

Simulating the Nonlinear
Schrödinger Equation using the

Computational Capability of NVIDIA
Graphics Cards

Ronald M. Caplan and Ricardo Carretero

AP10‐04

10

Simulating the Nonlinear Schrödinger Equation
using the Computational Capability of NVIDIA
Graphics Cards

Ronald M. Caplan1 ∗, Ricardo Carretero1
1Computational Science Research Center San Diego State University
∗sumseq@gmail.com

Abstract: Much research in systems gov-
erned by the nonlinear Schrödinger equation
(NLSE) continues to this day. Most work is
performed using numerical simulations, but
in order to make the research more efficient
(and in some cases, even, plausible), it is de-
sirable to have new numerical methods and
technology which speed up the computation
time of the simulations. A recent develop-
ment in parallel computation is the use of
video graphics cards for scientific numerical
problems. We describe our efforts to use
NVIDIA graphics cards to speed up compu-
tations of the one-dimensional NLSE. This is
done by modifying our original code using a
C-language extension API called CUDA. We
also describe our numerical methods which
include a two-step high-order compact fi-
nite difference scheme as well as a simple to
implement constant modulus-squared back-
ground boundary condition. We find that by
using a single inexpensive graphics card, our
simulations can run up to 70 times faster.
We hope to extend the results to two and
three dimensions, where such speedup will
have the most benefit.

Keywords: CUDA, GPU, nonlinear
Schrödinger equation

1 Introduction

There has and continues to be much re-
search in systems governed by the Nonlinear
Schrödinger Equation (NLSE) [2]. Examples
of such systems include Bose-Einstein con-
densates [3] and nonlinear optics [1]. Since
the dynamics of the NLSE are nonlinear,
most research is performed by simulating the
NLSE using numerical methods. This is es-
pecially true in two and three dimensions,
where such simulations can take a very long
time to run. In order to make the research

more efficient (and in some cases, even, plau-
sible), it is desirable to have new numerical
methods which speed up the computation
time of the simulations.

Graphical processing units (GPUs) are
a new tool in massively parallel comput-
ing. The GPUs are structured to have many
moderate speed ALUs arranged in a very ef-
ficient hardware orientation. For some prob-
lems, the GPUs have the potential to speed
up computations by a factor of over one hun-
dred.

In this paper, we describe our implemen-
tation and speedup results for simulating the
one dimensional NLSE using NVIDIA GPUs
with their custom API called CUDA. We
show that we can achieve very good results,
and therefore plan to further develop the
code into multidimensional domains.

2 Nonlinear Schrödinger
Equation and Trial Solution

The one-dimensional general NLSE takes the
form:

iΨt + aΨxx + (V (x) + s |Ψ|2)Ψ = 0, (1)

where Ψ is the value of the wave function,
V (x) is the external potential function, and
a and s are constant parameters determined
by the physical system being described. The
sign of s determines if the nonlinearity is ‘fo-
cusing/attractive’ or ‘defocusing/repulsive’.

In order to test our codes we need an ex-
ample problem to which we know the exact
solution. In this regard we use the following
one-dimensional dark soliton [3]:

Ψ(x, t) =
√∣∣Ω

s

∣∣ tanh

[√
|Ω|
2a (x− c t)

]
E(2)

E = exp
(
i
[

c
2a x +

(
Ω− c2

4a

)
t
])

where c is the velocity of the soliton, x0 is its
initial position, and Ω is the frequency. This
particular solution exists and is exact in the
NLSE when V (x) = 0 and s < 0. The soli-
ton describes a localized curve in the modu-
lus squared of Ψ which propagates without
dispersion or dissipation amidst a constant
background in the modulus squared. A de-
piction of such a soliton within our simula-
tions is given in Fig. 1.

−15 −10 −5 0 5 10 15
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

Ψ
(x

)

|Ψ
exact

|2

Re(Ψ)
Im(Ψ)

|Ψ|2

Figure 1: Depiction of a dark soliton within a
numerical simulation of the NLSE. Here,

a = 1.1, s = −1.1, and c = 0.5.

