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Multi-Strain Pathogens



Immune Response to Pathogens

I How does our body response to pathogens?
I First step: Self Vs. non-self.
I Recognize pathogens by chemical markers (e.g. proteins,

carbohydrates) on the surface.
I Different markers stimulate different types of CTLs.
I Acquired immunity: Recognize, respond, purge and

memorize.
I Evolution of pathogens: Have multiple strains of the same

pathogen.



Visualizing Variants, Antigens, and Epitopes

Variant 1 V1 a α . . .

Variant 2 V2 a γ . . .

Variant 3 V3 b κ . . .

...
...

...
...



Unanswered Questions in Antigenic Variations

I How fast do variants switch?

I Is the expression of variants sequential or random?

I How is the phenotypic expression regulated?

I More importantly for us, how does it affect the hosts?



Strain Structure in Host Population

I Given the success of antigenic variation, there should be
many pathogens variants.

I Theory suggests that many variants necessary for the
strategy to succeed

I Clinically, distinct strains (strain structure) are often
maintained within the host population.

I Example: switching of dominant strains of influenza occurs
seasonally.

I Flu shots are only administer once a season.

I In same timescale, pathogens mutate and reproduce clonaly
many times over.



Strain Structure: Limiting Factors

I Number of limiting factors has been suggested for the
limited appearance of new strains.

I Biological compatibility (chemical) with binding sites on
these target cells.

I Limited change with same genome

I Not all new variants can be successful.



Cross-Protective Immunity

I Genetically similar strains share antigens.

I A host gained partial immunity from a previous infection.

I Negatively impact on future infection by other strains that
share allele.

I Protection is not fully effective, it may be enough to
prevent infection.

I Assume that strains with same genetic info will encode the
same antigens.
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Multi-Strain Model by Gupta et al. (1998)

I zi denotes the portion of population immune to strain i; wi

denotes the portion of the population which is immune to any
strain j that shares allele with strain i; and yi portion of the
population that is infectious w.r.t. strain i.

żi = λi(1− zi)− µzi,

ẇi = (1− wi)
∑
j∼i

λj − µwi,

ẏi = λi ((1− wi) + (1− γ)(wi − zi))− σyi,

(1)

I Force of infection: λi = βyi.

I Effectiveness of cross-protection is denoted by γ.

I j is indexed over strains which share any allele with strain i,
including i itself.

I Noted in (Gupta et al. 1998), the behaviour of the model is
largely unaffected by the exact functional form of the force of
infection term λi.



Multi-Strain Model by Recker and Gupta (2005)

I Recker and Gupta (2005) added another compartment to
model (1).

żi = λi(1− zi)− µzi,

ẇi = (1− wi)
∑
j∼i

λj − µwi,

v̇i = (1− vi)
∑
k∼i

λk − µvi,

ẏi = λi ((1− wi) + (1− γ1)(wi − zi) + (1− γ2)(vi − zi))− σyi,
(2)

I j ∼ i indicates the strains which share alleles with strain i.

I k ∼ i indicates the strains which share more than one allele
with strain i.



Clusters Formation

I Calvez et al. (2005) noticed that clusters of solutions form
in the aforementioned models.

I Clusters (partial synchrony) can be in the form of
steady-steady, periodic or chaotic solutions.

I Clustering seems to follow a pattern and Calvez et al.
(2005) investigated numerically.

I We will investigate this clustering analytically.
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Recasting the Models (1)

I Let each node in the figure represents the set of differential
equations in system (1).

I Directed graph gives a coupled cell representation of the 2
locus-2 allele form of the model by Gupta et al. (1998).

I Solid arrows indicate strains share alleles.

I Same shape of nodes denote the same set of differential
equations.

ax bx

byay



Recasting the Models (2)

I For another example, the 3 locus-2 allele form of the model
from Recker and Gupta (2005) is shown in the next figure

I Dashed arrows indicate strains share one allele.

I Solid arrows indicate strains share more than one allele.

bmx

bnx bny

bmy

amx

anx any

amy



Balanced Colouring

I To continue the mathematical analysis, we need a concept
called balanced coloring.

I Colour the nodes of the digraph to identify synchrony
patterns that may occur.

I A colouring is balanced when all the nodes of the same
colour receive the same set of inputs (directed edges).

I A balanced colouring with k colours is called a k-colouring.



Examples of 2-colour Patterns for n1 = 2 and n2 = 2.

I All nodes in Figure (a) and (b) receive the same kind of
input based on the colour of node.

I Not the case in Figure (c).
I Biologically, not all strains can be synchronized after

bifurcation.

ax bx

byay

(a)

ax bx

byay

(b)

ax bx

byay

(c)



Quotient Network

I Simplify the system by analyzing its 2-colour quotient
networks as shown in Golubitsky et al. (2005)

I Roughly speaking, a quotient network is a reduced network
based on potential synchrony patterns of the larger
network.

I Use colour to denote synchrony pattern (i.e. clustering) of
the subsystems.

I 2-colour refers to the number of synchrony states.



2-colour Quotient Network for System (1)

I Assume some balanced 2-colour pattern exist.

