Whistle while you work Automating the detection of dolphin whistles in complex auditory scenes

Marie A. Roch Computer Science

Partners in crime

- Echolocation clicks
 H. Klinck, S. Baumann-Pickering, D.K. Mellinger, S. Qui, M.S. Soldevilla, and J.A. Hildebrand
- Whistle detection
 T.S. Brandes, B. Patel, Y. Barkley, S. Baumann-Pickering, and M.S. Soldevilla
- Whistle classification
 H. Bassett, K. Frasier*, and E. E. Henderson

* Classification slides from Kait Frasier's DCLMMPA 2011 presentation

Passive acoustic monitoring

Motivation

- Visible observation is difficult & expensive
- Most cetaceans are vocal Goals
- Understanding ecosystems
- Science-based policy decisions
- Mitigation

photo: Amanda Cummins

Passive acoustic monitoring

photos: SIO (Sean Wiggins, Josh Jones)

Vocal production of odontocetes

- Echolocation clicks
 - Navigation
 - Foraging
 - Communication
 - Whistles

 \leq

Communication

photo: Amanda Cummins

Echolocation clicks

• Short, broad band signals \approx 100-200 µs

- Production
 - Highly specialized anatomy
 - Good candidate for deriving information about the animal or species

Echolocation click challenges

FIG. 3. Examples of a single echolocation click as measured by the hydrophones in the linear-array geometry; the waveforms are shown on the left and spectra are shown on the right.

Au, W.W.L., D.S. Houser, J.J. Finneran, W.-J. Lee, L.A. Talmadge, P.W. Moore (**2010) The** acoustic field on the forehead of echolocating Atlantic bottlenose dolphins (*Tursiops truncatus*). J. Acoust. Soc. Am., 128(3), 1426-1434, doi: 10.1121/1.3372643.

-1m

(cm

Roch, et al. (2011) J. Acous. Soc. Am., 129(1), 467-475.

photos: Amanda Cummins (Dc, Dd), Dave Weller (Zc) and unattributed

Whistles

- Call description
- Individual identification
- Species identification
- Quantification of social calls
- Localization

Whistle challenges

Do we need to isolate individual whistles?

Less stereotyped

Animals tend to whistle less often

Some whistles may be associated with:
 – individuals
 – behavioral contexts

Graph search: Connect the dots

Edges

- define paths between peaks
- tonal calls comprised of coherent paths

Coherent connections

- Slope/Shape
 - polynomial fit [Mellinger Ishmael]
 - adaptive polynomial fit
- Morphological operators (Mallawaarachchi et al. 2008)
- Momentum (Mallawaarachchi et al. 2008)
- Phase

SILBIDO – contour detector

Graph extension

Connecting to valid candidate peaks

• Multipath adaptive polynomial prediction

• Track/merge graphs

rel. dB

Graph extension

Connecting to valid candidate peaks

• Multipath adaptive polynomial prediction

• Track/merge graphs

Disambiguation

Ground truth tools

Short-beaked common

Short-beaked common

Recall and Precision

Short-beaked common

Short-beaked common

60

mean corpus deviation 69 Hz (125 Hz/bin, σ =75 Hz)

What's in a whistle?

Delphinus delphis 20 15 15 -20 -30 Stenella longirostris 50 ^{[기}7 25 20 20 Level [dB re counts Spectrum

Time [seconds]

Mimicking trained analysts

Hypothesis: Modeling shape might capture cues used by analysts to determine species.

A model approach

Detect whistle contours

Detect whistle contours: Silbido detector by Roch et al. (2011)

Delphinus delphis

24 22 20 16 10 8 74.5 75 75.5 76 76.5 77 77.5 78 78.5 74 Time (s)

Roch, M.A., T.S. Brandes, B. Patel, Y. Barkley, S. Baumann-Pickering, M.S. Soldevilla (**2011**) Automated extraction of odontocete whistle contours. *J. Acous. Soc. Am.*, **130**(4), 2212-2223.

Split whistles into components

Split whistles into components

Component clusters

T. truncatus

Split whistles into components

Component clusters

S. longirostris

Train Acoustic Models

Hidden Markov model:

Training yields component models

Train Acoustic Models

Language Models

Bottenose dolphin unigram

Language Models

Bottlenose bigram

Preliminary Results

Accuracy %	Common (Dsp)	Melon- headed (Pe)	Spinner (SI)	Bottlenose (Tt)
h	36.9	71.1	60.1	60.5
σ	13.4	20.8	18.1	20.5

What next?

- Improvements to existing techniques in whistle and echolocation click domains.
 Fusion of classification systems
- Behavior and localization...

Our thanks to...

Office of Naval Research – Michael Weise

US Navy CNO N45 – Frank Stone & Ernie Young

Cascadia Research Collective

folks at the SIO Whale Acoustics Lab

