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0.  Introduction 

 
In this report we review some of the most influential studies on PDE-based 

approaches to image processing.  It will illustrate the state of the art in the field and set 

the appropriate background for the study of dynamic and parameter-free total variation 

based image processing.  Our work builds on the efforts of many scientists who 

contributed to the development of this fascinating field of image processing. 

Mathematically any image can be represented as a function 0 : Nu Ω→ , where 

Ω  is a bounded subset of 2  (the domain).  The integer N  represents the number of 

color channels in the image [Xu06].  I.e. for 1N =  we have a grayscale image while for 

3N =  we have a color image.  In practice, images that we observe are seldom the true or 

clean images.  They get perturbed by both noise and blur, thus the observed image 0u  can 

be decomposed as 0u u η= +  or 0u K u η= ∗ + , where u  denotes the true image, K  

represents a convolution kernel (blur), and η  represents some additive noise (usually 

modeled as Gaussian white noise). 

The main objective of this research is to devise efficient ways for decomposing 

the observed image as  0u u η= + , whereby we can obtain a good approximation to the 

true image u .  We propose an iterative method that will allow image reconstruction with 

no human intervention.  This approach targets the incorporation of the method into 

imaging machines, e.g. ultrasound, MRI, electron microscopy, etc.    
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1.  Physical Background 

 
The diffusion process (mass transfer) is the movement of matter from high concentration 

to low concentration regions.  The equilibrium property is expressed by Fick’s first law [Co05]: 

 q D u= − ⋅∇ . (1.1) 
 
The concentration gradient u∇  generates a flux q  which attempts to compensate for the 

gradient.  The relation between the gradient u∇  and the flux q  is described by a positive 

definite symmetric matrix D , the diffusion tensor.  For the isotropic case, one can replace the 

diffusion tensor with a scalar-valued − the diffusivity d − that describes the diffusion rate.  For 

the most general anisotropic case, one will have to use the full diffusion tensor D . 

The phenomenon described above represents the transport of mass without creating or 

destroying any mass.  Therefore, one can state the following continuity (conservation) equation 

 tu q∂ = −∇⋅ . (1.2) 
 
Substituting (1.1) in (1.2) yields the diffusion equation 

 ( )tu D u∂ = ∇ ⋅ ⋅∇ . (1.3) 
 

In the context of (single channel) image processing the concentration represents the 

values of the amplitude of the image’s gray-level intensities or tones of gray.  The diffusion 

tensor D  (or diffusivity d ) is commonly a function of the concentration u  and/or its 

derivatives, which leads to a nonlinear (isotropic or anisotropic) diffusion process [We97].  
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2.  Linear Diffusion Process 

 
Given a grayscale image 0u  represented by a real-valued mapping ( )1 2

0u L∈ , a classic 

way of smoothing the image 0u  is by applying a convolution of the form [GW02] 

 ( ) ( ) ( )20 0G u x G x u dσ σ ξ ξ ξ∇ ∗ = ∇ −∫ , (2.1) 

where ( )2G Cσ
∞∈  is a smooth kernel, ( )2

1G x dxσ =∫ , 
2

G dx Cσ σ∇ ≤∫ , ( ) xG xσ δ→  for 

0σ → , and where xδ  is the Dirac delta at point x .  Usually Gσ  will be a two-dimensional 

Gaussian of width (standard deviation) 0σ > : 

 
2

2 2

1 exp
2 2

x
Gσ πσ σ

⎛ ⎞−
= ⎜ ⎟

⎜ ⎟
⎝ ⎠

. (2.2) 

This approach is the simplest and most well known method for treating an image, and it 

has proven to have excellent smoothing characteristics [WS00].  We can observe in Figure 2.1 

that the Gaussian smoothing process acts as a low-pass filter that suppresses the high frequencies 

of the image as σ  increases. 

  
 

(a) Grayscale true image and its contours. 
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(b) Convolved image with Gaussian of width 0.5σ =  and its contours. 
 

  
 

(c) Convolved image with Gaussian of width 1.0σ =  and its contours 
 

  
 

(d) Convolved image with Gaussian of width 1.5σ =  and its contours 
 

Figure 2.1:  Gaussian smoothing process.  (a) Grayscale true image and its contours.  (b) Convolved image with 
Gaussian of width 0.5σ = .   (c) Convolved image with Gaussian of width 1.0σ = .  (d) Convolved image with 

Gaussian of width 1.5σ = .  Original image courtesy of Dan Massey 
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It is interesting to note that this convolution process is intimately related to solving a 

parabolic partial differential equation [Wi83] [Ko84] [Hu86].  It can be found in partial 

differential equations textbooks [BJS64] [He64] that the following linear heat equation 

 2 0tu u∂ −∇ = , (2.3) 

for an initial condition ( ) ( )00,u x u x=  where ( )2
0u C∈ , has a unique solution 

 ( )
( )

( )( )
0

02

0
,

0,
t

u x t
u t x

G u x t

=⎧⎪= ⎨
∗ >⎪⎩

 (2.4) 

provided that the function satisfies 

 ( ) ( )2, exp 0,  0u t x M a x M a≤ > > , (2.5) 

that it depends continuously on the initial condition 0u  with respect to ( )2L∞
⋅ , and that it meets 

the maximum-minimum principle [We96a] 

 ( ) [ )
2 2

2
0 0inf , sup on 0,u u t x u≤ ≤ × ∞ . (2.6) 

This similarity allows us to solve the diffusion equation (2.3) and obtain similar results to the 

Gaussian filtering, as long as we use a constant diffusion coefficient 1d =  and stop the diffusion 

process when we reach the scale state 21 2t σ= .  In this context, the first attempts to use PDEs 

for image processing were conducted by Witkin [Wi83] and Koenderink [Ko84]. 

