g2 −
3

4
,
3

2
, 0

)

, S− = −g`′πay2
1 diag

(

g2 −
3

4
, 0,−1

2

)

. (5.14)

Regarding D , one has a similar conclusion as that given in equation (5.12). Upon using equation (3.6) one
has that g2 < 3/4 for all `′ ≥ 2, whereas g2−1/4 > 0 for `′ = 2, . . . , 6, and is negative otherwise. Finally, for
the matrices given in equation (5.14) the eigenvalue problem of equation (5.7) is particularly easy to solve,
and one sees that the nonzero eigenvalue in the closed right-half plane is given by

λ2
1 = −3(g`′πay2

1)
2

(

g2 −
1

4

)(

g2 −
3

4

)

. (5.15)

By equation (5.15) one clearly sees that to leading order kr = 1 for `′ = 2, . . . , 6. If `′ ≥ 7, then by arguing
as in the previous paragraph one has that

k−i =

{

1, a = −1
0, a = +1

, k+
i = 1− k−i .

Finally, consider the solution given in equation (3.10), i.e., the soliton necklace. Upon using equation (5.6)
one eventually sees that

S+ = −2g0g1πa





2x2
1/g2 3x1y1 0

3x1y1 3y2
1/4g2 0

0 0 0



 , S− = −2g0g1πa





−y2
1 x1y1 0

x1y1 −x2
1 0

0 0 −x2
1 − y2

1/4g2



 . (5.16)

Upon using equation (5.8) it is seen that the eigenvalue in the closed right-half plane is given by

λ2 = − trace(S+S−)

= −(2πg0g1x1y1)
2

(

6− 2

g1
− 3

4g2

)

.
(5.17)

Upon using equation (3.6) one sees that λ2 ∈ R− for `′ = 2, . . . , 5, whereas λ2 ∈ R+ for `′ ≥ 7 (recall that
the solution does not exist for `′ = 6). If `′ = 2, . . . , 5, then arguing as above for the multi-mode solution
yields that

k−i =

{

1, a = −1
0, a = +1

, k+
i = 1− k−i .
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5.3. Reduced eigenvalue problem: complex-valued solutions

Here one has that

L1
+ = −∆ω − (3U2 + V 2), L1

− = −∆ω − (U2 + 3V 2), B = −2UV. (5.18)

The explicit form of Uε−1/2 and V ε−1/2 can be deduced from Lemma 3.2.
First consider the vortex necklace solution given in equation (3.14). One eventually sees that for equa-

tion (5.5),

S+ = −2g0g1πadiag
(

2x2
1/g1, x

2
1, x

2
1 − y2

1/4g2
)

, S− = −2g0g1πadiag
(

y2
1 , 3y

2
1/4g2, 0

)

S2 = −2g0g1πa





0 x1y1 0
x1y1 0 0
0 0 0



 .

Using the above formulation, one sees that for equation (5.5) the subspace Span({e 3, e6}) is invariant;
furthermore, the eigenvalue associated with this subspace is λ1 = 0. Upon reordering the remaining basis
vectors via the mapping

{e1, e2, e4, e5} 7→ {e2, e4, e1, e5}, (5.19)

one sees that the remaining eigenvalues for equation (5.5) can be found via solving ABx = λ2
1x , where

A := −2g0g1πa
(

x1y1 3y2
1/4g2

−2x2
1/g1 −x1y1

)

, B := −2g0g1πa
(

x1y1 y2
1

−x2
1 −x1y1

)

. (5.20)

Now, the nonzero eigenvalue in the closed right-half plane for equation (5.20) is given by

λ2
1 = trace(AB)

= (2πg0g1x1y1)
2

(

2− 2

g1
− 3

4g2

)

.
(5.21)

Upon using equation (3.6) one sees that λ2
1 ∈ R− for `′ ≥ 2; hence, the wave is spectrally stable.

In order to determine the signature of the nonzero eigenvalue, one must compute σ(S) (note that z(S) =
2) and use equation (4.3). Proceeding in a manner similar to that above, and using the fact that

3− 2g1g2 ∈ R+, 1− g2 −
1

2g1
∈
{

R+, `′ = 2, . . . , 4

R−, `′ ≥ 5,

one eventually sees that

`′ = 2, . . . , 4 `′ ≥ 5

a = −1 n(S) = 4 n(S) = 3
a = +1 n(S) = 0 n(S) = 1

Since one must have n(S)−n(D) ∈ {0, 2}, as the nonzero eigenvalues for equation (5.5) are purely imaginary,
one can conclude that

k−i =

{

1, a = −1
0, a = +1

, k+
i = 1− k−i .
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Now consider the radially symmetric vortex solution given in equation (3.16). One eventually sees that
for equation (5.5),

S+ = −g`′πay2
1 diag (4g2 − 1, 3/2, 1/2) , S− = −g`′πay2

1 diag (4g2 − 1, 1/2, 3/2)

S2 = −1

2
g`′πay

2
1





0 0 0
0 0 1
0 1 0



 .

One sees that for equation (5.5) the subspace Span({e1, e4}) is invariant; furthermore, the eigenvalue asso-
ciated with this subspace is

λ2
1 = −[g`′πay2

1(4g2 − 1)]2. (5.22)

Upon reordering the remaining basis vectors via the mapping

{e2, e3, e5, e6} 7→ {e2, e6, e3, e5}, (5.23)

one sees that the remaining eigenvalues for equation (5.5) can be found via solving ABx = λ2
1x , where

A := −1

2
g`′πay

2
1

(

1 1
−1 −1

)

, B := −1

2
g`′πay

2
1

(

1 3
−3 −1

)

. (5.24)

Now, the nonzero eigenvalue in the closed right-half plane for equation (5.24) is given by

λ2
1 = trace(AB)

= −3

2
(g`′πay

2
1)

2.
(5.25)

Hence, the wave is spectrally stable. Arguing in a manner similar to that for the vortex ring one can further
conclude that if `′ = 2, . . . , 6 then

k−i =

{

0, a = −1
2, a = +1

, k+
i = 2− k−i ,

while k−i = k+
i = 1 for `′ ≥ 7.

6. Stability: Hamiltonian-Hopf bifurcations

In the previous sections the O(ε) eigenvalues were determined. Herein we will locate the potentially
unstable O(1) eigenvalues which arise from a Hamiltonian-Hopf bifurcation. This bifurcation is possible
only if for the unperturbed problem there is the collision of eigenvalues of opposite sign, i.e., only for the
eigenvalues λ = ±i4`/`′, ` = 1, . . . , `′. A preliminary theoretical result will be needed before the actual
calculations are presented. The result is simply a generalization of that presented in [21, Appendix], and
can be easily proved using the regular perturbation theory presented in, e.g., [26]. In particular, we first
consider the collision of eigenvalues of opposite Krein sign in a nongeneric case which arises in applications.

