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Abstract: We seek vortex solutions to the
Cubic-Quintic Nonlinear Schrödinger Equa-
tion both analytically and numerically. Our
analytical approach is based on the one-
dimensional exact solution of a steady-state
profile solution, combined with a variational
approach. Our numerical solutions are
formed by using our analytical results as an
initial guess for a nonlinear modified Gauss-
Newton optimization routine. Our results
show that the existence region for the vor-
tices, which have been previously deputed,
are in fact the same as the known existence
regions for the one-dimensional profile.
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1 Introduction

The Cubic-Quintic Nonlinear Schrödinger
Equation (CQNLS) can be used to model
a variety of physical systems. These in-
clude light propagation through nonlinear
optical media such as double-doped optical
fibers [3] and non-Kerr crystals [4]. It has
also been used in various contexts of Bose-
Einstein condensates. The key feature of
CQNLS models is the competition of the fo-
cusing and defocusing nonlinear terms. This
allows for stable structures which would oth-
erwise be unstable in the cubic NLS.

An interesting property of light is that
of twisted light. This is when light is twisted
about its axis, and has a topological charge
which tells how many times it twists around
for each wavelength. Such light is called an
optical vortex, and has the property that the
center is identically zero in intensity, and
hence looks like a ring of light. A higher
charge vortex will result in more angular mo-
mentum, and thus a wider radius to the ring
as shown in Fig. 1.

Figure 1: Projection of optical vortices of
different topological charges onto a dark

surface formed by passing a laser beam through
a specialized fork grating. Photo courtesy of A.

Hansen, Stony Brook University.

When such vortices propagate through
a nonlinear medium such as certain crys-
tals or fibers with a cubic Kerr-type effect,
they exhibit azimuthal modulational insta-
bility (MI) in which they break up into fil-
aments, thus excluding their practical use.
An example of this is shown in Fig. 2.

Figure 2: Example of a vortex of charge 4 in
the CQNLS exhibiting break up due to

azimuthal modulational instability. Shown is
the intensity depicted by the modulus-squared

of the wave-function.

However, in materials which have com-
peting self-focusing and defocusing nonlin-
ear properties, the vortices can be stable.
The CQNLS can model such vortices.

Our goal in this report is to find and de-
scribe the vortex solutions to the CQNLS,
and to determine their existence bounds.
This is important because others have shown
that in order for vortices to be MI stable,
they must have a large value of complex fre-
quency. Knowing the maximum possible fre-
quency of a vortex solution will help in de-
termining if vortices of higher charges can be
MI stable.



There are some potential applications of
finding stable optical vortices in cryptog-
raphy, quantum computing, and also data
compression. Since in principle, the charge
of the vortex can be made to take any inte-
ger value, a single pulse of a light vortex can
transmit one of hundreds of possible mes-
sages.

2 Review of One-Dimentional
Solutions

We first review the steady state profile so-
lution to the one-dimensional CQNLS. The
undimentionalized one-dimensional CQNLS
takes the form:

iΨt + Ψxx + |Ψ|2Ψ− |Ψ|4Ψ = 0, (1)

while the one-dimensional steady state wave
profile takes the form:

Ψ(x, t) = f(x) eiΩ t. (2)

When Eq. (2) is inserted into Eq. (1), we get:

− Ω f +
d2f

dx2
+ f3 − f5 = 0. (3)

Eq. (3) can be solved for f(x), which yields
a soliton-like profile [1]:

f2 =
4Ω

1 +
√

1− (16/3)Ω cosh(2
√

Ωx)
. (4)

It is apparent that the solution does not ex-
ist for all values of Ω. The maximum value
that Ω can take is:

Ω1D
max = 3/16 = 0.1875. (5)

Therefore, there is an existence region of
Ω ∈ [0,Ω1D

max], where when Ω = Ω1D
max, the

solution is simply a constant value of f(x) =
f0 =

√
3/4, and Ω = 0 yields the trivial so-

lution. This solution describes a sech-shaped
curve which flattens out as Ω→ Ω1D

max. The
family of solutions are depicted in Fig.3.

Figure 3: Depictions of steady state solitary
solutions for the one-dimensional CQNLS.

3 Two-Dimensional CQNLS
Vortex Profile

The non-dimensionalized two-dimensional
CQNLS is written as:

iΨt +∇2Ψ + s1 |Ψ|2Ψ + s2 |Ψ|4Ψ = 0, (6)

where∇2Ψ is the two-dimensional Laplacian
of the wave function and si = ±1. Since
the natural coordinate system for studying
vortices is polar, the Laplacian takes on the
well-known form:

∇2Ψ =
1
r

∂

∂r

(
r
∂Ψ
∂r

)
+

1
r2

∂2Ψ
∂θ2

. (7)

For bright vortices (which we will exclusively
analyze), s1 = +1 and s2 = −1.

