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Summary

Whether tracking the eye of a storm, the leading edge of a wildfire, or the front of
a chemical reaction, one finds that significant change occurs at the thin edge of an
advancing line. The tracking of such change-fronts comes in myriad forms with a
wide variety of applications. Our research over the past two years combines fast
multiresolution methods with the freedom of gridless techniques to arrive at a ro-
bust and accurate PDE solver for systems exhibiting fast transitions. Our method
is unique because it unifies collocation, mesh refinement and solution strategy un-
der one underlying wavelet-like representation. These attributes, as well as the
method’s inherent parallelizability, make it ideally suitable for scientific inquiry
via in silico experiments.

INTELLECTUAL MERIT—We have developed a numerical solver capable of detect-
ing sharp transition regions and refining its own computational domain and lin-
ear solver while maintaining a uniform generalized multiresolution analysis. Our
method does not require expensive tiling of the computational domain, and its front
tracking and coarsening strategies are inherently parallelizable. Both of these fea-
tures make our adaptive multilevel solver ideal for HPC applications.

BROADER IMPACT—Our research culminates with a software package suitable for
exploration of discontinuous and multiscale phenomena. Preliminary results have



already been achieved in nano-electronics and computational finance [29, 30, 31,
32]. In addition to its scientific merits, our method is ideally suited for further
theoretical development, as it maps Rn → R. This feature also makes the method
easily incorporable into numerical curricula at both the graduate and undergradu-
ate level, thus further disseminating key ideas developed throughout this research
venture.

1 Introduction

Our research over the past two years on multiresolution methods [24, 25, 29] is be-
ing integrated with quadrature techniques [9, 15, 18, 20] to arrive at a robust adap-
tive PDE solver designed for systems exhibiting fast transitions. Multiresolution
methods naturally capture variations in the solution, but their extension to higher-
dimensions are non-trivial due to numerous stability conditions imposed on the
tiling of the computational domain [8, 37, 38]. Quadrature (or meshless) methods
have natural extensions to higher dimensions and have become ever more present
in the modern development of numerical PDE solvers [4, 13, 16, 19, 21, 23, 26, 27,
28, 34, 36]. In recent years, these meshless techniques have been combined with
mesh refinement methods to form adaptive PDE solvers [11, 16, 26, 34]; however,
no uniform treatment of mesh refinement and compact function representation has
been undertaken. It is this synergy—between variation capturing techniques and
compact radial basis function methods—which we are developing.

The development of this synergetic research focuses on the generalized multires-
olution analysis of A. Harten [1, 17, 35]. His method and its extensions are used
to capture variations in the solution and translate those variations into wavelet co-
efficients, which are then used to refine the mesh via coefficient thresholding [10].
Moreover, wavelets form a natural basis for the solution and can be interpreted
as a compact alternative to radial basis functions (RBF) by extending the notion
of a distance function [5, 6, 7]. In this way, the representation of the solution
is better conditioned and its behavior can be tailored to the local features of the
computational domain, which is not possible using traditional RBF approaches.
This method captures adaptation and representation in a uniform multiresolution
framework that tightly couples the interplay between mesh refinement and accu-
rate depiction of the solution.

KEYWORDS: Generalized Multiresolution Analysis, Mesh Coarsening, Radial
Basis Functions, and Distance Wavelets.
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2 Planned Investigation

Our investigation of variation capturing techniques and compact radial basis func-
tion methods has three primary components. These components are: mesh coarsen-
ing via generalized multiresolution analysis, adaptive multi-quadratic radial bases,
and distance wavelets as radial bases. The initial study, which involved the anal-
ysis and development of a two-dimensional coarsening strategy for discontinuous
applications, is complete [25]. The results of this study have yielded insight into
a parallel implementation of the coarsening algorithm that could be useful for data
mining and large image processing applications. Our research agenda is currently
focused on the development of adaptive multi-quadratic radial basis functions; this
research is delineated in Section 2.1 after a short background discussion on multi-
quadratic functions. The final component of the research concentrates on the devel-
opment and implementation of compact radial basis analogs for PDE applications
with fast transitions (see Section 2.2).

2.1 Adaptive Multi-Quadratic Radial Basis Functions

Multi-quadratic functions have been used since the early 1970’s for topographical
and scattered data fitting applications [15, 18]. More recently, Kansa [20, 21] began
using these methods for the numerical solution of PDEs. In the last ten years,
the growth in the theoretical understanding of radial bases has contributed to the
explosion in RBF methods for PDEs [4, 11, 13, 16, 19, 21, 23, 26, 27, 28, 34, 36].
However, there are important issues that need to be resolved [22], and primary
among these is lowering the condition number of the resulting linear system.

