The Peculiar Phase Structure of Random Graph Bisection

Allon G. Percus

School of Mathematical Sciences Claremont Graduate University

April 8, 2011

프 > 프

・ロト ・ 一下・ ・ ヨト・

Collaborators

- Gabriel Istrate
- Bruno Gonçalves
- Robert Sumi
- Stefan Boettcher

Journal of Mathematical Physics 49, 125219 (2008).

프 🕨 🗉 프

Image: A mathematical states and a mathem

Outline

Background

- Random Combinatorial Optimization
- Phase Structure
- Clustering Transition

2 Graph Bisection

- Definition and Previous Results
- Upper Bound
- Computational Consequences

< < >> < </>

Random Combinatorial Optimization Phase Structure Clustering Transition

Outline

Background

- Random Combinatorial Optimization
- Phase Structure
- Clustering Transition

2 Graph Bisection

- Definition and Previous Results
- Upper Bound
- Computational Consequences

ъ

Random Combinatorial Optimization

Graph Coloring

- Applications: channel assignment, scheduling, etc.
- Graph G = (V, E)

ъ

Random Combinatorial Optimization Phase Structure Clustering Transition

Graph Coloring

- Applications: channel assignment, scheduling, etc.
- Graph G = (V, E)
- At each vertex $v \in V$, assign color $c(v) \in \{1, \dots, q\}$
- Minimize

 |(u, v) ∈ E : c(u) = c(v)|:
 number of edges connecting two
 vertices with same color

Random Combinatorial Optimization Phase Structure Clustering Transition

Graph Coloring

- Applications: channel assignment, scheduling, etc.
- Graph G = (V, E)
- At each vertex $v \in V$, assign color $c(v) \in \{1, \ldots, q\}$
- Minimize

 |(u, v) ∈ E : c(u) = c(v)|:

number of edges connecting two vertices with same color

Random Combinatorial Optimization Phase Structure Clustering Transition

Algorithmic Complexity

- Worst-case complexity: NP-hard for $q \ge 3$.
- What about typical-case complexity over instances from a random generative model?
- Theoretical understanding starts with study of unstructured cases.
- Take Erdős-Rényi *G_{np}* model: *n* vertices (|*V*| = *n*), edges placed on pairs of vertices ((*u*, *v*) ∈ *E*) with fixed probability *p*, independently of one another.

Random Combinatorial Optimization Phase Structure Clustering Transition

(口)

Phase Transition

Over \mathcal{G}_{np} random graph ensemble, phase transition:

Random Combinatorial Optimization Phase Structure Clustering Transition

Image: A mathematical states and a mathem

Phase Transition

Over \mathcal{G}_{np} random graph ensemble, phase transition:

문▶ 문

Random Combinatorial Optimization Phase Structure Clustering Transition

Phase Transition

Over \mathcal{G}_{np} random graph ensemble, phase transition:

Also easy-hard-easy pattern: hard instances concentrated near phase boundary! [Cheeseman et al, 1991; Mitchell et al, 1992]

Random Combinatorial Optimization Phase Structure Clustering Transition

< < >> < </p>

Connection to Complexity

Empirically:

- Property holds for a wide range of algorithms.
- Connection between phase structure and typical-case algorithmic complexity is seen in numerous other random combinatorial problems as well: satisfiability, vertex cover, etc.

Random Combinatorial Optimization Phase Structure Clustering Transition

Detailed Phase Structure

More can be learned by considering space of all optimal colorings of a graph.

- Define two solutions to be adjacent if Hamming distance is small: at most *o*(*n*) variables differ in value.
- For small α, all solutions lie in a single "cluster": any two solutions are linked by a path of adjacent solutions. (*Replica symmetric phase.*)

Random Combinatorial Optimization Phase Structure Clustering Transition

Detailed Phase Structure

æ

▶ < Ξ >

Random Combinatorial Optimization Phase Structure Clustering Transition

Detailed Phase Structure

Below a new threshold $\alpha_d < \alpha_c$: single solution cluster.

э

Clustering Transition

Detailed Phase Structure

Below a new threshold $\alpha_d < \alpha_c$: single solution cluster.

Above α_d : cluster fragments into multiple non-adjacent clusters.

< < >> < </>

Random Combinatorial Optimization Phase Structure Clustering Transition

< < >> < </>

Detailed Phase Structure

Below a new threshold $\alpha_d < \alpha_c$: single solution cluster.

Above α_d : cluster fragments into multiple non-adjacent clusters.

Random Combinatorial Optimization Phase Structure Clustering Transition

• • • • • • • • •

Algorithmic Consequences

- Cluster fragmentation is associated with formation of frozen variables: local backbone of variables that take on same value within a cluster of solutions.
- This traps algorithms: lots of colorings but hard to find them, making it a "hard colorable" subphase.
- But physical picture also motivates new algorithms: survey propagation explicitly takes account of cluster structure, fixing only those variables that are frozen within a cluster.