A steady state vortex in the CQNLS can
be described in general as:

Ψ(r, θ, t) = f(r) ei(mθ+Ωt), (8)

where f(r) ∈ < is the steady state radial
profile, m is the topological charge, and Ω is
the complex frequency. An example of such
a vortex is shown in Fig. 4



Figure 4: Depiction of a vortex of charge 5 and
complex frequency of 0.16 in the CQNLS. The
‘height’ of the vortex represents the value of
the wave-function. The gray area represents
the intenisty, while the blue and red meshes

are the real and imaginary parts of the
wave-function respectivly.

Inserting Eq. (8) Eq. (6) yields:

−
(

Ω +
m2

r2

)
f+

1
r

∂

∂r

(
r
∂f

∂r

)
+f3−f5 = 0.

(9)
If we assume that the vortex has a large ra-
dius, then the region of interest in the evo-
lution equation has r >> 1, in which case
the variations in the variable r behave like
a constant denoted rc, which we take to be
the center of the radial profile. With this
assumption, Eq. (9) becomes:

−
(

Ω +
m2

r2
c

)
f +

∂2f

∂r2
+ f3− f5 = 0, (10)

which is exactly the same form as the one-
dimensional CQNLS profile ODE depicted
in Eq. (3), but with an offset Ω value. We
designate this offset Ω as:

Ω∗ = Ω +
m2

r2
c

, (11)

and can then rewrite Eq. (10) as:

− Ω∗ f +
∂2f

∂r2
+ f3 − f5 = 0. (12)

The steady state profile for Eq. (12), is sim-
ply the same as in the one-dimensional case:

f2
asy =

4Ω∗

1 + S cosh
(

2
√

Ω∗ (r − rc)
) , (13)

where S =
√

1− (16/3)Ω∗.

What we need now is an expression for
the central radius of the profile, rc and Ω∗.
Finding one of the two automatically gets us
the other from the expression in Eq. (11).

3.1 Variational Approach

We start by inserting the general vortex so-
lution of Eq. (8) into the Lagrangian density
of the CQNLS:

L =
(

Ω +
m2

r2

)
f2 +

(
df

dr

)2

− 1
2
f4 +

1
3
f6.

(14)
Since f(r) is steady state, the radial inte-
grals over f(r) in the Lagrangian will be-
come constants (which will depend on m and
Ω), and we can write it as:

L = 2π[ΩC1 +m2 C3 + C2 −
1
2
C4 +

1
3
C5],

(15)
where,

C1 =
∫∞

0
f(r)2r dr, (16)

C2 =
∫∞

0

(
df
dr

)2

r dr, (17)

C3 =
∫∞

0
1
r2 f(r)2r dr, (18)

C4 =
∫∞

0
f(r)4r dr, (19)

C5 =
∫∞

0
f(r)6r dr. (20)

The Euler-Lagrangian equations take the
form:

∂L

∂Ω∗
= 0,

∂L

∂rc
= 0, (21)

Evaluating Eq. (21) leads to two equations
for Ω∗ and rc. Solving the equations we get:

rva
c = m

[
Ω− 3

16 + 1
2T

√
3
16 Ω∗

]−1/2

,(22)

Ω∗ = Ω + m2

(rva
c )2 , (23)

where T is defined as:

T = arctanh

[√
3

16Ω∗
−
√

3
16Ω∗

− 1

]
,

(24)
Obviously, to solve for rc analytically in

terms of Ω seems impossible. However, it is
possible to solve for rc numerically using a
root finder routine (in our case a simple bi-
section method with a tolerance of 10−15),
and then using the result to obtain the de-
sired VA profile.

There is a nice analytical result that can
be obtained from Eq. (22). If we combine
the two equations, we can rearrange things



to get an analytical form for Ω as a function
of Ω∗:

Ω = G(Ω∗) =
Ω∗

2
+

3
32
− 1

4T

√
3
16

Ω∗, (25)

where T is defined as in Eq. (24). We can
write rc in terms of G(Ω∗) as:

rvac =
m√

Ω∗ −G(Ω∗)
, (26)

which is simply a rearrangement of Eq. (11).
With this formulation of the VA, we can eas-
ily see how Ω and Ω∗ are related, as well as
how rva

c behaves. It should be noted, that it
seems that while rva

c depends on m, the re-
lationship between Ω and Ω∗ does not. This
means that we have a relationship between Ω
and Ω∗ that is valid for all charges m (keep-
ing our large-r approximation in mind). In
Fig. 5 we show rva

c versus Ω and Ω∗ with
m = 5.