6.1. Reduced eigenvalue problem: theory

Consider a general form of equation (4.1), i.e.,

JLu = λu, (6.1)
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under the following scenario:

J :=

(

0

− 0

)

, L = L0 + εLε,

with

L0 := diag(A0, A0), Lε :=
(

A1 B
B A2

)

. (6.2)

Here it is assumed that 0 < ε ¿ 1, and that the operators Aj and B are self-adjoint on a Hilbert space X
with inner product 〈·, ·〉. Furthermore, it will be assumed that the operators satisfy the assumptions given
in [23, Section 2].

First suppose that ε = 0. Let λ± ∈ n(L) ∩ R± each be semi-simple eigenvalues with multiplicity n±;
furthermore, let the basis of each eigenspace be given by the orthonormal set {ψ±1 , . . . , ψ±n±}. When consid-
ering only those eigenvalues in the upper-half of the complex plane, for equation (6.1) the eigenvalues and
corresponding eigenfunctions are given by

λ = −iλ− : u−j = (ψ−j ,−iψ−j )T, j = 1, . . . n−

λ = +iλ+ : u+
j = (ψ+

j , iψ
+
j )

T, j = 1, . . . n+.
(6.3)

If one assumes that λ− = −λ+, then there is a collision of eigenvalues with opposite Krein signature;
in particular, n− eigenvalues of negative sign have collided with n+ eigenvalues of positive sign. Under this
scenario the eigenspace associated with the colliding eigenvalues is also semi-simple. As discussed in [37],
this is a codimension three phenomenon, and hence is nongeneric.

The location of the perturbed eigenvalues can be found in the following manner. First write the perturbed
eigenvalue and eigenfunction using the expansion

λ = iλ+ + ελ1 +O(ε2), u =

n−
∑

j=1

c−j u
−
j +

n+
∑

j=1

c+j u
+
j +O(ε), (6.4)

and set c := (c−1 , . . . , c
−
n− , c

+
1 , . . . , c

+
n+

)T ∈ Cn−+n+ . Upon rewriting equation (6.1) as Lu = λJ−1u and using
standard perturbation theory (e.g., see the proof of [23, Theorem 4.4]) one sees that the O(ε) correction is
found by solving the matrix system

[

i2λ1 diag( −,− +)−
(

S− S c

S
H
c S+

)]

c = 0 , (6.5)

where (.)H stands for Hermitian conjugation and

(S±)jk = 〈(A1 +A2)ψ
±
j , ψ

±
k 〉, (S c)jk = 〈(A1 −A2)ψ

−
j , ψ

+
k 〉+ i2〈Bψ−j , ψ+

k 〉. (6.6)

In equation (6.5) one has that ± ∈ Rn±×n± is the identity matrix; furthermore, S± ∈ Rn±×n± are
symmetric.

Remark 6.1. Set

S :=

(

S− S c

S
H
c S+

)

,

and note that S is Hermitian. Assume that z(S) = 0. Set γ2 := −i2λ. Upon using the results presented in
[23, Section 3], one then knows that with respect to the eigenvalue parameter γ for equation (6.5),

kr + 2k−i + 2kc = n(S) + n+, kr ≥ |n(S)− n+|; (6.7)
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in other words,
k−i + kc ≤ min{n(S), n+}.

Since equation (6.5) is a finite-dimensional problem, one also has that

kr + 2k+
i + 2kc = p(S) + n−, kr ≥ |p(S)− n−|; (6.8)

in other words,
k+
i + kc ≤ min{p(S), n−}.

In conclusion, one has that

kc ≤ min{p(S),n(S), n+, n−}, kr ≥ |n(S)− n+|. (6.9)

Note that for equation (6.5) to have eigenvalues with nonzero real part one must have that kc ≥ 1. Thus, if S
is positive definite, i.e., n(S) = 0, then as a consequence of equation (6.7), equation (6.8), and equation (6.9)
one necessarily has that

kr = n+, k+
i = n−, k−i = kc = 0; (6.10)

in other words, for equation (6.5) one has that λ1 ∈ iR (also see [18, Corollary 1.1]).

6.2. Reduced eigenvalue problem: real-valued solutions

Let us now apply the results of Section 6.1 to those solutions found in Section 3. Recall that from
Section 3 the solutions bifurcate from λ = 6. Now, in general

λm,` < 6⇐⇒ (m, `) ∈ Σn := {(0, 0), (0, 1), . . . , (0, `′ − 1)},

whereas
λm,` > 6⇐⇒ (m, `) ∈ Σp := (N0 × N0)\ (Σn ∪ {(1, 0), (0, `′)}) .

Thus, upon following the ideas presented in Section 6.1 one knows that a Hamiltonian-Hopf bifurcation will
be associated with those eigenvalues which satisfy

6− λa,b = λc,d − 6; λa,b ∈ Σn, λc,d ∈ Σp.

A simple calculation shows that the above is satisfied if

(a, b) = (0, 0) : (c, d) ∈ {(0, 2`′), (1, `′), (2, 0)}
(a, b) = (0, `) : (c, d) ∈ {(0, 2`′ − `), (1, `′ − `)}, ` = 1, . . . , `′ − 1.

(6.11)

As a consequence, in the upper-half of the complex plane one has `′ distinct possible bifurcation points.
Furthermore, if (a, b) = (0, 0), then n− = 1; otherwise, n− = 2. In both cases, the geometric multiplicity of
the semi-simple eigenvalue is six.

First consider the real-valued solutions. Upon using equation (3.3), set

Q := x1q1,0(r) + y1q0,`′(r) cos `
′θ. (6.12)

In equation (6.2) one then has that

A1 = −(∆ω + 3aQ2), A2 = −(∆ω + aQ2), B = 0, (6.13)

where the result of equation (6.12) must be appropriately substituted.
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First suppose that (a, b) = (0, 0), so that n− = 1 and n+ = 5. In this case set

ψ−1 = q0,0(r), ψ+
1 = q0,2`′(r) cos 2`

′θ,

ψ+
2 = q0,2`′(r) sin 2`

′θ, ψ+
3 = q1,`′(r) cos `

′θ,

ψ+
4 = q1,`′(r) sin `

′θ, ψ+
5 = q2,0(r).

(6.14)

Upon using equation (6.13) and equation (6.14) in equation (6.6), as well as some standard trigonometric
identities, one sees that the only nonzero off-diagonal entries for S+ (recall that it is symmetric) are given
by

y1 = 0 : none

x1 = 0 : (S+)15

x1y1 6= 0 : (S+)15, (S+)35.

