Computational Tools to Calculate X-ray Imaging Dose & Assess Radiotherapy Treatment Beam Modulation

> Medical Physics San Diego State University

Mauro Tambasco, Ph.D., MCCPM

Part 1: Development & Validation of a Kilovoltage (kV) Dose Computation Method

Background: Medical Imaging & Kilovoltage (kV) X-rays

X-ray Radiography

Fluoroscopy

CT Scans

Background: Image Guided Radiotherapy

- Treatment Goal:
- Maximize dose to tumor
- o Avoid healthy tissue
- Imaging to locate tumor and adjust patient setup
- Patients imaged daily can accumulate considerable dose
- Skin (max. dose deposited at surface)
- Bone (photo-electric effect dominates)

Background & Motivation

Dose from imaging can:

- Increase stochastic effects (cancer risk)
- In radiotherapy: Push planned dose to healthy tissues beyond their tolerance for a given side effect

Need to:

 Assess and monitor x-ray dose each patient receives from kV-imaging

Overall Research Goal

- Develop and validate an approach to compute patient-specific dose from a kV imaging device
- Method must be:
 - o Accurate
 - Clinically feasible
 - Patient specific
 - Calculate dose within reasonable time

Method for Computing kV Dose

- Developed in-house software (kVDoseCalc) to compute dose deposited by kV x-rays¹
- Dose is computed by numerically solving the linear Boltzmann transport equation (LBTE)
- Validated using MCNP, EGSnrc, and experimental measurements^{1,2}
- ¹Kouznetsov, A. and Tambasco, M., 2011, A hybrid approach for rapid, accurate and direct kilovoltage radiation dose calculations in CT voxel space, *Medical Physics*, 38(3), 1378-1388.
- ² Poirier, Y., Kouznetsov, A., and **Tambasco, M.**, 2012, A simplified approach to characterizing a kilovoltage source spectrum for accurate dose computation, *Medical Physics*, 39(6).

Overview: Computational Approach

- Source defined by spectrum and spatial fluence
 - Deterministic ray transport

0

- Primary component
- Stochastic computation
 - 1-Scattered
 - N-Scattered

X-ray

Source

Source Characterization

- Spatial fluence
- Spectrum at different spatial positions
- Requirement:
 - Characterization needs to be clinically feasible

Properties of a kV x-ray source

- Photon intensity
 - Varies along X
 - Varies along Y
- Spectrum
 - Varies along X
 - Does not vary along Y
- Proposed source model :

Monte Carlo graphs obtained from : Ding, G.X, Duggan, D.M., Coffey, C.W., *Characteristics of kilovoltage x-ray beams used for cone-beam computed tomography in radiation therapy*, Phys. Med. Biol. **52**, 2007 p. 1595-1615

Determination of $U_{(x,E)}$

In principle:

The entire spectrum should be known

In practice:

Half-value layer (HVL) and 4008 kVp used to describe beam 3590

 Use kVP + HVL to determine spectrum
Matlab Freeware Spektr
Validated for open beams within 4-6%*

*Y. Poirier, A. Kouznetsov, M. Tambasco, A simplified approach to characterizing a kilovoltage source spectrum for accurate dose computation, Med. Phys. 39 (6), 2012 p.3041-3050

Relative Intensity

Validation: Computational & Experimental

^{*}Ding GX, et al., Phys. Med. Biol. 52 (2007) 1595-1615

kVDoseCalc GUI

MCNP/EGSnrc Validation: Central Axis Depth Dose

Kouznetsov, A, Tambasco, M. (2011) *Medical Physics, 38*(3), 1378-1388.

Computational Validation: Profile at Centre of Lung Slab

Kouznetsov, A, Tambasco, M. (2011) *Medical Physics, 38*(3), 1378-1388.

Source: Spectrum

- Computational validation assumed point spectral source
- HVL and kVp do not uniquely determine spectrum
- Performed sensitivity analysis
 - Showed that HVL and kVp are sufficient to characterize a kV source spectrum

Sensitivity Analysis Conclusions

- Difference in dose computation between Spektrderived and MC spectrum is ≤0.1%
- Experimental variation of HVL (0.1-0.2 mm Al) changes dose computation accuracy by at most 1%
- Experimental variation of kVp (1-2 kVp) changes computation accuracy by at most 1%
- Possible to characterize spectrum based on HVL and kVp within 1.2% accuracy

Experimental Validation -Relative

- Measurements are made with 0.6 cc Capintec ion chamber
- Radiographic pulse of 125 kVp, 160 mA 160 ms

Off-axDeptibitano)e (cm)

Off-aixis distance (com)

Depth (cm)

2

0

10

10

12

Experimental Validation -Absolute

Very sensitive LiF (MgCuP) thermoluminescent detectors calibrated apgoutely • Measurement Absolute dosimetry performed in anthropomorphic Rando[®]₃phantom of phantom divided and Tissue and Bong I materials I-0 10x10 cm² field 6 7 8 0 **TLD Number** Irradiated with same 125 kVp x ray beam

Dose Interpolation: Adaptive Sparse Grid

Regular Grid

Adaptive Grid

		Tissue
	2 ¹ - 1	Bone
		Lung
	· · ·	Bone
• •	•	Tissue

Gamma Analysis (%DD = 2%, DTA = 2 mm)

Dose Interpolation: Error Distribution & Dose Map

Progress summary

- Sensitivity Analysis & Source Characterization
 - HVL and kVp can be used to characterize source spectrum
 - Developed clinically feasible method to characterize spatial fluence as input for kVDoseCalc
- Relative dosimetry
 - Homogeneous phantom : agrees within 2%
 - Heterogeneous phantom : agrees within 4%
- Absolute dosimetry Rando[®] phantom
 - Complex geometry
 - Agreement within experimental uncertainty

Work in Progress

- Adaptive Grid Implementation
 - To speed up calculations and maintain accuracy
- Incorporate added filtration (e.g. half and full bowtie filters) on source characterization
- Model and validate our method for radiography, fluoroscopy, CT, and CBCT imaging
 - Anthropomorphic phantom for dose validation
- Adapt code for GPU computation

Acknowledgements

Dr. Alexei Kouznetsov (Research Associate)Yannick Poirier (Ph.D. Student)

- Funding:
 - Alberta Cancer Research Institute (ACRI)