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We consider the dynamics of a driven Bose-Einstein condensate with positive scattering length.
Employing an accustomed variational treatment we show that when the scattering length is time-
modulated as a (1 + ε sin (ω (t) t)), where ω (t) increases linearly in time, i.e., ω (t) = γt, the response
frequency of the condensate locks to the eigenfrequency for small values of ε. A simple analytical
model is presented which explains this phenomenon by mapping it to an auto-resonance, i.e., close to
resonance the reduced equations describing the collective behavior of the condensate are equivalent
to those of a particle trapped in a finite-depth energy-minimum of an effective potential.

PACS numbers: 05.45.Xt, 03.75.Nt

I. INTRODUCTION

Ever since the experimental attainment of Bose-
Einstein condensates (BECs) back in 1995 [1] there has
been a surge of research on this topic. The reason for this
scientific effervescence is to be found in the almost un-
precedented experimental maneuverability of these ultra-
cold gases which engrossed scientists from many distinct
fields such as nonlinear dynamics, quantum and non-
linear optics, nuclear and condensed matter physics, to
name just a few. Equally appealing are the theoretical
insights into the dynamics of Bose-condensed gases ob-
tained through the so-called Gross-Pitaevskii equation
(GPE) [2], a cubic Schrödinger equation where the non-
linearity accounts at mean-field level for the inter-atomic
interactions close to absolute zero temperature.

Among the most notable results on the nonlinear side
of BECs are the theoretical prediction and the subse-
quent experimental realization of distinct soliton classes
and detailed accounts of their underlying dynamics, see
[3–7] and references therein for some of the recent de-
velopments, and the nonlinear infringement of Bloch’s
periodicity condition. The latter implies that a con-
densate loaded into the so-called optical lattice, i.e., a
periodic potential generated by two counter-propagating
laser beams, can have a periodic spatial profile with a
period different than that of the underlying lattice [8].
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Other works include investigations into the paramet-
ric resonances exhibited by a Bose-condensed gas whose
scattering length is time-modulated on a constant fre-
quency close to the eigenfrequency of the system (see
[9–11], and references therein).

It is the purpose of this paper to investigate the non-
linear dynamics of a repulsive Bose-condensed gas whose
scattering length is time-modulated on a linearly in-
creasing frequency, i.e., a scattering length of the type
a (1 + ε sin (ω (t) t)), where ω (t) = γt. While cubic
Schrödinger equations have been scrutinized in nonlin-
ear optics over the past few decades, it is, however, only
in BECs that one can take advantage of the so-called Fes-
hbach resonances [12] to control the frequency on which
the cubic term (i.e., the scattering length) is modulated.

Employing a habitual variational treatment [14] we
reduce the dynamics of a three-dimensional fully-
symmetric condensate to only one ordinary differential
equation (ODE). Our main finding is that, for small val-
ues of ε, the condensate mode-locks to the eigenfrequency,
a peculiarity that disappears for high values of ε. As
shown in Section IV, the condensate is collectively de-
scribed by a single reduced ODE on the condensates’
width that emulates the scenario of a particle trapped in
the finite-depth energy-minimum of an effective potential
well.

The paper is structured as follows: Section II is dedi-
cated to the GPE and to the variational method that sim-
plifies the condensate dynamics to an ODE. Section III
gives numerical results on frequency locking, while Sec-
tion IV puts forward a simple analytical model that ex-
plains the locking through the so-called auto-resonance.
Section V gathers our conclusions.
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II. THE GROSS-PITAEVSKII EQUATION

The dynamics of Bose-condensed gases close to ab-
solute zero temperature is accurately described by the
Gross-Pitaevskii equation. In three spatial dimensions it
reads

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + V (r)ψ + U |ψ|2 ψ, (1)

where V (r) is the trapping potential, here taken as

V (r) =
m

2
λ2r2, (2)

where f = λ/2π is the trap frequency (in Hz) that fixes
the strength of the magnetic trap. For simplicity we re-
strict our analysis to symmetric potentials. The coeffi-
cient of the cubic term is U = 4π~2a/m, where a is the
two-body scattering length and m the atomic mass.