The simplicity and effectiveness of the Gaussian smoothing makes it an attractive tool for 

image noise removal.  However, it also presents at least a couple of serious drawbacks:  (i) the 

first main issue relates to the fact that Gaussian smoothing does not only smooth the noise but it 

also smoothes everything else along with it; and  (ii) the second relates to the scale-space 

property, where Gaussian smoothing tends to dislocate edges when one moves from a finer to a 

coarser scale [Wi83] [Wi84].  Most of the shortcomings of linear diffusion processes can be 

avoided through inhomogeneous (or anisotropic) diffusion and nonlinear diffusion models.  The 
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latter is the subject of the next section, while one of the earliest results of the former approach is 

due to Fritsch et al [FPC91] [Fr92].  They apply a simple way for including a priori knowledge 

about the image.  It uses an edge detector based on the gradient of the observed image 0u∇ , i.e. 

locations with large 0u∇  have a high likelihood to be an edge, and one can reduce the 

diffusivity for large values of 0u∇ .  Charbonnier et al [CBAB94] propose to use the following 

inhomogeneous (isotropic) diffusion term, where λ  is a free parameter 

 ( )2
0 2 2

0

1 , 0
1

g u
u

λ
λ

∇ = >
+ ∇

. (2.7) 

Note that the diffusion equation will remain linear despite the inhomogeneous (pixel-wise) 

diffusion process.  Note also that the restriction 0λ >  is unnecessary provided that the parameter 

λ  is sufficiently away from zero.  In Figure 2.2 we compare Fritsch’s model to the Gaussian 

smoothing process.  For measuring the noise applied to the images we use the following 

definition of signal-to-noise (SNR) ratio 

( )0 1020 log
u u

SNR u
η η

⎛ ⎞−
= ⎜ ⎟⎜ ⎟−⎝ ⎠

, 

where u  and η  are the averages of the grayscale intensities of the true image u  and the noise η  

respectively. 

 
 

(a) Binary synthetic true image and its elevation. 
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(b) Noisy image with 15.0 dBSNR =  and its elevation. 
 

 
 

(c) Treated image with Fritsch/Charbonnier model and parameter 1.0λ =  and its elevation. 
 

 
 

(d) Convolved image with Gaussian of width 2.0σ =  and its elevation. 
 

Figure 2.2:  Comparison of Gaussian smoothing and Fritsch’s inhomogeneous diffusion.  (a) Binary synthetic true 
image and it elevation.  (b) Noisy image with 15.0 dBSNR =  and its elevation.  (c) Treated image with 

Fritsch/Charbonnier model and parameter 1.0λ =  and its elevation.  (d) Convolved image with Gaussian of width 
2.0σ =  and its elevation. 
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3.  Nonlinear Diffusion Process 

 
The first attempt to derive a model that incorporates current local information from an 

image within a PDE framework was conducted by Perona and Malik [PM90].  They propose a 

nonlinear diffusion model (which they call ‘anisotropic’) in order to avoid the blurring of edges 

and other localization problems presented by linear diffusion models.  The model accomplishes 

this by applying a process that reduces the diffusivity in places having higher likelihood of being 

edges.  This likelihood is measured by a function of the current local gradient 2u∇ .  The model 

can be written as 

 ( )( )2 0tu g u u∂ −∇⋅ ∇ ∇ = . (3.1) 

In this model the diffusivity has to be such that ( )2 0g u∇ →  when 2u∇ →∞  and 

( )2 1g u∇ →  when 2 0u∇ → .  One of the diffusivities Perona and Malik propose is 

 ( )2
2 2

1 0
1

g u
u

λ
λ

∇ = >
+ ∇

. (3.2) 

Needless to say, despite the name ‘anisotropic’, the model uses a scalar-valued diffusivity 

and not a diffusion tensor.  The behavior of the above diffusivity (3.2) is depicted in Figure 3.1 

for various values of the parameter λ .  We can see that ( )20 1g u≤ ∇ ≤  and that it goes to zero 

very rapidly for small values of the parameter λ .  In practice, the higher the gradient (i.e. near 

edges), the lower the diffusion for all values of λ .  Now, the higher the parameter λ , the higher 

the diffusivity for the same gradient.  Notice that, since the parameter λ  is squared in the 

diffusivity term, it can take on negative values, as long as its absolute value is reasonably greater 

than zero. 
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It has been argued in [We96a] that the parameter λ  plays the role of a contrast parameter 

separating forward xu λ≤  (low contrast) from backward xu λ>  (high contrast) diffusion 

areas. I.e. locations with xu λ>  are regarded as edges where the smoothing process is inhibited, 

while locations with xu λ≤  are assumed to belong to the interior of a segment [WS00].  And 

that this fact is the main contributor to the good restoration properties of this model. 
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Figure 3.1:  Diffusivity (3.2) for various values of the parameter λ . 

 

The results obtain by Perona and Malik are visually very impressive, and it has awaken 

the interest of the image processing community towards the incorporation of current local 

information in the image processing models.  The model accomplishes the long sought effect of 

blurring small fluctuations (possible noise) while sharpening edges.  Results using the Perona-

Malik model for various values of the parameter λ  are shown in Figure 3.2.  Despite the 

practical success of the Perona-Malik model, it presents some serious theoretical problems:  (i) 

None of the classical well-posedness frameworks is applicable to the Perona-Malik model, i.e. 
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we can not ensure well-posedness results [WS00] [NS92];  (ii) Uniqueness and stability with 

respect to the initial image should not be expected, i.e. solvability is a difficult problem, in 

general [Ki97] [HN83] [Ho83] [PSM94] [CLMC92];  (iii) The regularizing effect of the 

discretization plays too much of an important role in the solution [FW94] [Be94].  The latter is 

perhaps the key element in the success or failure of the model.  Most practical applications work 

very well provided that the numerical schemes stabilize the process through some implicit 

regularization. 