(6.15)

Regarding the matrix S c one has that the only possible nonzero entries are given by

y1 = 0 : (S c)15

x1 = 0 : (S c)11, (S c)15

x1y1 6= 0 : (S c)11, (S c)13, (S c)15.

(6.16)

In conclusion, one has in each case that a Hamiltonian-Hopf bifurcation can occur only through the following
mode interactions:

Solution K < 0 K > 0

ring ψ−1 ψ+
5

multi-pole ψ−1 ψ+
1 , ψ

+
5

soliton necklace ψ−1 ψ+
1 , ψ

+
3 , ψ

+
5

(6.17)

In equation (6.17) the parameter K refers to the sign of the eigenvalue corresponding to that eigenfunction.
Now suppose that (a, b) = (0, `), so that n− = 2 and n+ = 4. In this case set

ψ−1 = q0,`(r) cos `θ, ψ−2 = q0,`(r) sin `θ,

ψ+
1 = q0,2`′−`(r) cos(2`

′ − `)θ, ψ+
2 = q0,2`′−`(r) sin(2`

′ − `)θ,
ψ+

3 = q1,`′−`(r) cos(`
′ − `)θ, ψ+

4 = q1,`′−`(r) sin(`
′ − `)θ.

(6.18)

Upon using equation (6.13) and equation (6.18) in equation (6.6), as well as some standard trigonometric
identities, one sees that the only nonzero off-diagonal entries for S+ (recall that it is symmetric) are given
by

x1y1 = 0 : none

x1y1 6= 0 : (S+)13, (S+)24.
(6.19)

Regarding the matrix S c there are two cases to consider. First suppose that 2` 6= `′. One then has that

y1 = 0 : none

x1 = 0 : (S c)11, (S c)22

x1y1 6= 0 : (S c)11, (S c)22, (S c)13, (S c)24.

(6.20)

If 2` = `′, then one has that the only possible nonzero entries are given by

y1 = 0 : (S c)13, (S c)24

x1 = 0 : (S c)11, (S c)22

x1y1 6= 0 : (S c)11, (S c)22, (S c)13, (S c)24.

(6.21)
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Finally, in all cases S− is diagonal. In conclusion, one has in each case that a Hamiltonian-Hopf bifurcation
can occur only through the following mode interactions. First, if 2` 6= `′, then one has that:

Solution K < 0 K > 0

ψ−1 none
ring

ψ−2 none

ψ−1 ψ+
1multi-pole

ψ−2 ψ+
2

ψ−1 ψ+
1 , ψ

+
3soliton necklace

ψ−2 ψ+
2 , ψ

+
4

(6.22)

On the other hand, if 2` = `′, then one has that:

Solution K < 0 K > 0

ψ−1 ψ+
3ring

ψ−2 ψ+
4

ψ−1 ψ+
1multi-pole

ψ−2 ψ+
2

ψ−1 ψ+
1 , ψ

+
3soliton necklace

ψ−2 ψ+
2 , ψ

+
4

(6.23)

Let us now illustrate the above calculations with a couple of examples. The relevant eigenfunctions in
equation (6.14) and equation (6.18) which are needed to explicitly compute the above quantities are given
by

q0,0(r) =

√

1

π
e−r

2/2, q1,0(r) =

√

1

π
(1− r2)e−r2/2, q2,0(r) =

√

1

4π
(2− 4r2 + r4)e−r

2/2

q0,`(r) =

√

2

`!π
r`e−r

2/2, q1,`(r) =

√

2

(`+ 1)!π
((`+ 1)r − r2)r`e−r2/2.

(6.24)

6.2.1. Example: ring

First consider the ring solution, i.e., suppose that y1 = 0 in equation (6.12). For λ = i4+O(ε), use of the
theory presented in Section 6.1 and the result of equation (6.17) yields that the only nontrivial interaction
is that of ψ−1 = q0,0 with ψ+

5 = q2,0 (see equation (6.14)). By equation (6.5) the relevant eigenvalue problem
is given by

[

i2λ1

(

1 0
0 −1

)

−
(

〈(A1 +A2)ψ
−
1 , ψ

−
1 〉 〈(A1 −A2)ψ

+
5 , ψ

−
1 〉

〈(A1 −A2)ψ
+
5 , ψ

−
1 〉 〈(A1 +A2)ψ

+
5 , ψ

+
5 〉

)]

c = 0 . (6.25)

Upon using equation (3.9), equation (6.13), and equation (6.24), one eventually sees that the eigenvalues for
equation (6.25) are given by

λ1 = −i 1
8
∆ω, λ1 = −i 1

4
∆ω. (6.26)

Thus, by equation (6.4) one has that no Hamiltonian-Hopf bifurcation occurs at this point.
Now suppose that λ = i4(1 − `/`′) +O(ε), ` = 1, . . . , `′ − 1. If 2` 6= `′, then by equation (6.22) one can

immediately conclude that there is no Hamiltonian-Hopf bifurcation. Now suppose that 2` = `′. Use of the
theory presented in Section 6.1 and the result of equation (6.23) yields that there are two relevant eigenvalue
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problems. Since the solution is radially symmetric, each problem will yield the same answer; hence, it is
enough to focus on the {ψ−1 , ψ+

3 }-interaction (see equation (6.18)). Proceeding in a manner similar to that
which leads to equation (6.25) gives the relevant eigenvalue problem to be

[

i2λ1

(

1 0
0 −1

)

−
(

〈(A1 +A2)ψ
−
1 , ψ

−
1 〉 〈(A1 −A2)ψ

+
3 , ψ

−
1 〉

〈(A1 −A2)ψ
+
3 , ψ

−
1 〉 〈(A1 +A2)ψ

+
3 , ψ

+
3 〉

)]

c = 0 ,

i.e.,

(λ1 diag(1,−1)− i∆ωS)c = 0 , (6.27)

where

S11 = 1− `2 − `+ 2

2`
, S12 = − (`2 − 3`+ 2)

√
`+ 1

2`+2
, S22 = 1− `3 − 3`2 + 2`− 8

2`+2
.

Since n(S) = 0 for ` ≥ 4, by equation (6.10) one has that a Hamiltonian-Hopf bifurcation cannot occur for
` ≥ 4. A numerical examination of equation (6.27) for ` = 2, 3 reveals that λ1 ∈ iR for these values also.
Consequently, there is never a Hamiltonian-Hopf bifurcation associated with these eigenvalues.

Lemma 6.2. When considering the ring solution, there are no Hamiltonian-Hopf bifurcations associated
with the eigenvalues

λ = i4
`

`′
, ` = 1, . . . , `′.

Remark 6.3. Combining the results of equation (5.2) with the above analysis reveals that the ring solution
is spectrally stable for `′ ≥ 6.

