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•  Datasets based on observations (GPCP, CMAP) give 2.6-2.7 mm/day 
(AR4 range is about 3.2-3.9 mm/day) 

•  Data assimilation products average about 3 mm/day; also have larger 
mean annual cycle and greater interannual variability than GPCP/
CMAP 

Global annual precipitation from models and observations 



Global Mean Precipitation 
•  Lowest (blue) curve (2.66 mm/day) is reconstruction mean (where totals 

are obtained by adding GPCP climatology) 
•  Green curve (3.09 mm/day) is from 20th Century reanalysis 
•  Upper (blue dotted) curve (3.63 mm/day) is mean of 24 model simulations 

from AR4; gray area is ±1 standard deviation of the model means 
•  Red is global mean temperature (from CRU) 



Scientific issues:  
 

There is a consistent discrepancy 

between the “observed” and climate 

model precipitations.  

 

The model precipitation is about 15%-30% 

higher than the “observed”.  

 

HHT is used as one of the tools to resolve 

this issue.  



Figure1. Daily and monthly TAC derived from the daily maximum surface air temperature data at the Victoria station, Canada. 

Four “observed” global average monthly 
precipitation [Units: mm/day]  

•  CMAP: CPC Merged Analysis of Precipitation 
•  GPCP: Global Precipitation Climatology Project 
•  MERG and REOF: Statistical reconstruction by Tom Smith 
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Statistics of the four datasets 

 Mean 

[mm/day] 

Standard 

Deviation 

[mm/day] 

Skewness 

[dimensionless] 

 Kurtosis 

[dimensionless] 

Trend 

[(mm/day)/decade] 

1979-2008 

MERG -0.36 0.74 -0.30 1.17 0.1624 

REOF -0.10 1.47 -0.06 -0.01 0.3194 

GPCP -0.01 1.73 -0.10 0.69 0.0958 

CMAP 0.87 2.81 0.43 0.42 -1.5153 

1900-2008 

MERG -0.36 0.94 -0.21 0.16 0.0895 

REOF -0.49 1.62 -0.10 -0.11 0.1126 
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Introduction to HHT (Hilbert-Huang Transform) 
 

David Hilbert (1862-1943) ( Norden Huang at NASA/GSFC 
and NCU/Taiwan 



 
Introduction to HHT (Hilbert-Huang Transform) 
 
•  Original papers of the HHT method 
1.  Huang, N. E., Long, S. R.and Shen, Z. 1996: The mechanism for 

frequency downshift in nonlinear wave evolution. Adv. Appl. Mech., 32, 
59-111. 

2.  Huang, M. L. Wu, S. R. Long, S. S. Shen, W. D. Qu, P. Gloersen, and K. L. 
Fan (1998), The empirical mode decomposition and the Hilbert spectrum 
for nonlinear and non-stationary time series analysis.  Proc. Roy. Soc. 
Lond., 454A, 903-993.   

3.   Huang, N. E., Z. Shen, and S. R. Long (1999), A New View of Nonlinear 
Water Waves – The Hilbert Spectrum, Ann. Rev. Fluid Mech., 31, 
417-457. 

•  Book: NE Huang and SSP Shen, Hilbert-Huang Transform and Its 
Applications, World Scientific, 2005. 
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For any data x ( t ) , Hilbert transform is defined as

y ( t ) = H [ x ( t )] = 1
!
!

x ( " )
t " ""

# d " .

If x ( t ) = cos t , then H [ x ]( t ) = sin t and x + iy = e it with a
phase angle # = t and frequency $ = d # / dt = 1.

In general , for what x ( t ) such that H [ x ]( t ) is complex conjugate :

z ( t ) = x ( t ) + i y ( t ) = a ( t ) e i # ( t ) ,

with

a ( t ) = x 2 + y 2( ) 1 / 2 , !( t ) = tan "1 y ( t )
x ( t )

, " =
d !
dt
.

Hilbert Transform, phase, and frequency of data 



 
Introduction to HHT (Hilbert-Huang Transform) 
 

• What functions have mathematically uniquely defined 
and physically meaningful frequency? 

•  Answer: Intrinsic mode functions (IMFs) calculated 
from empirical model decomposition procedures, aka 
sifting procedures developed by NE Huang. 
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Empirical Mode Decomposition:  
Methodology : Test Data 
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Empirical Mode Decomposition:  
Methodology : data and m1 
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Empirical Mode Decomposition:  
Methodology : data & h1 
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Empirical Mode Decomposition:  
Methodology : h1 & m2 
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Empirical Mode Decomposition:  
Methodology : h2 & m3 
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Empirical Mode Decomposition:  
Methodology : h3 & m4 
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Empirical Mode Decomposition:  
Methodology : h2 & h3 
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Empirical Mode Decomposition:  
Methodology : h4 & m5 
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Empirical Mode Decomposition 
Sifting : to get one IMF component 
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Empirical Mode Decomposition:  
Methodology : IMF c1 
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Definition of the Intrinsic Mode Function 

Any function having the same numbers of
zero ! cros sin gs and extrema ,and also having
symmetric envelopes defined by local max ima
and min ima respectively is defined as an
Intrinsic Mode Function ( IMF ).

Each IMF and its Hilbert Transform yield a meaningful
phase and amplitude :
"" c ( t ) = a ( t ) e i ! ( t )
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Empirical Mode Decomposition 
Sifting : to get all the IMF components 

x ( t ) ! c1 = r1 ,

r1 ! c2 = r2 ,

. . .
rn!1 ! cn = rn .
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MERG global monthly precipitation since 1900 
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Hilbert spectra of MERG global precipitation 
Hilbert Spectrum
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MERG IMF mean period 
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MERG IMF energy 
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Conclusions 
•  HHT is an effective tool for analyzing nonlinear 

and non-stationary data.  

•  IMF3 is the nonlinear and non-stationary annual 
cycle.  

•  MJO, monsoon and PDO simulation improvement 
seems important in improving the model 
precipitation and optimal aggregation of observed 
data.  

 
•  CMAP has a decreasing trend, while all the other 

datasets have an increasing trend. 

•  The correlations among the datasets are small, 
indicating that more accurate algorithms are 
needed to derive the global precipitation data.   



Ongoing work 

•  Improving MJO simulation using stochastic 
parameterization against observed 
precipitation 
–  Better “observations”with minimum errors 
  

•  “Modern” precipitation data sets (GPCP, CMAP) 
useful 
–  Estimates of uncertainty 

•  20th Century precipitation reconstruction and 
reanalysis available 
–  Super-ensemble reconstruction with an error 

estimation 
–  Testing global models 