Figure 5: rva
c versus Ω = G(Ω∗) and Ω∗ for

m = 5.

We see that as one increases Ω (and Ω∗), the
radius of the vortex starts out very large (in-
finity for Ω = 0), decreases until it reaches a
minimum value, and then increases rapidly
(it becomes infinite at Ω = Ω2D

max).

3.2 Existence Bound for
Two-dimensional Vortex
Profiles

We can glean some interesting information
from Eq. (25). From numerical investiga-
tions done in [7] and [2], the value of the
existence criteria in the 2D vortex solution
was stated as Ω2D

max ≈ 0.180. Later it was
shown analytically in [6] that:

Ω2D
max = Ω1D

max = 3/16 = 0.1875. (27)

It is possible to explain why the numeri-
cal results were incorrect by looking at the
relationship between Ω and Ω∗ given by
Eq. (25). In Fig. 6 we plot Ω = G(Ω∗) versus
Ω∗ for Ω∗ ∈ [0.01, 0.1875].

Figure 6: Ω vs. Ω∗ for the VA ansatz.

We see that as Ω∗ → 3/16, Ω approaches
0.1875, but appears to only get to around
0.171 before jumping to 0.1875. We know
that as Ω∗ → 0.1875, Ω → 0.1875 because
we can see from Eq. (25), that as Ω∗ → 3/16,
T →∞, and so Ω→ Ω∗/2 + 3/32 = 0.1875.
The reason why there is a ‘jump’ in Fig. 6
is due to the extreme sensitivity of the re-
lationship between Ω and Ω∗ near Ω2D

max. In
Table. 1 we show some example values of Ω∗

their corresponding G(Ω∗) = Ω.

Ω∗ Ω = G(Ω∗)
0.1874 0.1664
0.187499 0.1736
0.187499999 0.1783
0.187499999999 0.1806
0.1874999999999999 0.1823

Table 1: Evaluation of Ω = G(Ω∗) near 0.1875.
We only show four significant digits on G(Ω∗).

As is clearly seen, one quickly approaches
the limit of machine precision in Ω∗ as Ω→
3/16. It is not surprising then, that numeri-
cal estimates of Ω2D

max (done by using a shoot-
ing method to try to find profiles at different
Ω values) were inaccurate. We will confirm
the existence bound of Ω2D

max = 3/16 by com-
puting some vortex profiles with Ω > 0.18.



4 Numerically-Exact Steady
State Vortex Profiles

Here we use describe our method for finding
numerically-exact vortex profiles.

4.1 Numerical Nonlinear
Optimization

We recall that the goal is to find the radial
profile f(r) which satisfies Eq. (9) for a given
m and Ω. If we discretize the radial direction
and use a second order finite difference ap-
proximation for the derivatives, we can write
Eq. (9) as the vector function:

~F (~f) = −
(

Ω + m2

r2
j

)
fj+

1
rj∆r

(
rj+1/2

fj+1−fj

∆r − rj−1/2
fj−fj−1

∆r

)
+f3

j − f5
j = ~0,

where ∆r is the grid spacing length, rj =
j∆r, and fj = f(rj).

What we want is a discrete radial profile
input vector (~f∗) which satisfies ~F (~f∗) = ~0.
The problem can be looked at as a mini-
mization problem, which we solve using a
numerical optimization technique known as
a modified Gauss-Newton method [5].

We iterate a trial solution (~f0) of Eq. (28)
towards a local minimum solution, ~f∗, by
taking steps defined as:

~fk+1 = ~fk + αk~pk,

where αk is the step length for step number
k, and pk is the step direction. To mark our
progress towards ~F (~f∗(r)) = ~0 we define a
merit function as:

M(~f) =
1
2

n∑
i=1

(Fi(~f))2, (28)

the gradient of which is:

∇M(~f) = J(~f)T ~F (~f). (29)

To determine the step size αk we use an
inexact line search which takes the step di-
rection and computes (using backtracking
search) a step length which satisfies some
minimum ‘progress’ conditions, the most
common of which are called the Wolfe condi-
tions. For our problems only one such con-
dition is necessary and it is:

M(fk + αkpk) ≤M(fk) + c1αk∇MT
k pk,

(30)

where 0 < c1 < 1 [5]. This condition guar-
antees that we will find a satisfactory step
length for each iteration.