Due to the intricate nature of the GPE we shall fur-
ther simplify the problem by restricting ψ to an amenable
family of trial functions and study the time evolution of
the parameters that define it. This reduces the infinite-
dimensional problem of solving Eq. (1) to solving an
ODE. A natural choice for the trial function (see [13, 14]
for the BEC results, and [15, 16] for similar calculations
carried out in nonlinear optics), which actually corre-
sponds to the exact solution in the linear limit (U = 0),
is the three-dimensional Gaussian-like profile:

ψ(r, t) = A(t) exp

[

− r2

2w2
+ ir2β

]

, (3)

where A is the wave-function amplitude at the center of
the cloud, w is the width of the condensate while β, the
so-called chirp, is the canonical conjugate of w.

After the classical variational recipe (see [14] for de-
tails) the ansatz gives rise to the following equation in
the width of the condensate

d2

dt2
w + λ2w =

~2

m2

1

w3
+

U

2
√
2m

N

π3/2w4
. (4)

Notice that this equation holds for both time-dependent
and time-independent scattering length, i.e., the equa-
tion is left unchanged when U → U (t). It is worth men-
tioning that the equation for the width does not depend
on the chirp β and that, in turn, the equation for β is
driven by the width.

Introducing P =
√

2/πNa/a0, τ = λt and the rescaled

width v = w/a0, where a0 =
√

~/mλ, Eq. (4) reads

d2

dτ2
v + v =

1

v3
+
P

v4
. (5)

Around the equilibrium point ṽ, defined implicitly by

ṽ =
1

ṽ3
+
P

ṽ4
, (6)

the dynamics of the width of the condensate v = ṽ+ δ is
given by

d2

dτ2
δ + δ

(

1 +
3

ṽ4
+

4P

ṽ5

)

= 0, (7)

indicating a period of T = 2π/ωP where the natural
eigenfrequency of the system is

ωP =

(

1 +
3

ṽ4
+

4P

ṽ5

)1/2

. (8)

III. MODE LOCKING

Sweeping linearly the frequency of our driving field,
which in turn gives a scattering length that goes like
a
(

1 + ε sin
(

γτ2
))

, we are faced with the nonlinear ODE

d2

dτ2
v + v =

1

v3
+
P

v4

(

1 + ε sin
(

γτ2
))

. (9)

Equation (9) is solved through an embedded Runge-
Kutta method that uses a 4-5 Dorman-Prince pair [17].

Our main finding is that for small values of ε the
width of the condensate shows periodic oscillations of
constant amplitude (physically a breathing mode) whose
frequency is equal to the eigenfrequency of the system ωP

(cf. Eq. (8)). We call this process mode-locking [18]. As
demonstrated in the next section, mode-locking amounts
to the condensate being placed in an energy minimum
of the system, a situation which is lost for strong driving
fields due to the finite depth of the energy-minimum well.
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Figure 1: The dynamics of the width of the condensate for
P = 100, ε = 0.01 and γ = 0.05. The condensate starts to
respond periodically at τc = ωP /2γ ≈ 22; the time needed
to stabilize the amplitude is, however, slightly longer. This
example corresponds to 24, 500 23Na loaded in a magnetic
trap with frequency 159Hz and τ is measured in milliseconds.

Locking phenomena go a long way back: as early as
the 17th century the Dutch physicist Christian Huygens
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noted that two clocks hanging back-to-back on the wall
tend to synchronize their motion. This type of locking is
generally present in dissipative systems with competing
frequencies. The two frequencies may arise dynamically
within the system (as for the two clocks) or through the
coupling of an oscillating motion to an external periodic
force. In the case of a magnetically trapped BEC (which
is usually regarded/modelled as a non-dissipative system)
we find that the frequency sweep entailed by the sin(γt2)
term gives rise to a breathing mode whose frequency is
equal to the natural frequency of the system.
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Figure 2: The dynamics of the width of the condensate for
P = 100, ε = 1.0 and γ = 0.05. Notice the chaotic response
of the condensate and the bouncing ball behavior shown in
the inset. Same rescaling as in Fig. 1 so that τ is measured
in milliseconds.