6.2.2. Example: multi-pole

Consider now the multi-pole solution, i.e., suppose that x1 = 0 in equation (6.12). For λ = i4+O(ε), use
of the theory presented in Section 6.1 and the result of equation (6.17) yields that the relevant interaction
is that of ψ−1 = q0,0 with ψ+

1 = q0,2`′(r) cos 2`
′θ and ψ+

5 = q2,0 (see equation (6.14)). Hence, in this case one
must solve a 3× 3 eigenvalue problem, which after some simplification is given by

(λ1 diag(1,−1,−1)− i∆ωS)c = 0 , (6.28)

where

S11 = 1− 4

3

2`
′

(`′!)2

(2`′)!
, S12 = −

√
2

3

`′!
√

(2`′)!
,

S13 = − 1

12

2`
′

(`′!)2

(2`′)!
(`′

2 − 5`′ + 2), S22 = 1− 4

3

2−`
′

`′!(3`′)!

[(2`′)!]2
,

S23 = −
√
2

6

`′!
√

(2`′)!
(2`′

2 − 5`′ + 4), S33 = 1− 1

48

2`
′

(`′!)2

(2`′)!
(`′

4 − 6`′
3
+ 19`′

2 − 14`′ + 24).

An application of Stirling’s formula shows that S → as `′ → ∞; hence, by equation (6.10) one has
that a Hamiltonian-Hopf bifurcation cannot occur for `′ sufficiently large. A numerical examination of
equation (6.28) shows that a Hamiltonian-Hopf bifurcation indeed occurs for `′ = 2, but that no such
bifurcation occurs for any `′ ≥ 3.
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Now suppose that λ = i4(1 − `/`′) + O(ε), ` = 1, . . . , `′ − 1. Use of the theory presented in Section 6.1
and the result of equation (6.23) yields that there are two relevant eigenvalue problems: the {ψ−1 , ψ+

1 }-
interaction and the {ψ−2 , ψ+

2 }-interaction (again see equation (6.18)). First consider the the {ψ−1 , ψ+
1 }-

interaction. Proceeding in a manner similar to that which leads to equation (6.25) eventually yields the
reduced eigenvalue problem

(λ1 diag(1,−1)− i∆ωS)c = 0 , (6.29)

where

S11 = 1− 4

3

2`
′−``′!(`′ + `)!

`!(2`′)!
, S12 =

1

3

√

(`′!)2

`!(2`′ − `)! , S22 = 1− 4

3

2−(`′−`)`′!(3`′ − `)!
(2`′)!(2`′ − `)! .

Remark 6.4. If one considers the {ψ−2 , ψ+
2 }-interaction, then all that changes in equation (6.29) is that

S12 7→ −S12. This does not change any of the analysis, nor any of the subsequent conclusions.

The eigenvalues for equation (6.29) are given by

λ1 =
1

2

(

S11 − S22 ±
√

(S11 + S22)2 − 4S2
12

)

. (6.30)

If one sets

H(S) := (S11 + S22)
2 − 4S2

12,

then one has that H(S) = 0 defines a Hamiltonian-Hopf bifurcation threshold. In particular, if H(S) < 0,
then such a bifurcation will occur, whereas if H(S) > 0 there will be no bifurcation.

First suppose that ` = `′ − 1. One then has that

λ1 =

(

±
√

`′2 + `′ − 1− i`′

3(`′ + 1)

)

∆ω;

in other words, there is a Hamiltonian-Hopf bifurcation for all `′ ≥ 2. Now suppose that ` = `′ − k for some
fixed k ≥ 2. For k2/`′ ¿ 1 one has the asymptotics

S11 ∼ −
1

3
+

2

3

k(k − 1)

`′
, S22 ∼ −

1

3
+

1

3

k(k + 1)

`′
, S

2
12 ∼

1

9

(

1− k2

`′

)

,

so that

H(S) ∼ −4

9

k(2k − 1)

`′
∈ R−,

k2

`′
¿ 1.

Consequently, for each fixed value of k there is a value `′m such that a Hamiltonian-Hopf bifurcation occurs
for `′ ≥ `′m. A table of such values is given in equation (6.31). No Hamiltonian-Hopf bifurcation occurs for
the fixed value of k if `′ < `′m.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
`′m 2 3 5 9 15 21 28 37 47 57 69 83 97 112 129

(6.31)

Finally, if ` is fixed independent of `′, then an application of Stirling’s formula shows that S → as `′ →∞;
hence, by equation (6.10) one has that a Hamiltonian-Hopf bifurcation cannot occur for that value of ` for
`′ sufficiently large.
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Lemma 6.5. When considering the multi-pole solution, for each 2 ≤ k ≤ `′ − 1 there is a Hamiltonian-
Hopf bifurcation from the eigenvalue λ = i4k/`′ for `′ ≥ `′m, where numerically computed values of `′m are
given in equation (6.31). Two eigenvalues emerge into the open right-half of the complex plane from these
points; furthermore, to leading order these eigenvalues are semi-simple. Finally, if `′ = 2, then there is a
Hamiltonian-Hopf bifurcation associated with the eigenvalue λ = i4.

Remark 6.6. Unlike the ring solution, the multi-pole solution is never spectrally stable. Recalling Re-
mark 6.4, one has that if `′ = 2, then there are three eigenvalues in the open first quadrant of the complex
plane; otherwise, there is an even number of eigenvalues in the open first quadrant of the complex plane.
Furthermore, as `′ increases the number of unstable eigenvalues monotonically increases.

6.3. Reduced eigenvalue problem: complex-valued solutions

Now consider the complex-valued solutions; in particular, those given in equation (3.14) and equa-
tion (3.16). Write

Q := U + iV, (6.32)

where the particular form of U and V can be deduced from Lemma 3.2. In equation (6.2) one then has that

A1 = −∆ω − a(3U2 + V 2), A2 = −∆ω − a(U2 + 3V 2), B = −2aUV, (6.33)

where the result of equation (6.32) must be appropriately substituted. Proceeding as above, one can generate
the following tables. The analogue to equation (6.17) is given by

Solution K < 0 K > 0

vortex ψ−1 ψ+
1 , ψ

+
2

vortex necklace ψ−1 ψ+
1 , ψ

+
4 , ψ

+
5

(6.34)

Here vortex refers to the radially symmetric solution given in equation (3.16), while the vortex necklace
refers to that given in equation (3.14). For 2` 6= `′, the analogue to equation (6.22) is given by

Solution K < 0 K > 0

vortex ψ−1 , ψ
−
2 ψ+

1 , ψ
+
2

ψ−1 ψ+
1 , ψ

+
4vortex necklace

ψ−2 ψ+
2 , ψ

+
3

(6.35)

whereas if 2` = `′, then the analogue to equation (6.23) is given by

Solution K < 0 K > 0

vortex ψ−1 , ψ
−
2 ψ+

1 , ψ
+
2

vortex necklace ψ−1 , ψ
−
2 ψ+

1 , ψ
+
2 , ψ

+
3 , ψ

+
4

(6.36)