 
 

(a) Synthetic grayscale true image and its elevation. 
 

 
 

 

(b) Noisy image with 18.0 dBSNR =  and its elevation. 
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(c) Treated image with parameter 0.25λ =  and its elevation. 
  

  
 

(d) Treated image with parameter 1.0λ =  and its elevation. 
 

 
 

 

(e) Treated image with parameter 2.0λ =  and its elevation. 
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(f) Treated image with parameter 4.0λ =  and its elevation. 
 

Figure 3.2:  Perona-Malik model for various values of the parameter λ .  (a) Synthetic grayscale true image and its 
elevation.  (b) Noisy image with 18.0 dBSNR =  and its elevation.  (c) Treated image with  parameter 0.25λ =  and 

its elevation.  (d) Treated image with parameter 1.0λ =  and its elevation.  (e) Treated image with parameter 
2.0λ =  and its elevation.  (f) Treated image with parameter 4.0λ =  and its elevation. 

 

This observation motivated much research towards the introduction of the regularization 

directly into the PDE to avoid the dependence on the numerical schemes [CLMC92] [NS92].  A 

variety of spatial, spatio-temporal, and temporal regularization procedures have been proposed 

over the years [BBD93] [CLMC92] [We01a] [We96b] [WP93] [LC94].  The one that has 

attracted much attention is the mathematically sound formulation due to Catté, Lions, Morel and 

Coll [CLMC92].  They propose to replace the diffusivity ( )2g u∇  of the Perona-Malik model 

by a slight variation ( )2g uσ∇  with u G uσ σ= ∗ , where Gσ  is the smooth kernel described in 

Section 2.  The proposed model is therefore 

 ( )( )2 0tu g u uσ∂ −∇ ⋅ ∇ ∇ = . (3.3) 

We should note that this spatial regularization model belongs to a class of well-posed problems 

(existence and uniqueness were proven in [CLMC92]), and that its successful implementation is 

contingent to the choosing of an appropriate value for the additional regularization parameter σ .  
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Whitaker and Pizer [WP93] and Li and Chen [LC94] suggest making the parameters σ and λ  

time-dependent, and Benhamouda [Be94] performs a systematic study of the influence of these 

parameters for the one-dimensional case. 

As for the diffusivity ( )2g uσ∇ , it has to be chosen as a (rapidly) decreasing function of 

the edge detector 2uσ∇ .  Weickert [We01a] proposes to use 

 ( )
( )

2

2
2

8

1 0

1 exp 0,

u

g u c u
u

σ

σ
σ

σ λ

⎧ ∇ =
⎪⎪ ⎛ ⎞∇ = ⎨ −⎜ ⎟− ∇ >⎪ ⎜ ⎟∇⎪ ⎝ ⎠⎩

 (3.4) 

for which he argues that good results are obtained by choosing 3.315c ≈ .  After some time this 

filter creates segmentation-like results which are piecewise almost constant [We01b].  For 

t →∞ , however, the image becomes completely flat [We98].  Well-posedness results for this 

filter can be found in [CLMC92] [We98] and a scale-space interpretation in terms of an 

extremum principle as well as decreasing variance, decreasing energy, and increasing entropy is 

given in [We98]. 

A different way of introducing regularization to the Perona-Malik model is through 

anisotropic diffusion.  We should recall that despite its name, the Perona-Malik model is actually 

(inhomogeneous) isotropic, since it utilizes a scalar-valued diffusivity g  which is adapted to the 

underlying image structure.  The main advantage of anisotropic diffusion models over their 

isotropic counterparts is that they not only account for the modulus of the edge detector, but also 

its direction.  Isotropic diffusion will inhibit diffusion near edges, making it hard to eliminate 

noise near them.  Anisotropic diffusion, in the other hand, will allow diffusion along edges while 

avoiding diffusing perpendicular to them.  The basic idea behind anisotropic models is to 



 - 14 -

construct the orthogonal system of eigenvectors 1v , 2v  of the diffusion tensor D  in such way 

that they will reveal the presence of edges, i.e. 1v uσ⊥ ∇  (perpendicular) and 2v uσ∇  (parallel).  

And choose appropriate corresponding eigenvalues that will allow smoothing along the edges 

and avoid doing so across them.  I.e. the diffusion tensor D  steers the diffusion process in such a 

way that the eigenvectors prescribe the diffusion directions and the corresponding eigenvalues 

determine the amount of diffusion along these directions.  In this context, Weickert [We96b] 

[We94] proposes to choose the corresponding eigenvalues 1λ  and 2λ  as 

 ( )2
1 2, 1g uσλ λ= ∇ = . (3.5) 

While Cottet and Germain [CG93] propose constructing a model with corresponding eigenvalues 

 
( )

2

1 2 20, 0
1

u

u
σ

σ

γ
λ λ η

σ

∇
= = >

+ ∇
, (3.6) 

which is a model that only diffuses along edges, making it very suitable for processing one-

dimensional features.  One should note that this model involves the choosing of an additional 

free parameter γ . 

A very interesting variation of the Perona-Malik model has been proposed by Nordström 

[No90], who considers diffusion-reaction methods for the reconstruction of degraded images. 

Such an approach leads to Euler-Lagrange equations of the form 

 ( )( ) ( )2
0tu g u u u uσ β∂ −∇⋅ ∇ ∇ = − , (3.7) 

which is identical to the model we have been considering with an additional bias term ( )0u uβ − . 