We illustrate our results on mode-locking by showing
the dynamics of the width of the condensate for P = 100.
We purposedly chose parameter values that would yield
experimental feasible situations. For example, if one con-
siders a magnetic trap with frequency f ≈ 159Hz (i.e.,
λ = 2πf = 1000) for a dilute BEC [13] of approximately
24,500 23Na, the adimensionalization yields a temporal
rescaling τ = 1, 000 t such that, in all our examples, time
τ is measured in milliseconds. In Fig. 1 we have plotted
the dynamics of the width for ε = 0.01 and γ = 0.05. This
is a typical mode-locking dynamics that includes two dis-
tinct regions (see Fig. 1): i.) a transient regime during
which the response frequency of the condensate locks to
the eigenfrequency of the system, and ii.) the mode-
locked part when the width of the condensate shows peri-
odic oscillations of constant amplitude. The critical time
τc needed to see response on the system’s eigenfrequency
may be obtained by writing t = τc +∆t (|∆t| ¿ 1) and
expanding the argument of the drive γt2 yields an effec-
tive frequency ωP = 2γτc, and thus τc = ωP /2γ. Namely,
the transient fades out when the effective frequency of the
driving field matches the eigenfrequency of the system.
Notice, however, that the time needed to stabilize the
amplitude is slightly longer.

In Fig. 2 we have plotted the dynamics of the conden-
sate’s width for a relatively large value of ε = 1.0 and
γ = 0.05. This is the typical dynamics of the condensate
when frequency locking is lost due to the high strength of
the driving field. Notice the “bouncing ball” behavior, a
peculiarity of the dynamics of the system for high ε due
to the 1/v3 singularity [14].

In Fig. 3 we have plotted the dynamics of the con-
densate’s width for an intermediate value of ε = 0.065
and γ = 0.01 to illustrate the dynamics outside the lin-
ear regime [19]. The nonlinear regime shows two dis-
tinct features: i.) while the observed frequency shows
only slight deviations from Eq. (8), the shape of the os-
cillations shows contributions from the higher harmon-
ics, i.e., strong deviation from the shape of a sine-wave,
and ii.) in addition to the mode-locking seen approx-
imately at τc ≈ ωP /2γ there is a series of additional
super-harmonic nonlinear resonances approximately at
τc = nωP /2γ, where n is an integer larger than one (see
[20]). This latter feature falls outside the simple model
put forward in the next section which only accounts for
the linear process, i.e., the mode-locking at τ = ωP /2γ.

Finally, in Fig. 4 we have plotted the dynamics of the
condensate’s width for ε = 0.065 and small value of γ =
0.001. For this small value of γ the resonances are seen
to appear exactly at the predicted τc = nωP /2γ ≈ 1115n
(even for large values of n).
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Figure 3: The dynamics of the width of the condensate for
P = 100, ε = 0.065 and γ = 0.01. The condensate starts
to respond periodically approximately at τc = ωP /2γ ≈ 111
but there are additional super-harmonic nonlinear resonances
at approximately τc = nωP /2γ, where n = 2, 3, 4.... Same
rescaling as in Fig. 1 so that τ is measured in milliseconds.

While the reported numerics rely on variational com-
putations we have found the same qualitative behavior in
the GPE [21]. Finally, it is important to notice that the
frequency locking reported in this paper takes places both
for the ground state of the condensate and its excited
states. Solitons for instance are excited into breather
states by the driving field as will be shown elsewhere
[21].
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Figure 4: The dynamics of the width of the condensate for
P = 100, ε = 0.065 and γ = 0.001. For such a small γ
value, the condensate responds periodically precisely at τc =
nωP /2γ ≈ 1115n. Same rescaling as in Fig. 1 so that τ is
measured in milliseconds.

IV. ANALYTIC MODEL

Following the recipe of auto-resonance phenomena put
forward by Friedland and collaborators (see [22], and ref-
erences therein) we recast v as

v = ṽ + δ (τ) , (10)

where ṽ is the equilibrium width (cf. (6)) and δ (τ) mea-
sures the deviation from equilibrium. Refraining to the
linear regime, i.e., δ (τ)¿ 1, Eq. (9) reduces to

d2δ

dτ2
+ ω2

P δ =
εP

ṽ4
sin

(

γτ2
)

,

where we have discarded a term linear in εδ for being
second order.

We study the dynamics close to resonance and show
that the condensate collectively behaves like a particle
loaded in a tilted cosine-like effective potential. We show
that mode-locking is equivalent to the effective dynam-
ics of the particle trapped in an energy-minimum of the
potential.

