
Parallelizing your Fortran Codes on CPUs
and GPUs with ‘do concurrent’

Recently, there has been growing in-
terest in using standard language con-
structs such as Fortran’s DO CONCUR-
RENT loops for accelerated computing.
These constructs enable parallelization
of codes on multi-core CPUs and GPUs.
Fortran’s DO CONCURRENT construct
is a simpler alternative to implement

compared to directive-based APIs such as OpenMP and
OpenACC. With Fortran’s DO CONCURRENT construct,
do loops that are parallelizable (no data dependencies
between iterations) only need to be replaced with For-
tran’s DO CONCURRENT loops. Utilizing a specific com-
piler flag, these loops are recognized and parallelized.
The construct approach has the potential to be more
portable, and some compilers already (or have plans to)
support such standards. We looked at the performance
of Fortran’s DO CONCURRENT and directive-based
APIs with a mini-app called diffuse. We utilize NVIDIA’s
nvfortran compiler and compare speedups on CPUs and
GPUs to the Serial CPU code. We find that the DO CON-
CURRENT constructs perform as well as directives in
our case, which may not hold in more complicated codes,
but both are significantly faster than the serial code.
Fortran’s DO CONCURRENT construct is a simple first
step to parallelizing Fortran codes on CPUs and GPUs.

Miko Stulajter, Ronald M. Caplan, and Jon
A. Linker

This research is supported by Predictive
Science Inc, via NSF-NASA (AGS 202815
and 80NSSC20K1582) grants, the National
Science Foundation (DUE- 1930546 and
OAC 2019194) grants, the National Science
Foundation XSEDE program’s Pittsburgh
Supercomputer Center allocation (TG-
MCA03S014), and the Computational Sci-
ence Research Center (CSRC) at San Diego
State University