6.3.1. Example: vortex

Consider the vortex solution, i.e., suppose that x1 = 0. For λ = i4 + O(ε), use of the theory presented
in Section 6.1 and the result of equation (6.34) yields that the relevant interaction is that of ψ−1 = q0,0 with
ψ+

1 = q0,2`′(r) cos 2`
′θ and ψ+

2 = q0,2`′(r) cos 2`
′θ (see equation (6.14)). Hence, in this case one must solve a

3× 3 eigenvalue problem, which after some simplification is given by

(λ1 diag(1,−1,−1)− i∆ωS)c = 0 , (6.37)
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where using the notation presented in equation (6.5) one has that

S− = S−(1), S+ = S+ diag(1, 1), S c = Sc(1, i).

with

S− = 1− 21+`′ (`
′!)2

(2`′)!
, S+ = 1− 21−`′ `

′!(3`′)!

[(2`′)!]2
, Sc = −

√
2

2

`′!
√

(2`′)!
.

The eigenvalues for equation (6.37) are given by

λ1 = −S+,
S− − S+ ±

√

(S− + S+)2 − 8S2
c

2
.

An application of Stirling’s formula shows that (S−+S+)
2−8S2

c ∈ R+ for `′ À 1; hence, a Hamiltonian-Hopf
bifurcation cannot occur for `′ sufficiently large. A numerical examination shows that a Hamiltonian-Hopf
bifurcation occurs only for `′ = 2, 3, but that no such bifurcation occurs for any `′ ≥ 4.

Now suppose that λ = i4(1 − `/`′) + O(ε), ` = 1, . . . , `′ − 1. Use of the theory presented in Section 6.1
and the result of equation (6.35) and equation (6.36) yields that the relevant eigenvalue problem is the
{ψ−1 , ψ−2 , ψ+

1 , ψ
+
2 }-interaction (see equation (6.18)). Again using the notation presented in equation (6.5)

one eventually obtains the reduced eigenvalue problem

(λ1 diag(1, 1,−1,−1)− i∆ωS)c = 0 , (6.38)

where

S− = S− diag(1, 1), S+ = S+ diag(1, 1), S c = Sc

(

1 i
i −1

)

,

with

S− = 1− 2`
′−`+1 `

′!(`′ + `)!

`!(2`′)!
, S+ = 1− 2−(`′−`−1) `′!(3`′ − `)!

(2`′ − `)!(2`′)! , Sc = −
1

2

`′!
√

`!(2`′ − `)!
.

The eigenvalues for equation (6.38) are given by

λ1 = S−, −S+,
S− − S+ ±

√

(S− + S+)2 − 16S2
c

2
; (6.39)

hence, out of each point at most one eigenvalue can enter the open right-half of the complex plane. If one
sets

H(S) := (S− + S+)
2 − 16S2

c , (6.40)

then one has that H(S) = 0 defines a Hamiltonian-Hopf bifurcation threshold. In particular, if H(S) < 0,
then such a bifurcation takes place, whereas if H(S) > 0 there will be no bifurcation.

First suppose that ` = `′ − 1. The eigenvalues of equation (6.39) then become

λ1 = −1, − 1

`′ + 1
, 0,

`′

`′ + 1
,

so that no Hamiltonian-Hopf bifurcation occurs at this point. Now suppose that ` = `′ − k for some fixed
k ≥ 2. For k2/`′ ¿ 1 one has the asymptotics

S− ∼ −1 +
k(k − 1)

`′
, S+ ∼ −1 +

1

2

k(k + 1)

`′
, S2

c ∼
1

4

(

1− k2

`′

)

,
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so that

H(S) ∼ −2k(k − 1)

`′
∈ R−,

k2

`′
¿ 1.

Consequently, for each fixed value of k there is a value `′v such that a Hamiltonian-Hopf bifurcation occurs
for `′ ≥ `′v. A table of such values is given in equation (6.41). No Hamiltonian-Hopf bifurcation occurs for
the fixed value of k if `′ < `′v.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
`′v ∞ 3 4 5 8 11 15 19 24 29 35 42 49 56 64

(6.41)

Finally, if ` is fixed independent of `′, then an application of Stirling’s formula shows that S → as `′ →∞;
hence, by equation (6.10) one has that a Hamiltonian-Hopf bifurcation cannot occur for that value of ` for
`′ sufficiently large.

Lemma 6.7. When considering the vortex solution, for each 2 ≤ k ≤ `′ − 1 there is a Hamiltonian-Hopf
bifurcation from the eigenvalue λ = i4k/`′ for `′ ≥ `′v, where numerically computed values of `′v are given
in equation (6.41). One eigenvalue emerges into the open right-half of the complex plane from these points.
Furthermore, if `′ = 2, 3, then there is a Hamiltonian-Hopf bifurcation associated with the eigenvalue λ = i4.

Remark 6.8. As is also true for the multi-pole solution, the vortex solution is never spectrally stable.
Furthermore, as `′ increases the number of unstable eigenvalues monotonically increases.

Remark 6.9. It should be noted that numerical calculations relating to equation (6.34) and equation (6.36)
in the case of the vortex with `′ = 2 are given in [32, Section 7.3]. Therein it is seen that the {ψ−1 , ψ+

1 , ψ
+
2 }-

interaction given in equation (6.34) leads to a Hamiltonian-Hopf bifurcation, whereas the interaction detailed
in equation (6.36) does not.

Remark 6.10. For `′ = 4, i.e., for Ω = Ω4 = −1, one has as a consequence of Lemma 6.7 that a Hamiltonian-
Hopf bifurcation arises from a {q0,2e±i2θ, q0,6e

±i6θ}-interaction (λ = i2) and a {q0,1e±iθ, q0,7e
±i7θ}-interaction

(λ = i3). In [27] it is shown numerically that for the case `′ = 4 with Ω = 0 the Hamiltonian-Hopf
bifurcations result from a {q0,2e±i2θ, q2,2e

±i2θ}-interaction and a {q0,3e±i3θ, q1,3e
±i3θ}-interaction. Thus, in

a rotating coordinate frame the type of interactions which lead to an instability is changed. The interested
reader should also compare the results of Lemma 6.7 with those of [45] for the case of `′ = 3.

Remark 6.11. If for the perturbed problem one writes

λ0,` = 2 + 4`+ `Ω`′ +∆λ0,` ε+O(ε2)
λ0,2`′−` = 2 + 4(2`′ − `) + (2`′ − `)Ω`′ +∆λ0,2`′−` ε+O(ε2),

then it is not difficult to show that the threshold condition H(S) < 0 can to leading order be rewritten as

|∆λ0,` +∆λ0,2`′−`| <
2

g`′
〈q20,`′ , q0,`q0,2`′−`〉 |∆ω|.