In principle, the bias term, should spare the user from choosing an stopping time 1 (which is a 

                                                 
1 In practice, the bias term forces the steady-state solution to stay close to the observed image. 
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function of σ ), by the choosing of an additional free parameter β .  This type of diffusion-

reaction models have been study further and improved upon in [GY91] and [Sc94]. 
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4.  Total Variation Based Methods 

 
Rudin, Osher and Fatemi [ROF92] propose image noise removal by minimizing the total 

variation (TV) norm of the estimated solution.  They derive a constrained minimization 

algorithm as a time-dependent nonlinear PDE, where the constraints are determined by the noise 

statistics.  They state that the space of bounded total variation is the proper class for many basic 

image processing tasks.  Thus, the restored image is the solution of 

 min
u

u dx
Ω
∇∫ , (4.1) 

subject to the following constraint involving the observed image 0u  

 ( )2 2
0

1
2

u u dx σ
Ω

− =∫ . (4.2) 

This constraint uses a priori information that the standard deviation of the noise is σ  (it is also 

assumed that the noise is normally distributed with mean zero, i.e. 0u dx u dx=∫ ∫ ).  In most 

practical cases this parameter will not be known and the success of the method will require a 

good estimate of its value.  

To solve this minimization problem, one would usually solve its Euler-Lagrange 

equation, namely 

 ( )0 0, in u u u
u

λ
⎛ ⎞∇

−∇⋅ + − = Ω⎜ ⎟⎜ ⎟∇⎝ ⎠
 (4.3) 

 0, on nu∂ = ∂Ω . (4.4) 

The solution procedure proposed in [ROF92] uses a parabolic equation with time as an evolution 

(scale) parameter, or equivalently, the gradient descent method.  This is 

 ( )0 0, in ,  for 0t
uu u u t
u

λ
⎛ ⎞∇

∂ −∇⋅ + − = Ω >⎜ ⎟⎜ ⎟∇⎝ ⎠
 (4.5) 
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 0, on nu∂ = ∂Ω , (4.6) 

and ( ) 00,u x u=  is the observed image used as initial condition.  For the parameter λ  they 

suggest a dynamic value ( )tλ  estimated by Rosen’s gradient-projection method, which as 

t →∞  converges to (with a little abuse in notation) 

 
( ) ( )002 2

2 2 2 2 2

1
2

yx yx
x y

x y x y

u uu u
u u dx

u u u u
λ

σ Ω

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − + − +
⎢ ⎥⎜ ⎟+ +⎝ ⎠⎣ ⎦

∫ . (4.7) 

Existence and uniqueness results for this constrained nonlinear PDE have been obtained by 

Lions, Osher and Rudin [LOR93].  

This evolution scheme is not trivial to solve since it is highly nonlinear and not well-

posed in strong sense [So03].  It also can run into trouble when 0u∇ →  beyond machine 

accuracy.  When the scheme converges it does it at a linear rate.  Further, direct application of 

classical schemes, e.g. affine invariant form of the damped Newton method as described in 

Deuflhard [De74] generally run into convergence problems due to the ill-conditioning of the 

problem introduced by the non-linearity.  In practice it is common to use a slightly modified 

version of the TV norm [AV94] 

 2u dxε
Ω

∇ +∫ , (4.8) 

where ε  is a small positive number which smoothes out the “corner” at 0u∇ = .  Also, when 

ε  is very small, the Newton method does not work satisfactorily.  Figure 4.1 depicts the 

implementation of Rudin et al’s model with the modification proposed in [AV94] for different 

values of the parameter σ .  
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(a) Grayscale true image and its contours. 
 

  
 

(b) Noisy image with 22.1 dBSNR =  and its contours. 
 

  
 

(c) Treated image with parameter 20σ =  and its contours. 
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(d) Treated image with parameter 40σ =  and its contours. 
 

  
 

(e) Treated image with parameter 60σ =  and its contours. 
 

Figure 4.1:  Rudin-Osher-Fatemi model for various values of the parameter σ .  (a) Grayscale true image and its 
contours.  (b) Noisy image with 22.1 dBSNR =  and its contours.  (c) Treated image with parameter 20σ =  and its 
contours.  (d) Treated image with parameter 40σ =  and its contours.  (e) Treated image with parameter 60σ =  and 

its contorurs. 
 

We observe that the images experience some loss of contrasts, which is one of the important 

limitations of the standard Rudin-Osher-Fatemi model [CE04].  This property was extensively 

studied by Strong and Chan [SC03]. 

To overcome the problems presented by the highly nonlinearity of the model Vogel and 

Oman [VO96] propose a fixed point lagged diffusivity iteration scheme, 
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 ( )
1

1
0 0

k
k

k

u u u
u

λ
+

+
⎛ ⎞∇⎜ ⎟−∇ ⋅ + − =
⎜ ⎟∇⎝ ⎠

. (4.9) 

This is a robust scheme but it is only linearly convergent.  Golub, Chan and Mulet [GCM99] use 

interior-point primal-dual implicit method to solve the Euler-Lagrange equation by introducing a 

new dual variable 

 
2

uw
u ε

∇
=

∇ +
, (4.10) 

and writing the problem as a system of nonlinear partial differential equations as follows 

 
( )0

2

0

0

w u u

w u u

λ

ε

⎧ −∇ ⋅ + − =⎪
⎨

∇ + −∇ =⎪⎩
. (4.11) 

All these approaches, which attempt to solve the original TV-minimization problem, lead to 

solutions which exhibit the “staircase effect”, i.e. a strong preference for piecewise constant 

patches. 

