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Analysis for Minimal Channel Flow 
Turbulence 

Estimating turbulent flow states in back-
ward time from limited measurements is 
a challenging task with broad applica-
tions in data assimilation.

Attempts in reduced-order modelling, 
such as Proper Orthogonal Decomposi-
tion and Dynamic Mode Decomposition, 

have been utilized to project high-dimensional nonlinear 
flow fields onto a low-dimensional space. However, 
these models often are suboptimal for studying the non-
linear interaction of modes due to their linearity. The 
adjoint operator is the most effective tool for evaluating 
the sensitivity of a measurement to the precedent flow 
events, but it does not take into account the equilibrium 
distribution of statistically stationary turbulent fields.

To address these shortcomings, a neural-network-based 
autoencoder (AE) is trained to summarize the equi-
librium distribution of turbulence in a low-dimensional 
embedding with a much lower degree of freedom. The 
AE compresses the direct numerical simulation (DNS) 
output of a minimal turbulent half-channel flow into a la-
tent space 1/16 the size of the DNS resolution. The AE is 
combined with a physics-based adjoint method to evalu-
ate the sensitivity of measurements in a minimal channel 
flow turbulence with a Reynolds number of 100.

The nonlinear nature of the framework enables us to re-
veal the dependence of finite deviations in sparse mea-
surements to precedent flow events.
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