A similar threshold condition is given in [45, equation (6)]. However, unlike the results presented herein,
the upper bound in [45] was computed numerically.

7. Numerical Results

We now proceed to numerically examine the relevant solutions established in the previous sections. Our
numerical results will corroborate the theoretically obtained picture for the case of `′ = 2 (Ω`′ = 0). We will
examine the focusing case of attractive interactions (a = +1), in particular, in what follows for illustration
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Figure 3: (Color online) The figure shows the bifurcation analysis (top panels) and dynamical
evolution (bottom panels) of the simplest real solution, namely the ring structure. Panel
(a) illustrates the dependence on the chemical potential ω of the two real eigenvalues
(with approximately equal magnitudes) that we find this configuration to possess. Panel
(b) shows two typical examples of the structure (top) and of the spectral plane of its
linearization (bottom) for the cases with ω = 5 (left panels) and that with ω = 5.8 (right
panels, closer to the linear limit). Panel (c) shows in a 3d graph the space-time evolution
of the ring-like condensate. The spatial variables m = 40+x/h and n = 40+y/h, where
h is the numerically used grid spacing of h = 0.23. The evolution runs until t = 800
and is commented in detail in the text. Panel (d) facilitates the reading of panel (c) by
offering two-dimensional cross-section (along the time axis) illustrating the configuration
profile at appropriately selected times during the evolution.

purposes. It should be noted, however, that in the previous sections relevant changes for the defocusing
case of repulsive interactions have been discussed. In fact, the only possible difference between the two
cases is the Krein signature of the O(ε) nonzero eigenvalues. We use a fixed point algorithm to numerically
identify the solutions up to a prescribed tolerance. As a starting guess for the fixed point iteration, we
use our theoretical approximation of Section 3.2 and Section 3.3 and typically find this approximation
to converge to the (numerically) exact solution within a few iteration steps. Once the algorithm converges,
numerical linear stability is performed on the corresponding branches to obtain the relevant eigenvalues of the
linearization spectrum. For unstable solutions, we also use appropriately crafted “numerical experiments”
to showcase the dynamical evolution associated with the instability. In these we initialize the dynamics
with the relevant unstable configuration, perturbed by a small amplitude (typically 10−4) multiplying an
instability eigenvector of the linearization. This accelerates the manifestation of the respective instabilities,
facilitating their observation in our evolution simulations.

Figure 3 shows our results for the ring-like real-valued solution (namely, the first one among the ones
of equation (3.9)). For this solution, as predicted by the results tabulated in equation (5.2), we find two
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Figure 4: (Color online) Similar as Figure 3 but now for the multi-pole (quadrupole in this case
with `′ = 2) solution. Panel (a) shows the real parts of the most unstable eigenvalues,
the largest one of which pertains to a real pair, while the others to quartets arising from
Hamiltonian-Hopf bifurcations. One quartet bifurcates from λ = i4, while two quartets
bifurcate from λ = i2. Panel (b) shows relevant details (configuration and its stability)
for ω = 5 (left) and ω = 5.8 (right). Panel (c) shows the dynamical evolution of the
configuration for ω = 5.8 up to times t = 400, while panel (d) provides snapshots of the
evolution at specific times.

real eigenvalue pairs contributing to the instability of the relevant mode. These eigenvalues are nearly
identical as is shown in panel (a) of the figure which agrees with the theoretical prediction discussed around
equation (5.13). Panel (b) of the figure illustrates the configuration (top) and the spectral plane of the
imaginary (λi) versus the real (λr) part of the eigenvalues λ for the cases of ω = 5.8 (right; close to the linear
limit) and ω = 5 (left; further away from that limit). Since the configuration is unstable in the two bottom
panels, we have examined its instability through a relevant numerical experiment (for the case with ω = 5.8),
as outlined above. Panel (c) encompasses the spatio-temporal (x, y and t) evolution of the solution’s contour
up to t = 800. Details of the relevant evolution are given in panel (d) which contains specific snapshots
(at t = 1, 150, 300, 450, 600 and 800) of the spatial profile. It can clearly be seen that around t ≈ 150, the
solution breaks up into a quadrupolar structure as a result of the instability; this is also natural to expect
based on the relevant instability eigenvector from our earlier stability analysis. The circular structure recurs
(see e.g., the snapshot at t = 300 in panel (d) and also the relevant re-appearance of the initial structure in
panel (c)). Later, however, (for t > 400), the quadrupolar structure re-emerges, as well as more complicated
structures (as shown in the last 3 plots of panel (d)), interrupted by shorter recurrences of the original state.

We now turn to the second real-valued solution of equation (3.9), namely the multi-pole (quadrupole for
`′ = 2) structure that is illustrated in Figure 4. For this solution, panel (a) confirms the theoretical stability
prediction of Lemma 6.5 and the ensuing remark, in that we find four eigenvalues with non-vanishing real
parts in the first quadrant of the spectral plane. We confirm that one of them is real in accordance with
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Figure 5: (Color online) Same as the previous two solutions but now for the third real-valued
solution, namely the soliton necklace. In this case the solution is unstable due to an
eigenvalue quartet. Panels (b) show the solution for ω = 5.505 and ω = 5.865. Panel
(c) shows its spatio-temporal evolution for ω = 5.375, while panel (d) contains relevant
snapshots of (c).

the discussion around equation (5.15), while three of them stem from Hamiltonian-Hopf bifurcations, as is
more clearly shown in panel (b). In fact, zooming into the relevant spectral plane pictures (especially the
right ones of ω = 5.8) identifies one of the pairs as stemming from such a bifurcation occurring at λ = ±i4,
while the other two pairs emerge from λ = ±i2 (see Lemma 6.5). Panels (c) and (d), as before, showcase the
dynamical evolution of the pertinent instability for the case of ω = 5.8 through a spatio-temporal contour
evolution as well as through snapshots at different times. Both of these indicate that around t ≈ 150,
the configuration distorts itself towards a structure with 3 peaks (in fact, somewhat resembling our third
real-valued, soliton necklace solution), but then returns to its original profile, only to be further, and more
dramatically, distorted at later times, especially above t = 300.