Marquina and Osher [MO00] propose a different version of the transient parabolic 

equation that helps speed up the convergence of the time-marching scheme.  The new evolution 

equation is 

 ( )0 0, in ,  for 0t
uu u u K K u u t
u

λ
⎛ ⎞∇

∂ − ∇ ∇⋅ + ∇ ∗ ∗ − = Ω >⎜ ⎟⎜ ⎟∇⎝ ⎠
, (4.12) 

where ( )K x  is a blurring operator (heat kernel).  The well-posedness of this equation in the 

sense that there is a maximum principle that determines the solution is shown in reference 

[OS88].  This approach fixes the staircase problem of the original scheme and is used for 

removal of both blur and noise. Strong and Chan [SC96] introduce the weighted total variation 

functional for spatially adaptive image restoration 
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 ( )TV x u dxα α
Ω

= ∇∫ . (4.13) 

The function ( )xα  is such that it is large (more diffusion) away from possible edges and smaller 

(less diffusion) near likely edges.  Blomgren, Chan and Mulet [BCM97] propose a new approach 

considering regularizing functionals of the type 

 ( ) ( )R u u dx
Ω

= Φ ∇∫ , (4.14) 

for suitable real functions Φ .  They consider the functional in (4.14) for ( ) pz zΦ = , and for 

[ ]1, 2p∈  

 ( ) pR u u dx
Ω

= ∇∫ . (4.15) 

For an exponent 1p = , one has the TV-norm and when 2p = , one would be using the 2L -norm.  

Song [So03], in his dissertation, pursues this approach further and renames it “Adaptive TV 

Model”.  The model considers 

 1min , 1 2p

u
u dx p

p Ω
∇ < <∫ , (4.16) 

subject to ( )2 21
02 u u dx σ− =∫ .  The Euler-Lagrange equation for this model is 

 ( ) ( )2
0 0p

tu u u u uλ−∂ −∇ ⋅ ∇ ∇ + − = . (4.17) 

The proof of the uniqueness of the solution is given in [Ka92].  

Levine, Chen and Stanich [LCS04] and Chen, Levine and Rao [CLR05] propose a variant 

to that of Blomgren et al, where they define the exponent p  based on the observed data 0u , their 

model is: 

 ( ) ( ) 2
0,

2
J u x u dx u u dxλφ

Ω Ω
= ∇ + −∫ ∫  (4.18) 

where 
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 ( ) ( )
( )

( ) ( )

( )

1 if 
,

if 
p x

p x
p x

p x
p x

r r
x r

r rμ μ

μ
φ

μ−

⎧ <⎪= ⎨
⎪ − ≥⎩

 (4.19) 

 
Here, 0μ >  is fixed, and ( )p x  is based on a smoothed version of the observed image 0u , 

 ( )
( ) 2

0

1
1

p x
G u xσκ

=
+ ∇ ∗

 (4.20) 

 
where κ  and σ  are adjustable parameters, and ( )G xσ  is a Gaussian smoothing kernel similar to 

(2.2).  The authors show existence and uniqueness of minimizers for this functional, and develop 

a numerical method for computing them based on gradient descent. 

Chambolle [Ch04] also touches upon this subject where he combines two functionals 

u∇∫  and 2u∇∫  as 

 ( ) 2 2
0

1
2 2u u

F u u dx u dx u u dx
ω ω

ω
ω ∇ < ∇ ≥ Ω

⎛ ⎞= ∇ + ∇ − + −⎜ ⎟
⎝ ⎠∫ ∫ ∫  (4.21) 

 
where ω  is an adjustable parameter to be chosen.  The Euler-Lagrange equation for this 

functional resembles that of the models discussed in this section.  Schults, Bollt, Chartrand, 

Esedoglu and Vixie [SBCEV05] has recently revisited the subject and they suggest to minimize 

the following functional, 

 ( ) ( )
0min , 1 or 2

2
p u q

u
J u u dx u u dx qλ∇

Ω Ω
= ∇ + − =∫ ∫  (4.22) 

For two cases: case 1, ( ) ( )( )( )0p x P G u xσ= ∇ ∗ ; and case 2, ( ) ( )( )( )p x P G u xσ= ∇ ∗ .  

They prove existence in both cases, and uniqueness in the case of 2q = . 

 More recently, Osher, Burger, Goldfarb, Xu and Yin [OBGXY05], introduced an 

innovative iterative variant to the classic Rudin-Osher-Fatemi model aiming at improving its 

restoration capabilities and generalizations.  The new model, instead of stopping after recovering 
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the image u , it is used to compute new iterates ku  using the Bregman distance [Br67].  They 

define the Bregman distance between u  and v  as ( ),D u v  associated with the functional J , and 

design the following algorithm 

 
( )

( ){ }2
1 0 2

arg min ,k k
u BV

u D u u u uλ−
∈ Ω

= + − . (4.23) 

They obtain a sequence { }ku  which they show converges monotonically to 0u , the noisy image. 

However, as k  increases, for λ  sufficiently small, the values ku  also converge monotonically to 

u , the true noise-free image, until 

 0 0 22ku u u uτ− < − , (4.24) 

for any 1τ > .  According to the authors, the ideal situation is to take λ  small and k  large so that 

kλ  converges to a critical time t  at which the estimate (4.24) is satisfied.  It is also shown in 

[OBGXY05] that the new model can be used for restoring blurry and noisy images very 

efficiently.  

