Parallelizing your Fortran Codes on CPUs
and GPUs with ‘do concurrent’
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of codes on multi-core CPUs and GPUs.
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do loops that are parallelizable (no data dependencies
between iterations) only need to be replaced with For-
tran’s DO CONCURRENT loops. Utilizing a specific com-
piler flag, these loops are recognized and parallelized.
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reduction loops, and a fully DO CONCURRENT code relying on implicit reductions.

This research is supported by Predictive
Science Inc, via NSF-NASA (AGS 202815
and 80NSSC20K1582) grants, the National
Science Foundation (DUE- 1930546 and

()]
o

= NVIDIA nvfortran (GPU)
T o (over 10 runs)

OAC 2019194) grants, the National Science Code 1 Nested do loops with OpenMP/ACC directives ' 'g 50

Foundation XSEDE program’s Pittsburgh !$omp parallel do collapse(2) default(shared) ‘H\ P S ( : 5
Supercomputer Center allocation (TG- '$acc parallel loop collapse(2) default(present) 9 40 35.1 35.7 35.6

MCA03S014), and the Computational Sci- do i=LN %

ence Research Center (CSRC) at San Diego do j=1M - £ 30
. . Computation =
State University =
enddo ~

enddo § 20
!$acc end parallel loop o
, —

!$omp end parallel do g 10

Code 2 Nested do loops as a do concurrent loop

do concurrent (i=1;N’ j=1:M) OpenACC Do Concurrent Do Concurrent
. A100 40GB + OpenACC A100 40GB
Computatlon A100 40GB
enddo

Figure 2: GPU timings with Nvidia nvfortan comparing performance for an OpenACC directive based
code, a hybrid code utilizing DO CONCURRENT loops and OpenACC directives for reduction loops
and data movement, and a fully DO CONCURRENT code relying on implicit reductions and Nvidia’s
unified memory.