I si are self-connections.

I mi are connections from the other set.

m1

m2

s1 s2

.



Examples of 2-colour Patterns for n1 = 2 and n2 = 2.

I Figure (a) corresponds to si = 1 and mi = 1.

I Figure (b) corresponds to si = 0 and mi = 2.

I There are multiple edges for (b).

ax bx

byay

(a)

ax bx

byay

(b)



2-colour Quotient Network for System (2)

I Assume some balanced 2-colour pattern exist.

I si1 and mi1 are self and non-self connections for dashed
arrows.

I si2 and mi2 are self and non-self connections for solid
arrows.

m12

m11

s12 s11

m22

s22

m21

s21



Semi-Simple Double Zero Bifurcation

I We find semi-simple double zero bifurcation occurs for both
systems.

I As a parameter varies, bifurcation occurs when eigenvalues
from cross from the negative to the positive on the complex
plane.

I Two zeros cross the simultaneously at critical point.

I Exist two linearly independent eigenvectors associated with
the eigenvalues (semi-simple).

I Can apply centre manifold reduction to the systems.



Jordan canonical form and center manifold reduction

I Let nc and ns respectively be the numbers of eigenvalues
with zero real-part and negative real-part of the Jacobian.

I For semi-simple double zero bifurcation, there would be
two eigenvalues with zero real part and 2k − 2 eigenvalues
with negative real part.

I The system can be rewritten in block matrix form as

ẋc = Axc + f(xc,xs)

ẋs = Bxs + g(xc,xs)
(xc,xs) ∈ R2 × R2k−2, (3)

I Centre Manifold Theorem guarantees that there exists a
smooth manifold near the equilibrium point that captures
the local behaviour

I Other coordinates are represented on the centre manifold as

xi+2 = hi = aix
2
1+bix

2
2+ciβ̃

2+dix1x2+eix1β̃+fix2β̃+ · · · ,



Stability of semi-simple double zero bifurcation

I Following a centre manifold reduction, essential dynamics
of the model have been reduced to

ẋ1 = f1(x1, x2, β̃)

ẋ2 = f2(x1, x2, β̃)
, where i ∈ {1, 2}. (4)

I Bifurcation solutions are the intersections of the curves
fi0 = fi(x1, x2, 0).

I We define

J0(x̂1, x̂2) =

[
∂f̂10(x̂1,x̂2,0)

∂x̂1

∂f̂10(x̂1,x̂2,0)
∂x̂2

∂f̂20(x̂1,x̂2,0)
∂x̂1

∂f̂20(x̂1,x̂2,0)
∂x̂2

]
(5)

and σi0 be the eigenvalues of J0.

I The bifurcating solution is stable when detJ0 > 0 and both
of its eigenvalues have negative real part.



Stability Conditions for System (1)

I A direct calculation shows that the determinants are

D1 = 1,

D2 =
γ(m2 − s1)− 1

1 + s1γ
,

D3 =
γ(m1 − s2)− 1

1 + s2γ
,

and D4 =
[1 + γ(s2 −m1)][1 + γ(s1 −m2)]

γ2(s1s2 −m1m2) + γ(s1 + s2) + 1
.

I The corresponding sets of eigenvalues of J0 at each
intersection of the conics are

E1 = {1, 1}, E2 = {−1,−D2},

E3 = {−1,−D3}, and E4 = {−1,−D4}.



Stability Conditions for System (2)

I The relevant determinants corresponding to the four
equilibria are

D1 = 1,

D2 =
γ1(m21 − s11) + γ2(m22 − s12)− 1

1 + γ1s11 + γ2s12
,

D3 =
γ1(m11 − s21) + γ2(m12 − s22)− 1

1 + γ1s21 + γ2s22
,

and D4 =
C1γ

2
1 + C2γ1 + C3γ1γ2 + C4γ2 + C5γ

2
2

σ[B1γ21 +B2γ1 +B3γ2 +B4γ1γ2 +B5γ22 + 1]
,

where Ci(m11,m12,m21,m22) are constant coefficients.

I The corresponding sets of eigenvalues of J0 at each
intersection of the conics are

E1 = {1, 1}, E2 = {−1,−D2},

E3 = {−1,−D3}, andE4 = {−1,−D4}.
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Simulations for System (1)

I Levels of the yij are shown here.

I Cross-protection may cause strains to thrive or not.
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Simulations for System (1)

I Levels of the yij are shown here.
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Simulations for System (2)

I Levels of the yij are shown here.
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Biological Considerations

I Connect the strain structure observations and
mathematical analysis.

I Strength of cross-protection and topology determine the
strain structure.

I Was the strain space realistic?



Mathematical Considerations

I Why not use the symmetry method?
I Symmetry will likely not exist in a more realistic

configuration.

I Suppose we the parameters of ax and bx are no longer
identical the other systems:

ax bx

byay



Other Possible Partial Synchrony Solutions

I Hopf bifurcation that follows 2-colour balanced synchrony
pattern is possible.
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Simulations for System (2)

I Synchronized chaos is also possible.
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Corresponding Quotient Network
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