Next, we consider the last real-valued solution, i.e., the soliton necklace of equation (3.10). In this case the
results are shown in Figure 5. Panel (a) indicates that in this case there is no real eigenvalue, in accordance
with equation (5.2). However, there is a complex eigenvalue quartet in both panels (a) and (b), which can
be observed (upon appropriate zoom into panel (b)) to bifurcate from λ = ±i4 in this case. Panels (c)
and (d) show the evolution of the corresponding Hamiltonian-Hopf bifurcation for the configuration when
ω = 5.375. It is worthwhile to pinpoint here a key difference between the present case and the dynamics
observed in the corresponding panels of the previous two figures. In particular, careful observation of panel
(c) near t = 200 unravels an oscillatory evolution of both the central peak, as well as the two side peaks
of the solution. This is something not obvious in the other real-valued configurations and stems from the
fact that for the latter, the instability was principally triggered by a real eigenvalue pair (leading to pure
exponential growth), while here the relevant mechanism involves a complex eigenvalue and hence favors an
oscillatory instability development. The evolution at later times is rather complex and appears to involve
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Figure 6: (Color online) This figure is similar to the earlier ones but now for the vortex-like
complex radial solution. Notice that now in panel (b) the configuration is only shown
for ω = 5, but the real and imaginary parts are shown in the top panel and the modulus
and phase in the middle one. The bottom panel contains the relevant spectral plane,
featuring again (see also panel (a)) a complex eigenvalue quartet. The evolution of panel
(c) leads initially to a break-up into two single-charged vortices and eventually collapse
as is shown in the snapshots of panel (d).

alternations between more localized single-pulse configurations and less localized ones involving pulse pairs
(or more complicated structures), as is shown in the snapshots of panel (d).

We now move to the complex-valued solutions, starting with the ring-like vortex solution of topological
charge two in Figure 6. In this case the solution becomes unstable due to a complex eigenvalue quartet,
as shown in panels (a) and (b). This is in agreement with the theoretical findings of Lemma 6.7 (see
also the relevant remark). In fact, zooming into the panel (b) of the figure illustrating both the spectral
plane, as well as the solution (real and imaginary parts, amplitude, as well as phase), indicates that the
pertinent bifurcation indeed emerges for our case of `′ = 2 from λ = ±i4. The instability of the solution
is manifested through panels (c) and (d) and illustrates the splitting of the doubly quantized vortex into
two singly quantized ones due to the instability; see also the discussion of [46] and cf. with the repulsive
case of [41], associated with the experimental results of [34, 47]. In particular, we observe also split-merge
cycles similarly to [46] as partially illustrated by the snapshots of panel (d), e.g., see the almost recombined
vortices of t = 40 in comparison with the more separated ones at t = 20, 30 or t = 46. Eventually, the
condensates collapses (shortly after the last subplot of panel (d) at t = 48).

Finally, we have also identified the sole generically stable branch of solutions (among the ones considered
herein), by identifying the vortex necklace branch in the `′ = 2 case, shown in Figure 7. In this case, there
is no eigenvalue with non-zero real part, and panel (a) shows the dependence of the squared L2 norm (the
number of particles) N on the chemical potential ω. The real and imaginary part (top), as well as the
amplitude and phase (bottom) of a typical relevant solution, for ω = 5 are shown in panel (b).
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Figure 7: (Color online) This figure shows the results for the stable vortex-necklace branch complex
solution. Panel (a) shows the squared L2 norm of the branch (the number of particles
N) as a function of the chemical potential; panel (b) shows the profile of the real (top
left), imaginary (top right), modulus (bottom left) and phase (bottom right) of this
solution for ω = 5.

8. Two-ring solutions

Now that one-ring solutions have been thoroughly discussed, let us give a brief treatment of 2-ring
solutions. First, in order to apply the theory presented in the previous sections, one must first choose Ω so
that the eigenvalue λ2,0 = 10 is semi-simple with multiplicity three. Setting λ0,`′ = 10 yields that

Ω`′ = −2 + 8/`′. (8.1)

Now, for Ω = Ω`′ one has that

λm,` = 2 + 4m+ 8
`

`′
.

Setting λm,` = 10 yields the relationship

1− 1

2
m =

`

`′
. (8.2)

Equation (8.2) clearly holds for (m, `) = (0, `′) and (m, `) = (2, 0). If m = 1, then equation (8.2) can be
satisfied only if `′ = 2j for some j ∈ N. Consequently, it will henceforth be assumed that `′ = 2j + 1 for
some j ∈ N.

In order to continue, one must first compute the quantities as in equation (3.5). One sees that

g0 :=

∫ ∞

0

rq42,0(r) dr =
11

128

1

π2

g`′ :=

∫ ∞

0

rq40,`′(r) dr =
(2`′)!

4`′(`′!)2
1

π2

g0`′ :=

∫ ∞

0

rq22,0(r)q
2
0,`′(r) dr =

`′
4 − 6`′

3
+ 19`′

2 − 14`′ + 24

2`′+7

1

π2
,

(8.3)

and from these expressions one can immediately compute the quantities given in equation (3.6). Upon
following the arguments presented in Section 3 one can eventually determine for which odd values of `′ a
solution would exist. Examples of such solutions are given in Figure 8 and Figure 9.

In a similar manner, upon following the reasoning of Section 5 one can eventually generate the table
regarding the location of the small eigenvalues given in equation (8.4). Since kc = 0 in all cases, this
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Figure 8: (Color online) Some of the solutions to equation (3.1) when `′ = 5, and for Ω = Ω`′ (=
−2/5) given in equation (8.1). The first three panels are real-valued solutions, whereas
the last panel is a complex-valued solution. The top left panel is a ring, the top right
panel is a multi-pole, the bottom left panel is a soliton necklace, and the bottom right
panel is a vortex ring.

quantity has not been included therein. Furthermore, if a field is blank, then this implies that a solution
does not exist for that value of `′. If a = +1, then in equation (8.4) one should interchange the entries
associated with k+

i and k−i .

a = −1 (repulsive)

Solution `′ = 3 `′ = 5, 7 `′ = 9 `′ ≥ 11
kr k−i k+

i kr k−i k+
i kr k−i k+

i kr k−i k+
i

ring 2 0 0 2 0 0 0 2 0 0 2 0
multi-pole 0 1 0 1 0 0 1 0 0 0 1 0

soliton necklace 0 1 0 1 0 0
vortex 0 1 1 0 0 2 0 0 2 0 1 1

vortex necklace 0 1 0 0 1 0 0 1 0 0 1 0

(8.4)

The Hamiltonian-Hopf bifurcation calculations will proceed in a manner similar to that presented in
Section 6. The primary difference is that equation (6.11) now becomes

(a, b) = (0, 0) : (c, d) ∈ {(0, 2`′), (2, `′), (4, 0)}
(a, b) = (0, `) : (c, d) ∈ {(0, 2`′ − `), (2, `′ − `)}, ` = 1, . . . , `′ − 1

(a, b) = (1, 0) : (c, d) ∈ {(1, `′), (3, 0)}

(a, b) = (1, `) : (c, d) ∈ {(1, `′ − `)}, ` = 1, . . . ,
1

2
(`′ − 1).