The condition number increases when large numbers of radial bases are used to
approximate the solution, as well as when the coupling involves all radial basis
functions within a computational domain (see Table 1). Therefore, the condition
number can be decreased by lowering the number of nodes used in the approxima-
tion and decoupling long-range effects. The first can be accomplished by coars-
ening the computational domain, the second by limiting the range of interaction
between radial basis functions (via parameter tuning), or by using compactly sup-
ported basis functions (refer to Section 2.2).

Domain Size 16×16 32×32 64×64
Condition Number 6.2 E06 2.9 E08 1.5 E10

Table 1: Doubling domain size increases condition number by two orders of magnitude.
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In this first study, we explore a family of multi-quadratic functions which have a
positive parameter that can be used to prescribe long-range coupling between basis
functions. This parameter can be chosen to coincide with the local mesh refinement
measure, thereby prescribing different coupling constants depending on the local
behavior of the computational domain. In this way, we arrive at a preliminary
adaptive collocation method, which we can use to refine our multiresolution mesh
coarsening strategy in two dimensions and test the method’s robustness against
different types of applications.

DIFFICULTIES—The coupling between the grid refinement measure, expressed in
terms of wavelet coefficients, and the parameter in the multi-quadratic family may
not be fully compatible. Therefore, a simple scaling function might not be suffi-
cient to correctly capture the solution in regions exhibiting fast transitions.

2.2 Compactly Supported RBF Analogs

The next stage in the development of our adaptive collocation method is to replace
the ad-hoc parameter based radial basis functions with compactly supported mul-
tiresolution bases. This is a novel approach, as compactly supported basis func-
tions have traditionally been constructed by simply truncating the basis’ domain
[14, 39, 40]. This simplistic compactification approach produces a scheme which
is sparse, but whose condition number is comparable to that of a non-compact
scheme. Moreover, these simple compact schemes suffer from instabilities pro-
duced by the truncation of the basis’ domain.

More recently, compactly supported basis functions have been constructed using
multiresolution techniques [2, 3, 5, 6, 7, 12, 33]. These techniques allow for a
better representation of the underlying function in terms of scales, thus capturing
the function accurately while maintaining a sparse representation, a feature crucial
to the development of fast numerical methods. In addition, it has been shown that
multilevel methods play an important role in the development of iterative solvers
by preconditioning the resulting RBF system [13]. Therefore, our adaptive mul-
tiresolution approach will be sparse and robust to charges in scales, and will result
in better conditioned systems.

DIFFICULTIES—Defining distance wavelets that are computationally efficient and
couple well to the coarsening algorithm already developed in terms of generalized
wavelets.
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3 Evaluation Criteria

The research as it has been presented has two components: function representa-
tion, and PDE solution. The first of these is simple to evaluate, because an energy
norm or wavelet measure suffices to verify the approximation properties of the
compactly supported basis functions. This static representation portion of the eval-
uation process is presently being conducted on discontinuous test functions (see
sample function in Figure 1). The second of these components, the PDE solution,
will be tested against analytic and numerical solutions of elliptic and hyperbolic
systems.

Figure 1: Sample test function with jumps in its values and first derivatives.

Elliptic systems have a natural representation based on multiresolution techniques;
thus, they are a natural first test case for our adaptive collocation method. We
will first reproduce some of the results for elliptic operators, both linear and non-
linear, in the RBF literature [13, 16]. Once we have successfully reproduced the
literature, our plan is to apply our method to more interesting applications in nano-
electronics—where the PDEs become coupled and non-linear, with internal layers
and general boundary conditions.

Hyperbolic applications such as those described in [4, 11, 26, 27] are an excellent
test bench for the adaptive portion of our method, and we expect these tests to
challenge the accuracy and robustness of our compact basis functions. Perhaps the
most difficult portion of benchmarking our collocation solver against hyperbolic
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systems will involve errors in time integration, as we do not yet have an integrator
that fully respects the multiresolution structure. Further investigations and devel-
opment of a robust multiresolution integrator is left as a future research venture.

DIFFICULTIES—Testing our adaptive collocation method against time marching so-
lutions, because our current research does not have an integration technique that
couples to the multilevel structure of our solver.

4 Timeline

The remaining portion of this research revolves around the collocation portion of
the solver. This research involves the transition from traditional to compactly sup-
ported RBFs and their representation properties in terms of elliptic and hyperbolic
PDEs. A large amount of time will be spent on the RBF representation portion
of the method, and the remaining time on application development and research
dissemination.

To date, we have developed a thin-plate spline collocation method that is being
extended to utilize multi-quadratic RBFs. This new family of RBF functions es-
sentially expands the method by allowing us to adaptively change the coupling
neighborhood of each RBF independently (refer to Section 2.1). The next task is to
move from these parameter based multi-quadratic RBFs to fully compact analogs
based on multiresolution methods (refer to Section 2.2). Testing of our adaptive
collocation method against the literature is expected to be finished by February;
from February to April, the research results will be compiled into a manuscript.

