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Part 1:

Development & Validation of a
Kilovoltage (kV) Dose Computation
Method



Background: Medical Imaging ]
[& Kilovoltage (kV) X-rays
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Background:
Image Guided Radiotherapy

= Treatment Goal:

o Maximize dose to tumor

o Avoid healthy tissue

= Imaging to locate tumor
and adjust patient setup

= Patients imaged daily
can accumulate

Imaging detector .
~~ considerable dose

é/ o Skin (max. dose
deposited at surface)

o Bone (photo-electric
effect dominates)
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[Background & Motivation

Dose from imaging can:
o Increase stochastic effects (cancer risk)

o In radiotherapy: Push planned dose to healthy
tissues beyond their tolerance for a given side
effect

Need to:

Assess and monitor x-ray dose each patient
receives from kV-imaging



[Overall Research Goal

Develop and validate an approach to compute
patient-specific dose from a kV imaging device

Method must be:

o Accurate

o Clinically feasible
Patient specific
Calculate dose within reasonable time



Method for Computing kV Dose

Developed in-house software (kVDoseCalc) to
compute dose deposited by kV x-rays?

Dose I1s computed by numerically solving the
linear Boltzmann transport equation (LBTE)

Validated using MCNP, EGSnrc, and
experimental measurements?!?

1Kouznetsov, A. and Tambasco, M., 2011, A hybrid approach for rapid, accurate and
direct kilovoltage radiation dose calculations in CT voxel space, Medical Physics, 38(3),
1378-1388.

2 Poirier, Y., Kouznetsoyv, A., and Tambasco, M., 2012, A simplified approach to
characterizing a kilovoltage source spectrum for accurate dose computation, Medical
Physics, 39(6).



Overview:

Computational Approach
X-ray
Source defined by spectrum Source
and spatial fluence |

Deterministic ray transport
Primary component
Stochastic computation

1-Scattered
N-Scattered Point of
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[Source Characterization

Spatial fluence
Spectrum at different spatial positions

Requirement:

o Characterization needs to be clinically
feasible



Properties of a kV x-ray source

: : K Cathode
= Photon intensity S
e  beam §

= Varies along X

= Varies along Y “

= Spectrum 45
. 4/
= Varies along X L ateraXaxis
u .
= Does not vary along Y Begr hardening

= Proposed source model :
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Monte Carlo graphs obtained from :
Ding, G.X, Duggan, D.M., Coffey, C.W., ) [ .
Characteristics of kilovoltage x-ray beams used for Radial =Yals
cone-beam computed tomography in radiation therapy, -30 -20 -10 0 10 20
Phys. Med. Biol. 52, 2007 p. 1595-1615 Off-axis separation (cm)
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Determination of U,

b(Z)

K Cathode
?s\

= In principle: e- beam

The entire spectrum Accelerating potential
should be known (kVp)

= In practice:

Half-value layer (HVL) and 4088
kVp used to describe beam _. 353
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Validated for open beams
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Y. Poirier, A. Kouznetsov, M. Tambasco, A simplified approach to characterizing a kilovoltage
source spectrum for accurate dose computation, Med. Phys. 39 (6), 2012 p.3041-3050
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Validation:

Computational & Experimental

¢ Point Source
(Monte Carlo derived spectrum

for Varian® OBI System)*
SSD =100 cm

FS = 10%x10 cm?

— ]1.29cm
2.42 cm

4.84 cm

1.37 cm

Validation Phantom

‘Ding GX, et al., Phys. Med. Biol. 52 (2007) 1595-1615

kVVDoseCalc GUI



MCNP/EGSnrc Validation:
Central Axis Depth Dose
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Kouznetsov, A, Tambasco, M. (2011) Medical Physics, 38(3), 1378-1388.



Computational Validation:
Profile at Centre of Lung Slab
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Kouznetsov, A, Tambasco, M. (2011) Medical Physics, 38(3), 1378-1388.



[Source: Spectrum

Computational validation assumed point
spectral source

HVL and kVp do not uniquely determine
spectrum
Performed sensitivity analysis

o Showed that HVL and kVp are sufficient to
characterize a kV source spectrum

Poirier, Y., Kouznetsov, A., and Tambasco, M., 2012, Medical Physics, 39(6).



[Sensitivity Analysis Conclusions

Difference in dose computation between Spektr-
derived and MC spectrum is <0.1%

Experimental variation of HVL (0.1-0.2 mm Al)
changes dose computation accuracy by at most 1%

Experimental variation of kVp (1-2 kVp) changes
computation accuracy by at most 1%

Possible to characterize spectrum based on HVL
and kVp within 1.2% accuracy
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Experimental Validation -

Relative

Measurements are
made with 0.6 cc
Capintec ion chamber

Radiographic pulse of

125 kVp, 160 mA 160 ms
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Experimental Validation - |
[Absolute

CuP) thermolurtineseent
%O Ute s Measurement

rformed in
19®phantom
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Dose Interpolation:
Adaptive Sparse Grid

Regular Grid
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Dose Interpolation:
Error Distribution & Dose Map
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Progress summary

Sensitivity Analysis & Source Characterization

o HVL and kVp can be used to characterize source
spectrum

o Developed clinically feasible method to characterize
spatial fluence as input for kVDoseCalc

Relative dosimetry

o Homogeneous phantom : agrees within 2%
o Heterogeneous phantom : agrees within 4%
Absolute dosimetry Rando® phantom

o Complex geometry

o Agreement within experimental uncertainty



[Work INn Progress

Adaptive Grid Implementation
o To speed up calculations and maintain accuracy

Incorporate added filtration (e.g. half and full
bowtie filters) on source characterization

Model and validate our method for radiography,
fluoroscopy, CT, and CBCT imaging
o Anthropomorphic phantom for dose validation

Adapt code for GPU computation
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