(8.5)
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Figure 9: (Color online) The vortex necklace solution to equation (3.1) when `′ = 5 (see the
bottom right panel in Figure 8). The left panel is the modulus of the solution, and the
right panel is the phase.

Those eigenvalues associated with a = 0 are semisimple with multiplicity six and associated with the eigen-
values λ = ±i8`/`′ (` = 1, . . . , `′), while those with a = 1 are semisimple with multiplicity four and associated
with the eigenvalues λ = ±i4(2` + 1)/`′ (` = 0, . . . , [`′ − 1]/2). Thus, at this level the primary difference
between the one-ring and two-ring structures is the possibility of having additional mode interactions which
may lead to more Hamiltonian-Hopf bifurcations.

When considering the vortex solution, it turns out to be the case that the calculations presented in
Section 6.3.1 yield a complete picture for λ = ±i4(1 + `/`′), ` = 1, . . . , `′. For λ = ±i4`/`′, ` = 1, . . . , `′,
however, more complicated mode interactions than those discussed in Section 6.3.1 are possible, i.e., for
these values of λ it is possible to have interactions between the a = 0 modes and that a = 1 modes. The
final result is that the vortex will be at least as unstable in the two-ring case as in the one-ring case. The
calculations and results associated with all of the other solutions will be left for the interested reader.

9. Conclusions and Future Challenges

In the present paper we have offered a systematic analysis of the wealth of solutions of the nonlinear
problem of rotating Bose-Einstein condensates in the presence of parabolic trapping potentials. We have
illustrated the usefulness of examining the underlying linear limit of the problem and the relevance of using
the Lyapunov-Schmidt method to establish the existence of the solutions. The approach of examining a
perturbative reduction of the original problem has also been successfully applied to the linearization around
the obtained waveforms. This has yielded information both about the small eigenvalues near the origin of
the spectral plane, as well as about O(1) eigenvalues potentially subject to Hamiltonian-Hopf bifurcations.

We have exemplified the approach in identifying five different classes of solutions, three of which are real-
valued and two of which are complex valued. Among them, one can identify previously analyzed theoretically
[27, 41, 45, 46] and even produced experimentally [34, 47] vortex solutions of topological charge higher
than one. We have also examined previously reported ring soliton solutions [49] (see also [11] for a recent
discussion), recently identified multi-pole solutions [36], as well as necklace structures consisting of solitons
or vortices. For all of these coherent structures the stability has been identified, revealing that only vortex
necklaces are typically stable among these complex structures. The analytical results have been corroborated
by numerical simulations confirming the sources of instability of the various solutions and also showcasing
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the manifestation of these instabilities in direct numerical experiments.
It should be noted here that while some of the simpler pertinent structures have already been experi-

mentally produced in BECs, recent optical advances in producing amplitude and phase masks have made
it possible to imprint on liquid crystal displays structures such as the ones discussed here. In particular,
the recent work of [8] renders possible, through the use of helical Ince-Gaussian beams, the generation of
single- and multi-ring structures, including soliton and vortex necklaces (see [8, Figures 1-3] for details).
Application of such input conditions to BECs could provide a convenient method for the generation of some
of the more complex structures analyzed herein. Finally, from the theoretical side it is natural to inquire how
the waveforms obtained herein generalize in three-dimensional settings (e.g., see [14]). Another straightfor-
ward question concerns the outcome of appending additional rings of structures, such as vortex rings, in the
solution in an attempt to semi-analytically construct vortex lattice solutions. Such directions are currently
being investigated and will be reported in future publications.

References
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[14] L.-C. Crasovan, V. Pérez-Garcia, I. Danaila, D. Mihalache, and L. Torner. Three-dimensional parallel vortex
rings in Bose-Einstein condensates. Phys. Rev. A, 70(3):033605, 2004.

[15] F. Dalfovo, S. Giorgini, L. Pitaevskii, and S. Stringari. Theory of Bose-Einstein condensation in trapped gases.
Rev. Mod. Phys., 71:463–512, 1999.

[16] P. Engels, I. Coddington, P.C. Haljan, and E.A. Cornell. Nonequilibrium effects of anisotropic compression
applied to vortex lattices in bose-einstein condensates. Phys. Rev. Lett., 89(10):100403, 2002.

[17] N. Ginsberg, J. Brand, and L. Hau. Observation of hybrid soliton vortex-ring structures in Bose-Einstein
condensates. Phys. Rev. Lett., 94(4):040403, 2005.

[18] M. Grillakis. Linearized instability for nonlinear Schrödinger and Klein-Gordon equations. Comm. Pure Appl.

Math., 46:747–774, 1988.

[19] Y.J. He, H.H. Fan, J.W. Dong, and H.Z. Wang. Self-trapped spatiotemporal necklace-ring solitons in the
ginzburg-landau equation. Phys. Rev. E, 74:016611, 2006.

[20] J. k. Kim and A. Fetter. Dynamics of a single ring of vortices in two-dimensional trapped Bose-Einstein
condensates. Phys. Rev. A, 70(4):043624, 2004.

[21] T. Kapitula and P. Kevrekidis. Bose-Einstein condensates in the presence of a magnetic trap and optical lattice.
Chaos, 15(3):037114, 2005.

[22] T. Kapitula, P. Kevrekidis, and Z. Chen. Three is a crowd: Solitary waves in photorefractive media with three
potential wells. to appear in SIAM J. Appl. Dyn. Sys.

[23] T. Kapitula, P. Kevrekidis, and B. Sandstede. Counting eigenvalues via the Krein signature in infinite-
dimensional Hamiltonian systems. Physica D, 195(3&4):263–282, 2004.

[24] T. Kapitula, P. Kevrekidis, and B. Sandstede. Addendum: Counting eigenvalues via the Krein signature in
infinite-dimensional Hamiltonian systems. Physica D, 201(1&2):199–201, 2005.

[25] K. Kasamatsu, M. Tsubota, and M. Ueda. Quadrupole and scissors modes and nonlinear mode coupling in
trapped two-component Bose-Einstein condensates. Phys. Rev. A, 69(4):043621, 2004.

[26] T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag, Berlin, 1980.

[27] Y. Kawaguchi and T. Ohmi. Splitting instability of a multiply charged vortex in a Bose-Einstein condensate.
Phys. Rev. A, 70(4):043610, 2004.

[28] P. Kevrekidis and D. Frantzeskakis. Pattern forming dynamical instabilities of Bose-Einstein condensates.
Modern Physics Letters B, 18:173–202, 2004.

[29] P. Kevrekidis, H. Nistazakis, D. Frantzeskakis, B. Malomed, and R. Carretero-González. Families of matter-
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