TIMELINE:
November – Thin-Plate Splines to Multi-Quadratic Radial Basis Functions
December – MQ RBFs to Compactly Supposed Analogs
February – Test Applications
March – Complete Dissertation
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“Adaptive Node Refinement Collocation Method for Partial Differential
Equations,” Prec. 7th Mexican Int. Conf. on Comp. Sci. (ENC’06), pp. 70-
80, (2006).

[17] A. HARTEN, “Discrete Multiresolution Analysis and Generalized Wavelets,”
Appl. Num. Math., vol. 12, pp. 153-192, (1993).

[18] R.L HARDY, “Multiquadric Equations of Topography and Other Irregular Sur-
faces,” J. Geophys. Research, vol. 76, pp. 1905-1915, (1971).

[19] S.L. HO, S. YANG, H.C. WONG, AND G. NI, “A Meshless Collocation Method
Based on Radial Basis Functions and Wavelets,” IEEE Tran. on Magnetics,
vol. 40, no. 2, pp. 1021-1024, (2004).

[20] E.J. KANSA, “Multiquadrics: A Scattered Data Approximation Scheme with
Applications to Computational Fluid Dynamics—Part I. Surface approxima-
tions and partial derivative estimates,” Computers and Math. w/ Appl., vol.
19, pp.127-145, (1990).

[21] E.J. KANSA, “Multiquadrics: A Scattered Data Approximation Scheme
with Applications to Computational Fluid Dynamics—Part II. Solutions to
parabolic, hyperbolic, and elliptic partial differential equations,” Computers
and Math. w/ Appl., vol. 19, pp. 147-161, (1990).

[22] E.J. KANSA, “Current Radial Basis Function Issues,” August 8, (2002).
http://kansa.irisinternet.net/ejKansa_RBF_Issues.pdf

[23] C.K. LEE, X. LIU, AND S.C. FAN, “Local Multiquadric Approximation for
Solving Boundary Value Problems,” J. Comput. Mech., vol. 30, pp. 396-409,
(2003).

8



[24] A. LIMON, AND H. MORRIS, “An Adaptive Multilevel Solver, A. Limon and
H. Morris, Journal of Numerical Linear Algebra and its Applications, Vol 13,
pp. 251-273, (2006).

[25] A. LIMON, AND H. MORRIS, “Multilevel Based Grid Coarsening for Discon-
tinuous Problems,” submitted J. of Math. and Comp. in Sim., August (2006).

[26] L. LING, AND M.R. TRUMMER, “Adaptive Multiquadric Collocation for
Boundary Layer Problems,” J. Comput. & Appl. Math., vol. 188, pp. 265-
282, (2006).

[27] X. LIU, “Radial Point Collocation Method (RPCM) for Solving Convection-
Diffusion Problems,” J. of Zhejiang University, SCIENCE A, vol. 7, no. 6, pp.
1061-1067, (2006).

[28] X. LIU, G.R. LIU, K. TAI, AND K.Y. LAM, “Radial Point Interpolation Collo-
cation Method (RPICM) for the Solution of Nonlinear Poisson Problems,” J.
Comput. Mech., vol. 36, pp. 298-306 (2005).

[29] H. MORRIS, AND A. LIMON, “A Wavelet Method for the Density-Gradient
Equation, Proc. of the 2005 NSTI Nanotechnology Conference, (2005).

[30] H. MORRIS, AND A. LIMON, “Quantum Corrections: a multilevel solver for the
density-gradient equation,” to appear: Int. Journal of Comp. Sci. and Engr,
Issue on NanoTCAD 6, (2006).

[31] H. MORRIS, AND A. LIMON, “A Compact Model for the I-V Characteristics
of a Short Channel Double Gate MOSFET,” submitted J. IMACS: Math. and
Comp. in Sim., May (2006).

[32] H. MORRIS, AND A. LIMON, “Multiwavelet Approach to Solving the Black
Scholes Equation,” submitted J. of Comput. and Appl. Math., May (2006).

[33] Y. OHTAKE, A. BELYAEV, AND H.P. SEIDEL, “A Multi-Scale Approach to 3D
Scattered Data Interpolation with Compactly Supported Basis Functions,”
Preprint: Max-Planck-Institut f’́ur Informatik, Saarbr’́ucken, (2003).

[34] S.A. SARRA, “Adaptive Radial Basis Function Methods for Time Dependent
Partial Differential Equations,” J. Appl. Num. Math., vol. 54, no. 1, pp. 79-94,
(2005).
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