3 NVIDIA GPU

Over the past few years, the computational
power of video cards Graphic Processing
Units (GPU) has grown greatly, outgrow-
ing the computational power of CPUs. Var-
ious companies produce GPU hardware, the
two largest being ATI and NVIDIA. The
GPUs are constructed to be massively par-
allel, with many mid-speed ALUs. For our
project, we use NVIDIA’s line of graphics
card GPUs. Each card contains a number of
multi-processor (MP) units, each containing
8 ALUs with a common 16KB shared mem-
ory. The cards also contain a large global
memory anywhere from 512MB to 4GB as
shown in Fig. 2.

Figure 2: Schematic of NVIDIA GPU
architecture. Each multiprocessor contains 8

APUs with a shared memory, and all
multiprocessors have access to a large global

memory [4].

This allows for the GPUs to be very power-
ful in many parallelizable scientific compu-
tational problems.

4 CUDA API

NVIDIA allows programmers to utilize its
GPUs through an API called CUDA. CUDA
is a code extension to C/C++ which gives
low-level access to the GPUs memory and
processing abilities. Currently, a new API
called OpenCL is being developed which
can function across multiple GPU vendors,
as well as other CPU architectures; how-
ever, for best performance, the OpenCL
code needs to be optimized for the specific
architecture being used. Since NVIDIA al-
ready has a well developed optimized API
tailored to their GPUs, we decided to use
CUDA over OpenCL (if in the future it is
desired to run the code on other GPUs, con-
verting CUDA code into OpenCL is said to
be very straight forward).

In a typical CUDA code, data is trans-
ferred from the CPU to the GPU, and
then the GPU performs computations on the
data, which, when completed, is transferred
back to the CPU. The execution of the com-
putations is done through a logic structure
hierarchy of grids, block, and threads.

Each compute grid contains a number of
blocks. Each block has a number of compute
threads. The threads are what perform the
computations. Each block of threads is exe-
cuted on a multiprocessor, where the threads

are pipelined on the ALUs in a highly op-
timized manner. Each block has a shared
(fast) memory which is accessible to the
threads in that block. All threads in the grid
have access to the (slow) global memory of
the GPU as shown in Fig. 3 [4].

Figure 3: Schematic of NVIDIA CUDA API
structure. Each compute grid contains a

number of blocks. Each block has a number of
threads which can all access the same shared
memory, but not the shared memory of any

other block. All threads in the grid can access
the global memory. [4]

As in all parallel environments, synchro-
nization, memory usage, and dependencies
have to be dealt with, but the CUDA API
makes these issues easy to handle.

5 Numerical Method for NLSE
Simulations

Here we describe our numerical methods for
simulating the NLSE and their implementa-
tion using the CUDA API.

5.1 High Order Two-Step
Compact Scheme

For our numerical method, we use a fourth-
order Runga-Kutta (RK4) scheme in time.
We write the NLSE as

∂Ψ

∂t
= F (Ψ) = i

[
a∇2Ψ + (V (r) + s|Ψ|2)Ψ

]
,

so the RK4 scheme is defined as

Ψn+1 = Ψn +
∆t

6
(k1 +2k2 +2k3 +k4), (3)

where

k1 = F (Ψn),

k2 = F (Ψn + 1
2∆tk1),

k3 = F (Ψn + 1
2∆tk2),

k4 = F (Ψn + ∆tk3),

and Ψn = Ψn
j ∀j where n is the current

time step. In order to allow for the use of
courser grids, we also use a fourth-order spa-
tial scheme for the Laplacian in F (Ψ). Usu-
ally, such schemes had wide stencils, which
are not suitable for parallel applications due
to extra communication and/or memory la-
tency. Also, the grid points near the bound-
ary are difficult to deal with. To avoid this,
we use a 2-step high-order compact scheme
(2SHOC) defined as

Dj =
Ψj+1 − 2Ψj + Ψj−1

h2
, (4)

∂2Ψ

∂x2

∣∣∣∣
j

≈ 7

6
Dj −

Dj+1 + Dj−1

12
, (5)

where h is the spatial grid spacing. The
scheme is derived from using a central dif-
ference of the precomputed central differ-
ence to give a second order approximation
of the fourth spatial derivative, which when
inserted into the first error term of the stan-
dard central difference results in a fourth-
order approximation of the second deriva-
tive.