 Years ago, Chambolle and Lions [CL97] established that the optimization problem (4.1) 

constraint by (4.2), is equivalent to the following unconstrained optimization 

 
( )2

2
0inf

u L
u dx u u dxλ

Ω Ω∈ Ω
∇ + −∫ ∫ , (4.25) 

 
where 0λ ≥  is a Lagrange multiplier.  The first integral in the functional is the regularization 

term which disfavors oscillations and is responsible for the smoothing of the noise.  The second 

integral in the functional is the fidelity term which encourages the solution u  to stay close to the 

observed image 0u .  The work of Meyer [Me02] motivated much interest into understanding the 

role of the fidelity term.  Vese and Osher [VO03] and Osher, Sole and Vese [OSV03] propose to 

replace the original fidelity form by weaker forms.  These variants allow better separation of 
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texture and outline (cartoon) making it easier to treat both parts separately.  More recently, Chan 

and Esedoglu [CE04] study a simple variant to the original Rudin-Osher-Fatemi to accomplish 

contrast invariance.  They replace the squared 2L  norm in the fidelity term (4.25) by the 2L  

norm instead.  The energy is then 

0u dx u u dxλ
Ω Ω
∇ + −∫ ∫ . 

The authors argue that this model is more effective than the original Rudin-Osher-Fatemi model 

in the presence of certain types of noise, such as salt and pepper. 
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5.  Finite Element Implementation 

 
Digital images are given on discrete (regular) grids.  This lends itself for discretizing the 

PDEs to obtain numerical schemes that can be solved on a computer.  Because of their favorable 

stability and efficiency properties, semi-implicit schemes have been the methods of choice for 

the scale discretization [CLMC92] [KM95] [BM97] [BM01] [WRV98] [We99] [MR01] [KM02] 

[KM00] [PR99] [MSL98] [HMS99] [HMS03] [HMS02] [DPRS01].  As for the space 

discretization, the most popular choices are finite difference [CLMC92] [WRV98] [We99] and 

finite element methods [KM95] [BM01] [BM97] [DPRS01] [PR99] (in that order of preference).  

We choose the finite element method for our discretization in space since it will give us more 

flexibility for our adaptive formulations. 

 
 

Figure 5.1:  Triangulation for the finite element method. The nodes are located at the centers of the pixels. 
 

Consider again the model due to Perona and Malik [PM90], 

 ( )( )2 0tu g u u∂ −∇ ⋅ ∇ ∇ = . (5.1) 

The starting point for the finite element method is to partition the geometry (domain) into small 

units (elements or cells) of simple shape joined together at the vertices (nodes).  This will 
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constitute our finite element space (mesh or grid).  Once we have our mesh (see Figure 5.1), the 

idea is to approximate the dependent variables with functions that we can describe with a finite 

number of parameters (degrees of freedom DOF).  Inserting this approximation into the weak 

form of equation (5.1) generates a system of equations for the degrees of freedom [Co05].   

In our case, we need to perform discretizations in scale and space.  We perform the semi-

discretization in scale by letting N ∈` , and k T N=  be fixed numbers 2, and letting 

( ) ( )00,u x u x=  in Ω .  Then, we can look for a function nu  for every 1, ,n N= … , such that it is 

a solution to the equation 

 ( )( )21
1 0n n

n n
u u g u u

k
−

−

−
−∇⋅ ∇ ∇ = . (5.2) 

It is shown in [KM95] [BM01] that there exist unique variational solutions nu  of (5.2) at every 

discrete scale step, for which the following stability estimates hold: 

 
0 02 2

2 2
12 2

1 1

, , for 1, , on 

, , on ,

n n

N N

n n n
n n

u u u u n N

u h C u u C

∞ ∞

−
= =

≤ ≤ = Ω

∇ ≤ − ≤ Ω∑ ∑

…
 (5.3) 

where C  is a general (large) constant 3.  To discretize the problem in space we can take 

advantage of the pixel structure of the image.  For our case, the finite element method assumes 

that the approximation of the solution of the partial differential equations are continuous 

piecewise linear.  I.e. the discrete intensity values are regarded as approximations of the 

continuous intensity function in the center of the pixels (see Figure 5.1).  We can multiply 

equation (5.2) by an arbitrary test function v V∈ , where V  is the Sobolev space ( )1,2W Ω  of 

                                                 
2 Here, T  represents the last scale state we want to reach. 
3 Here, h  represents a typical element size. 
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( )2L Ω –functions with doubly integrable weak derivatives, and integrate (using Green’s theorem 

and homogeneous Neumann boundary conditions) to obtain the weak form [Mi02] 

 ( )2
1 1n n n nu v dx k g u u v dx u v dx− −Ω Ω Ω

+ ∇ ∇ ∇ =∫ ∫ ∫ . (5.4) 

Then, for each scale step n , we look for a continuous piecewise linear function ,n h hu V∈  

that satisfies 

 ( )2

, 1, , 1,n h h n h n h h n h hu v dx k g u u v dx u v dx− −Ω Ω Ω
+ ∇ ∇ ∇ =∫ ∫ ∫  (5.5) 

for all h hv V∈ .  Considering the standard Lagrangian base functions q hVφ ∈ , 1, ,q M= … , given 

by ( )q p qpxφ δ=  (Kronecker delta) for all nodes, the function ,n hu  is given by 

 , ,
1

M

n h n p p
p

u u φ
=

=∑ . (5.6) 

Substituting (5.6) in (5.5) and considering as test functions h qv φ=  for 1, ,q M= … , we get the 

Ritz-Galerkin equation for the nodal values ,n pu , of the piecewise linear function ,n hu : 

 ( )( )2

1, , 1,
1

, 1, ,
M

p q n h p q n p n h q
p

dx k g u dx u u dx q Mφ φ φ φ φ− −Ω Ω Ω
=

+ ∇ ∇ ∇ = =∑ ∫ ∫ ∫ … . (5.7) 

