Parallelizing your Fortran Codes on CPUs
and GPUs with ‘do concurrent’

Recently, there has been growing in-

terest in using standard language con- A =

structs such as Fortran’s DO CONCUR-]I Ji A /9 (6 %
RENT loops for accelerated computing. b @]r]r (a]l]l
These constructs enable parallelization = — M e e

of codes on multi-core CPUs and GPUs.
Fortran's DO CONCURRENT construct

is a simpler alternative to implement : A ‘] N & ‘ ' D ‘] | 3
compared to directive-based APIs such as OpenMP and \ N \
OpenACC. With Fortran’s DO CONCURRENT construct, I \ - . U , \ .7 J \ J \ IR 4 \ JA

do loops that are parallelizable (no data dependencies
between iterations) only need to be replaced with For-
tran’s DO CONCURRENT loops. Utilizing a specific com-
piler flag, these loops are recognized and parallelized.

The construct approach has the potential to be more - : = 1600 =1 NVIDIA nvfortran (CPU)
portable, and some compilers already (or have plans to) Bis ' — — 1400 1284.6 T o (over 10 runs)
support such standards. We looked at the performance ' FIF ! 1] g : , el '
of Fortran's DO CONCURRENT and directive-based = CSRC g 4200
APIs with a mini-app called diffuse. We utilize NVIDIA's r————— Smd DieGo STaTE “"’*",.,\. i 81000
nvfortran compiler and compare speedups on CPUs and % g‘f‘i“z!;‘g_‘ e e " v
GPUs to the Serial CPU code. We find that the DO CON- i o B i £ 800
CURRENT constructs perform as well as directives in T - S 600
our case, which may not hold in more complicated codes, - 8
but both are significantly faster than the serial code. J = 400
Fortran’s DO CONCURRENT construct is a simple first = 200
step to parallelizing Fortran codes on CPUs and GPUs. - ' =
OpenAcc .’ .S"‘d";‘ 0 Serial OpenACC Do Concurrent Do Concurrent
- .‘ .t .- 1-core 128-cores + OpenACC 128-core
Miko Stulajter, Ronald M. Caplan, and Jon M 7'0, = . reeores
A. Linker : e e e o e i s

reduction loops, and a fully DO CONCURRENT code relying on implicit reductions.

This research is supported by Predictive
Science Inc, via NSF-NASA (AGS 202815
and 80NSSC20K1582) grants, the National
Science Foundation (DUE- 1930546 and

()]
o

= NVIDIA nvfortran (GPU)
T o (over 10 runs)

OAC 2019194) grants, the National Science Code 1 Nested do loops with OpenMP/ACC directives ' 'g 50

Foundation XSEDE program’s Pittsburgh !$omp parallel do collapse(2) default(shared) ‘H\ P S (: 5
Supercomputer Center allocation (TG- '$acc parallel loop collapse(2) default(present) 9 40 35.1 35.7 35.6

MCA03S014), and the Computational Sci- do i=LN %

ence Research Center (CSRC) at San Diego do j=1M - £ 30
. . Computation =
State University =
enddo ~

enddo § 20
!$acc end parallel loop o
, —

!$omp end parallel do g 10

Code 2 Nested do loops as a do concurrent loop

do concurrent (i=1;N’ j=1:M) OpenACC Do Concurrent Do Concurrent
. A100 40GB + OpenACC A100 40GB
Computatlon A100 40GB
enddo

Figure 2: GPU timings with Nvidia nvfortan comparing performance for an OpenACC directive based
code, a hybrid code utilizing DO CONCURRENT loops and OpenACC directives for reduction loops
and data movement, and a fully DO CONCURRENT code relying on implicit reductions and Nvidia’s
unified memory.