In our implementation of the 2SHOC
scheme, each step in computed separately
on the GPU, and so the computations are
compact in each step. The drawbacks of the
scheme are the extra memory requirement
for storing D, and an increase in the number
of floating point operations per grid point
when compared to the standard fourth-order
5-point stencil. However, for our GPU im-
plementation, the advantages of using the
2SHOC scheme outweigh the disadvantages.

5.2 Modulus-Squared Dirichlet
Boundary Condition

For our example problem, we would like to
have a simple boundary condition. For many
problems, if the domain is large enough, we
can assume a constant value at the bound-
aries and use a Dirichlet condition. However
in our problem this does not work because
we assume a constant background value and
the boundary in |Ψ|2, not in the value of
the Ψ. We therefore formulate a modulus-
squared-Dirichlet (MSD) boundary condi-
tion. We start with our desired boundary
condition

|Ψ0|2 = B,

where B is a constant. This implies

∂

∂t
|Ψ0|2 = 0.

Separating into real and imaginary parts and
using the chain rule yields

ΨR
∂ΨR

∂t
= −ΨI

∂ΨI

∂t

A solution that satisfies this equation is

∂ΨR

∂t
= CΨI and

∂ΨI

∂t
= −CΨR,

Making some substitutions, taking one-sided
spatial differencing on both sides of the re-
sulting equation, and rearranging, the con-
stant C can be determined as a function
of Ψ, in which case we formulate the MSD
boundary condition as

∂Ψ0

∂t
≈
(

Ψ0

Ψ1

)
∂Ψ1

∂t
, (6)

where the time derivative of the interior
point is precomputed using the interior nu-
merical scheme. This boundary condition
can be used for any time-dependent com-
plex PDE, and is easy to implement. How-
ever, for the first step in our 2SHOC scheme,
we need accurate boundary conditions for
the Laplacian in the computation of D. To
do this, we use the NLSE to rearrange the
MSD to give use a boundary condition for
the Laplacian:

∇2Ψ0 ≈
[
∇2Ψ1

Ψ1
+ L

]
Ψ0, (7)

L =
V1 − V0

a
+

s

a
(|Ψ1|2 − |Ψ0|2).

Using both forms of the MSD boundary con-
dition in the 2SHOC scheme keeps the spa-
tial accuracy fourth-order.

5.3 CUDA Implementation

The full details of the CUDA implementa-
tion of our numerical method is beyond the
scope of this paper. We instead give a brief
outline of the code.

Each CUDA block must be able to run
independently of all others, and therefore
each step in our numerical method must be
executed in a separate CUDA kernel. The
kernel describes what each thread should
compute. In our code, each thread computes

on one grid cell. The input vector for each
kernel is stored in global memory. Since ac-
cess to this memory is very slow, we utilize
the per-block shared memory. Each thread
copies the needed value from global mem-
ory into shared memory, and after synchro-
nizing the threads in the block, each thread
has access to a block sized chunk of the input
vector. Thus, each thread’s access to the in-
put vector is now in fast shared memory. A
problem exists at the block boundaries, since
the boundary thread does not have access
to the input vector in shared memory in the
adjacent block. Therefore, for the bound-
aries of the block, the thread must access
one cell of global memory for the compact
computations. For steps that simply add in-
put vectors together, shared memory is not
used because they only need to access each
cell once, and so storing the value in shared
memory would not decrease the number of
global memory accesses. The code runs a de-
fined number of time steps and then trans-
fers the current vector of Ψ to the host CPU
for plotting and analysis. The larger the
number of time steps the kernels compute,
the better the speedup since memory trans-
fers from the GPU to CPU and vice-versa
are very slow.