To determine the step direction we use
the modified Gauss-Newton step:

~pk = −(JTk Jk + λI)−1JTk ~F (fk), (31)

where Jk is the Jacobian of ~fk and λk is
called the forcing term. The forcing term
is needed because during our iterations it is
possible that we end up near a local mini-
mum where ∇M(fk) = 0, but M(~f∗) 6= 0.
This would cause the line search to give
αk = 0, and cause JTk Jk to become singu-
lar, which in turn causes the classic Gauss-
Newton step to become undefined. Modify-
ing the GN by adding the forcing term pre-
vents this by ensuring (JTk Jk + λI) is not
singular. This also allows our line search to
always give us a finite step length.

Choosing the value for λk is not trivial. If
the value is too high, then the step direction
becomes closer to the steepest decent direc-
tion (since as λk → ∞, pk → −JTk ~F (fk)),
and fast convergence is lost. If the value
for λk is too small, then near non-zero roots
of M , the length of each step becomes very
small, and fast convergence is lost. Through
experimentation, we find that a fixed value
of λk = 0.0001 works well for finding steady-
state vortex profiles with our chosen param-
eters [5].

Our stopping criterion is when M(~f) <
εGM, where εGM is our tolerance. Typically
we set this to be between 10−8 and 10−4.

4.2 Numerical Steady-State
Profile Results

In Fig. 7, we show some radial profiles com-
puted with our GN routine for various val-
ues of Ω with charges m = 1 and m = 5. We
show a couple of profiles with Ω > 0.18 in-
cluding one with a very large Ω = 0.1874.
these results are consistent with the exis-
tence bound of Ω2D

max = 0.1875 reported
in [6] and predicted by our variational ap-
proach.



Figure 7: Steady-state vortex radial profiles computed with the GN routine for various values of Ω.
Left: m = 1, Right: m = 5. The top profiles have a range of Omega ∈ [0.01, 0.17] with ∆Ω = 0.01,

while the bottom profiles have Ω = [0.170.180.1870.1874]. For all profiles we used our VA ansatz as an
initial condition. We used ∆r = 0.5 and a tolerance of 10−4 in the GN routine.

To confirm that the profile solutions
we compute from the GN routine are true
steady-state vortex solutions, we use them
as initial conditions to a full two-dimensional
simulation of the CQNLS and run them for
a long time and we see that they do appear
to be steady-state.

5 Conclusion

We have found vortex solutions to the
two dimensional Cubic-Quintic Nonlinear
Schrödinger Equation (CQNLS) for various
values of the complex frequency. We have
formulated a VA ansatz for the radial profile
of the vortex which is very close to teh true
solution. By using an optimization routine,
we were able to refine the VA ansatz into
numerically-exact vortex profiles. In so do-
ing, we have confirmed the existence bounds
of the vortices, that they are the same as the
one dimensional existence bounds. These re-
sults will be used in further research to study

the azimuthal modulational stability of vor-
tices in the CQNLS.

References

[1] S. Cowan, R. H. Enns, S. S. Rangnekar,
and S. S. Sanghera, Quasi-soliton and
other behaviour of the nonlinear cubic-
quintic Schrödinger equation, Canadian
Journal of Physics 64 (1986), no. 3, 311–
315.

[2] A. Desyatnikov, A. Maimistov, and B. A.
Malomed, Three-dimensional spinning
solitons in dispersive media with the
cubic-quintic nonlinearity, Physical Re-
view E 61 (2000), no. 3, 3107–3113.

[3] S. Gatz and J. Herrmann, Soliton prop-
agation and soliton collision in double-
doped fibers with a non-Kerr-like nonlin-
ear refractive-index change, Optics Let-
ters 17 (1992), no. 7, 484–486.



[4] B. L. Lawrence and G. I. Stege-
man, Two-dimensional bright spatial
solitons stable over limited intensities
and ring formation in polydiacetylene
para-toluene sulfonate, Optics letters 23
(1998), no. 8, 591–593.

[5] J. Nocedal and S. J. Wright, Numerical
optimization, 2 ed., Springer, New York,
New York, 2006.

[6] R. L. Pego and H. A. Warchall, Spectrally
stable encapsulated vortices for Nonlin-
ear schrödinger equations, Nonlinear Sci-
ence 12 (2002), 347–394.

[7] M. Quiroga-Teixeiro and H. Michinel,
Stable azimuthal stationary state in quin-
tic nonlinear optical media, Journal of
the Optical Society of America B 14
(1997), no. 8, 2004–2009.


	ACCESS_2009_Caplan.pdf
	Introduction
	Review of One-Dimentional Solutions
	Two-Dimensional CQNLS Vortex Profile
	Variational Approach
	Existence Bound for Two-dimensional Vortex Profiles

	Numerically-Exact Steady State Vortex Profiles
	Numerical Nonlinear Optimization
	Numerical Steady-State Profile Results

	Conclusion