Taking δ = a (τ) sinϕ (τ) and discarding the second
derivative of a with respect to τ , the so-called adiabatic
assumption, one has

i2ȧϕ̇+ iaϕ̈− aϕ̇2 + ω2

Pa =
εP

ṽ4
exp

(

iγτ2 − iϕ
)

,

where ȧ = da/dτ . Equating real and imaginary parts we
obtain

aω2

P − aϕ̇2 =
εP

ṽ4
cos(γτ2 − ϕ) (11)

for the real part, while the imaginary one gives

2ȧϕ̇+ aϕ̈ =
εP

ṽ4
sin(γτ2 − ϕ). (12)

Refraining now to the case close to the resonance, i.e.,
we limit the analysis to a vicinity of τc such that

ϕ̇ (τc) ' ωP , and ϕ̈ (τc) ' 0,

the previous equations yield

ωP − ϕ̇ =
εP

2ωPaṽ4
cos(γτ2 − ϕ) (13)

and

d

dτ

(

a2
)

=
aεP

ωP ṽ4
sin(γτ2 − ϕ). (14)

Defining the action I = a2 and the phase mismatch Φ =
γτ2−ϕ variables we can recast the previous equations as

Φ̇ = 2γτ − ωP +
εP

2ωP

√
Iṽ4

cosΦ (15)

and

İ =

√
IεP

ωP ṽ4
sinΦ. (16)

In order for the condensate to stay mode-locked Φ must
be close to 0 or π and the right hand side of Eq. (15)
should be equal to zero, i.e.,

Φ̇(τc) = 2γτc − ωP +
εP

2ωP

√
I0ṽ4

cos Φ̃ = 0,

where I0 is the equilibrium action while Φ̃ is the equi-
librium phase-mismatch. Notice that Φ̇ = 0 amounts
to τc = ωP /2γ. The solution of interest is Φ̃ = π, for

Φ̃ = 0 corresponds to an energy maximum (see below).

Setting I = I0 + ∆ and Φ = Φ̃ + φ, where ∆ and φ are
small, the dynamics around the equilibrium is given by
the following Hamiltonian system







φ̇ = ∆S

∆̇ = −A sinφ+
2γ

S
,

where S = εP/4ωP ṽ
4I

3/2

0
and A =

√
I0εP/ωP ṽ

4. The
associated Hamilton’s function is

H (∆, φ) =
S∆2

2
+ V1 (φ) ,

where the potential is given by

V1 (φ) = −A cosφ− 2γφ

S
.
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If one is to linearize around Φ̃ = 0 the ensuing potential
would be

V2 (φ) = A cosφ+
2γφ

S
,

which has a maximum for φ = 0 and not a minimum as
V1 has.

The frequency locking reported in the previous sec-
tion is now transparent: around Φ = π there is an en-
ergy minimum corresponding to the system oscillating
on its eigenfrequency, while around Φ = 0 there is an
energy maximum of no physical interest. In the light of
our linear model we infer that due to the finite depth of
the energy-minimum well at Φ = π, there is a critical
strength of the driving field above which the frequency
locking is lost. This process is illustrated in Fig. 2.

V. CONCLUSIONS

In this paper we have shown by means of a varia-
tional treatment that modulating the scattering length
of a trapped BEC with repulsive interactions as
a
(

1 + ε sin
(

γt2
))

, leads to the locking of its response fre-
quency to the eigenfrequency for small values of ε. Phys-
ically, the mode-locking amounts to a breathing mode
whose frequency is equal to the natural frequency of the
system. To the best of our knowledge this is the first

paper to analyze mode-locking in a BEC context. In or-
der to exhibit the physical mechanism behind it we have
restricted ourselves to a variational calculation that cap-
tures the main dynamics. To this end we have used a
simple analytical model and showed that the equations
describing the collective behavior of the condensate are
equivalent to those of a particle trapped in a finite-depth
energy-minimum of a potential.

Future research should be focused on asymmetric
three-dimensional condensates and to analyzing the in-
terplay between the inherent mode-locking processes that
take place. Also on the side of future research lies the dy-
namics of the condensate for negative scattering lengths
and the extension of the current observations to multi-
component condensates.
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