6 Speedup Results

For our results, we use an NVIDIA GeForce
GTX 260 GPU which retails for around
$200. This model of GPU has 896MB of
global RAM and 24 MPs which equate to 192
ALUs. The PC on which we run the code has
a Quad-core Intel Xeon 2GHz processor with
2GB of RAM, is using the GPU to run the
display, and is running 64-bit Linux. The
speedup results are shown in Fig. where N
is the number of grid points. We also show a
few of the highest speedup examples in Table
1.

Figure 4: Speedup results for simulating the
NLSE 1D dark soliton in both single and

double precision for 10,000 time steps using
our 2SHOC scheme with the fourth order
Runga-Kutta scheme in time. N is the grid
size. The simulations have a grid spacing of

h = 0.2, a time step of k = 0.001, and end time
of t = 10. The soliton has the same parameters

as in Fig. 1.

N CPU GPU Speedup
10000 17.18 1.64 10.45

100000 171.26 6.72 25.48
1000000 4062.08 54.23 74.90

Table 1: Sample speedup results for NLSE
simulations. The CPU and GPU timings are in
seconds. All simulation parameters are as in
Fig. 4. The timings shown here are for single

precision.

We see very good speedup, especially when
we consider that this is using 1 PC with a
simple $200 add-on card. A simulation that
took over an hour on the CPU was computed
by the GPU in less than a minute. To get
equivalent speedup using a multi-PC paral-
lel grid would require much more resources
and money. We do notice that using double
precision results in much less speedup. How-
ever, double precision support on the GPUs
is very new, and the newest NVIDIA GPU
architecture called Fermi is said to handle
double precision more efficiently.

Currently, one can purchase custom
made PCs which contain multiple dedicated

GPUs with the combined compute power
of over a Tera-flop. These desktop super
computers have the potential to increase
speedup by an order of magnitude at a frac-
tion of the cost of an equivalent PC CPU
cluster.

7 Conclusion and Outlook

From our speedup results, we conclude that
using CUDA enabled GPUs to reduce the
computation time of our NLSE simulations
is well worth the added code development
time. In single precision, we have obtained
speedups of over 70 when using a single mod-
estly priced GPU.

We predict that the GPU codes will be
most effective in two and three dimensional
settings, since such multidimensional set-
tings are where the grid size will naturally
be very large.

Two dimensional codes are currently in
development, with the final goal to produce
a full three-dimensional code for use in re-
search projects.

We acknowledge support from NSF
grant NSF-DMS- 0505663 and NSF-DMS-
0806762.

References

[1] R. M. Caplan, R. Carretero-González,
P.G. Kevrekidis, and Q. E. Hoq,
Azimuthal modulational instability of
vortices in the nonlinear Schrodinger
equation, Optics Communications 282
(2009), 1399–1405.

[2] L. Debnath, Nonlinear partial differen-
tial equations for scientists and engi-
neers, 2 ed., Birkhauser Boston, New
York, New York, 2005.

[3] P. G. Kevrekidis, D. J. Frantzeskakis,
and R. Carretero-González, Emergent
nonlinear phenomena in Bose-Einstein
condensates: Theory and experiment, 1
ed., Springer, New York, New York,
2007.

[4] NVIDIA, Cuda 2.3 documentation, 2009.

	04_CSRC_minipaper.pdf
	Introduction
	Nonlinear Schrödinger Equation and Trial Solution
	NVIDIA GPU
	CUDA API
	Numerical Method for NLSE Simulations
	High Order Two-Step Compact Scheme
	Modulus-Squared Dirichlet Boundary Condition
	CUDA Implementation

	Speedup Results
	Conclusion and Outlook