Then, in each scale step we need to assemble and solve a linear system of the form 

 ( )( )2
1 1n n nk g u − −

⎡ ⎤+ ∇ =⎢ ⎥⎣ ⎦
M A u f , (5.8) 

for the vector of unknowns (DOF) nu . 
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6.  Dynamic/Adaptive Implementation 

 
We implement a variation of Blomgren et al’s [BCM97] version of the fully nonlinear 

Euler-Lagrange equation (4.12), 

 ( )( ) ( )2
0 0p

tu u L u u u u−∂ − ∇ ∇⋅ ∇ ∇ +Λ − = , (6.1) 

defined in the domain Ω  with boundary conditions 0nu∂ =  on ∂Ω  (where n  is the unit normal 

vector to the boundary of the domain Ω ).  The Neumann boundary conditions should guarantee 

that the filtering does not significantly affect the average gray value of the image. The initial 

condition is the observed image ( ) ( )00,u x u x=  in Ω . 

The model (6.1) can be regarded as “adaptive TV model with morphological convection 

and anisotropic diffusion.”  Unlike the approach in [ROF92], we implement a user-independent 

choice of all the parameters in the model.  We start by estimating the unknown parameter σ , 

namely the standard deviation of the noise.  Since we consider that the image has been perturbed 

by additive Gaussian noise, 0u u η= + , then the variance of the noisy image has to be equal to 

the sum of the variance of the true image and the variance of the noise, 
0 0

2 2 2
u G uσ ησ σ σ∗= + .  Here, 

the variance of the (unknown) true image is approximated by the variance of the convolved noisy 

image.  This parameter will be updated iteratively as we will see below. 

For the parameter λ , we implement a variation of the method suggested in [ROF92].  

Instead of integrating (or summing) over the domain Ω , we implement a node-wise u λΛ ≡ ∇  

as (again with a little abuse of notation) 

( ) ( )2 2
002 2

2 2 2 2 22
yx y x yx

x y

x y x y

u uu u u u
u u

u u u uσ

⎡ ⎤⎛ ⎞+
⎢ ⎥⎜ ⎟Λ = − + − +
⎢ ⎥⎜ ⎟+ +⎝ ⎠⎣ ⎦

, 
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( ) ( ) ( ) 2 22 22 002 2
2 2 2 2 2

1
2

y x yx x y yx
x y

x y x y

u u u uu u u u
u u

u u u uσ

⎡ ⎤⎛ ⎞++⎢ ⎥⎜ ⎟Λ = − + − +
⎢ ⎥⎜ ⎟+ +⎝ ⎠⎣ ⎦

, 

( ) ( )2 2
0 02

1
2 x y x yx y

u u u u u u
σ

⎡ ⎤Λ = − + − −⎣ ⎦ , 

 ( )( ) ( )( )0 02

1
2 x x y yx y

u u u u u u
σ

⎡ ⎤Λ = − − + −⎣ ⎦ . (6.2) 

The dynamic parameter Λ  has the following attributes: 

1. The smaller the value of Λ , the more the diffusion contributed by the forcing term. 

Analogously, the larger the value of Λ , the lesser the diffusion contributed by the forcing 

term. 

2. At the beginning of the scale-marching iterations the gradients ( )0x x
u u≈  and ( )0y y

u u≈ , 

therefore  the terms ( )0x x
u u−  and ( )0y y

u u−  are very small and the forcing term tends to 

contribute more to the diffusion process.  In areas where xu  and yu  are large (i.e. near 

edges), these values compensate for the small terms ( )0x x
u u−  and ( )0y y

u u− . 

3. As iterations evolve the terms ( )0x x
u u−  and ( )0y y

u u−  get larger.  Near edges, the forcing 

term prevents diffusion and helps reach convergence. 

We can also get an a posteriori estimate to the variance of the noise 2σ  by integrating (or 

summing) over the domain after convergence, 

 ( )( ) ( )( )2
0 0

1 1
2 x x y yx y

u u u u u u dxσ
Ω

⎡ ⎤= − − + −⎣ ⎦Λ∫ . (6.3) 

This will be an improved value that can be used to run the model with a better estimate of the 

unknown parameter σ .  
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The diffusion tensor ( )2pL u −∇  incorporates the parameter 1 2p≤ ≤ , as suggested in 

[BCM97].  The diffusion tensor becomes 

 ( )
2 2

2

2 2

x x y

x y y

p p
p

p p

u u
L u

u u

− −
−

− −

⎡ ⎤∇ − ∇
⎢ ⎥∇ =
⎢ ⎥− ∇ ∇⎣ ⎦

 (6.4) 

where xp , yp , x yp , are the following unnormalized Gaussians: 

 
( )

2 2

2 2

2 2 2

ˆ 4

ˆ 4

ˆ ˆ 4

1

1

1 .

x

y

x y

u
x

u
y

u u
xy

p e

p e

p e

σ

σ

σ

−

−

− +

= +

= +

= +

 (6.5) 

In equation (6.5) above, ˆxu  and ˆyu  are the gradients of the convolved noisy image 0G uσ ∗  used 

to estimate the unknown parameter σ .  The dynamic parameters xp , yp , x yp , have the 

following attributes: 

1. For every pixel in the image, the parameters take values 1 2xp≤ ≤ , 1 2yp≤ ≤  and 

1 2x yp≤ ≤ . 

2. When 1xp = , 1yp =  or 1x yp =  the model uses the TV-norm in the corresponding direction, 

and when 2xp = , 2yp =  or 2x yp = , the model uses the 2L -norm in the corresponding 

direction. 

3. When the parameters 1 2xp≤ ≤ , 1 2yp≤ ≤  and 1 2x yp≤ ≤ , the model interpolates between 

both norms. 

Figures 6.1, 6.2 and 6.3 show examples of the implementation of the proposed model.  We 

can also observe the dynamic parameters Λ , xp , yp  and x yp . 
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(a) Grayscale true image and its contours. 
 

  
 

(b) Noisy image with 23.4 dBSNR =  and its contours. 
 

  
 

(c) Treated image and its contours. 
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(d) Parameter xp . (e) Parameter yp . 
 

  
 

(f) Parameter xyp . (g) Parameter Λ . 
 

Figure 6.1:  Dynamic restoration of a grayscale image.  (a) Grayscale true image and its contours.  (b) Noisy image 
with 23.4 dBSNR =  and its contours.  (c) Treated image and its contours.  (d) Parameter xp .   

(e) Parameter yp .  (f) Parameter xyp .  (g) Parameter Λ . 



 - 33 -

  
 

(a) Grayscale true medical image and its contours. 
 

  
 

(b) Noisy image with 20.1 dBSNR =  and its contours. 
 

  
 

(c) Treated image and its contours. 
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(d) Parameter xp . (e) Parameter yp . 
 

  
 

(f) Parameter xyp . (g) Parameter Λ  
 

Figure 6.2:  Dynamic restoration of a medical image.  (a) Grayscale true medical image and its contours.  (b) Noisy 
image with 20.1 dBSNR =  and its contours.  (c) Treated image and its contours.  (d) Parameter xp .   

(e) Parameter yp . (f) Parameter xyp .  (g) Parameter Λ .  Original image courtesy of Robert E. Edelman 
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(a) Noisy medical image with unknown SNR  and its contours. 
 

  
 

(c) Treated image and its contours. 
 

  
 

(d) Parameter xp . (e) Parameter yp . 
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(f) Parameter xyp . (g) Parameter Λ . 
 

Figure 6.3:  Dynamic restoration of a medical image.  (a) Noisy medical image with unknown SNR  and its 
contours.  (b) Treated image and its contours.  (c) Parameter xp .  (d) Parameter yp .   

(e) Parameter xyp .  (f) Parameter Λ . 

 

 In an earlier stage of our research we implemented a scheme that aims at using 

information from the images to adjust the numerical solution via adaptive grids [BB05].  The 

employment of adaptive grid proved to be a very efficient approach where considerably fewer 

DOF are necessary to produce similar results to the regular grid case.  By using the remeshing 

approach based on the  2L -norm, nodes are placed following the edges of the images which 

allows very good edge preservation.  Some examples of this proof of concept using the Catté- 

Lions-Morel-Coll model are depicted in Figures 6.4 and 6.5.  The computational effort necessary 

to run the experiments shown in Figure 6.4 on a computer equipped with a 1.50GHz Intel® 

Pentium® processor and 1.25 GB of RAM is shown in Table 6.1.  

Table 6.1 
Experiment Case CPU time 

Regular grid, 47 iteration 285.230 s 
Adaptive grid, 1 iteration 116.668 s 
Adaptive grid, 2 iterations 153.230 s 
Adaptive grid, 5 iterations 274.124 s 
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(a) Synthetic grayscale true image and noisy image with 14.8 dBSNR =  (65,536 DOF). 
 

  
 

(b) Treated image and mesh after iteration 1 (45,696 DOF). 
 

  
 

(c) Treated image and mesh after iteration 2 (25,401 DOF). 
 



 - 38 -

  
 

(d) Treated image and mesh after iteration 3 (20,159 DOF). 
 

  
 

(e) Treated image and mesh after iteration 4 (12,780 DOF). 
 

  
 

(f) Treated image and mesh after iteration 5 (6,417 DOF). 
 

Figure 6.4:  Adaptive mesh implementation of the Catté- Lions-Morel-Coll model.  (a) Synthetic grayscale true 
image and noisy image with 14.8 dBSNR =  (65,536 DOF).  (b) Treated image and mesh after iteration 1 (45,696 
DOF).  (c) Treated image and mesh after iteration 2 (25,401 DOF).  (d) Treated image and mesh after iteration 3 

(20,159 DOF).  (e) Treated image and mesh after iteration 4 (12,780 DOF).  (f) Treated image and mesh after 
iteration 5 (6,417 DOF). 
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(a) Noisy grayscale medical image and it contours. 
 

  
 

(b) Treated image and mesh after iteration 1. 
 

  
 

(c) Treated image and mesh after iteration 2. 
 



 - 40 -

  
 

(d) Treated image and mesh after iteration 3. 
 

  
 

(e) Treated image and mesh after iteration 4. 
 

Figure 6.5:  Adaptive mesh implementation of the Catté- Lions-Morel-Coll model.  (a) Noisy grayscale medical 
image and its contours.  (b) Treated image and mesh after iteration 1.  (c) Treated image and mesh after iteration 2.  

(d) Treated image and mesh after iteration 3.  (e) Treated image and mesh after iteration 4. 
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7.  Summary 

 
In this report we presented some of the most widely used PDE based image 

processing models.  We briefly exposed their advantages and drawbacks and tried to 

describe their methodological (and chronological) evolutions.  The models studied in this 

report are very well established in the image processing community and will serve as 

robust infrastructure whereupon we can built our own research with confident. 

As a proof of concept, we started to unveil the direction of our future research, 

namely, dynamic and parameter-free total variation based image processing.  It is our 

intent to further study efficient mechanisms for implementing total variation based image 

processing that will spare the user from having to adjust parameters for every occasion.  

Our dynamic/adaptive schemes aim at incorporating more information from the images 

themselves in the solution process and limit the use of ad hoc techniques. 
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