Definition and Previous Results Jpper Bound Computational Consequences

Outline

Background

- Random Combinatorial Optimization
- Phase Structure
- Clustering Transition

2 Graph Bisection

- Definition and Previous Results
- Upper Bound
- Computational Consequences

ъ

Definition and Previous Results Upper Bound Computational Consequences

Definition

- Applications: computer chip design, resource allocation, image processing
- Graph G = (V, E), |V| even

イロト 不得 とくほと くほとう

Definition and Previous Results

Definition

- Applications: computer chip design, resource allocation, image processing
- Graph G = (V, E), |V| even
- Partition V into two disjoint subsets V_1 and V_2 , $|V_1| = |V_2|$
- Minimize bisection width $w = |(u, v) \in E : u \in V_1, v \in V_2|$: number of edges with an endpoint in each subset

ヘロン 人間 とくほ とくほ とう

Worst-Case / Average-Case Complexity

- Corresponding decision problem is in P (solvable in polynomial time): is there a perfect bisection, i.e., w = 0?
- Optimization problem is NP-hard.
- What about over \mathcal{G}_{np} ensemble?

Structure of \mathcal{G}_{np} Graphs

Mean degree of graph is $\alpha = p(n-1)$. The following results on the birth of the giant component are known [Erdős-Rényi, 1959]:

- For $\alpha < 1$, only very small components exist: size $O(\log n)$.
- For $\alpha > 1$, there exists a giant component of expected size $gn, g = 1 e^{-\alpha g}$. All other components: size $O(\log n)$.
- Expected fraction of isolated vertices is (1 − p)^{n−1} ≈ e^{−α}.

Structure of \mathcal{G}_{np} Graphs

Mean degree of graph is $\alpha = p(n-1)$. The following results on the birth of the giant component are known [Erdős-Rényi, 1959]:

- For $\alpha < 1$, only very small components exist: size $O(\log n)$.
- For α > 1, there exists a giant component of expected size gn, g = 1 e^{-αg}. All other components: size O(log n).
 At α = 2 log 2, g = 1/2
- Expected fraction of isolated vertices is (1 − p)^{n−1} ≈ e^{−α}.
 - At $\alpha = 2 \log 2$, n/4 isolated vertices

Known results and bounds [Luczak & McDiarmid, 2001]:

- For α < 1, w = 0 w.h.p.
 - Enough small components to guarantee perfect bisection

æ

Known results and bounds [Luczak & McDiarmid, 2001]:

- For α < 1, w = 0 w.h.p.
 - Enough small components to guarantee perfect bisection
- For $1 < \alpha < 2 \log 2$, also w = 0 w.h.p.
 - Even close to α = 2 log 2, where the giant component almost occupies entire partition, enough isolated vertices to guarantee perfect bisection

Known results and bounds [Luczak & McDiarmid, 2001]:

- For α < 1, w = 0 w.h.p.
 - Enough small components to guarantee perfect bisection
- For $1 < \alpha < 2 \log 2$, also w = 0 w.h.p.
 - Even close to α = 2 log 2, where the giant component almost occupies entire partition, enough isolated vertices to guarantee perfect bisection
- For $\alpha > 2 \log 2$, $w = \Omega(n)$ and obvious upper bound $w/n \le \alpha/2$ w.h.p.

くロト (過) (目) (日)

Known results and bounds [Luczak & McDiarmid, 2001]:

- For α < 1, w = 0 w.h.p.
 - Enough small components to guarantee perfect bisection
- For $1 < \alpha < 2 \log 2$, also w = 0 w.h.p.
 - Even close to α = 2 log 2, where the giant component almost occupies entire partition, enough isolated vertices to guarantee perfect bisection
- For $\alpha > 2 \log 2$, $w = \Omega(n)$ and obvious upper bound $w/n \le \alpha/2$ w.h.p.
- For $2 \log 2 < \alpha < 4 \log 2$, $w/n \le (\alpha \log 2)/4$ w.h.p. [Goldberg & Lynch, 1985]

Known results and bounds [Luczak & McDiarmid, 2001]:

- For $\alpha < 1$, w = 0 w.h.p.
 - Enough small components to guarantee perfect bisection
- For $1 < \alpha < 2 \log 2$, also w = 0 w.h.p.
 - Even close to $\alpha = 2 \log 2$, where the giant component almost occupies entire partition, enough isolated vertices to guarantee perfect bisection
- For $\alpha > 2 \log 2$, $w = \Omega(n)$ and obvious upper bound $w/n \leq \alpha/2$ w.h.p.
- For $2 \log 2 < \alpha < 4 \log 2$, $w/n \le (\alpha \log 2)/4$ w.h.p. [Goldberg & Lynch, 1985]

Still leaves a gap at $\alpha = 2 \log 2$. Can we do better?

ヘロン 人間 とくほ とくほ とう

Consequence: Bisection Width

Experimental results [Boettcher & Percus, 1999]:

ъ

Consequence: Solution Structure

- For $\alpha < 2 \log 2$, all solutions lie in a single cluster [Istrate, Kasiviswanathan & Percus, 2006]
 - Enough small components that any two solutions are connected by a chain of small swaps preserving balance constraint
- For α > 2 log 2, solution space structure is determined by how giant component gets cut

Giant Component Structure

- Giant component consists of a mantle of trees and a remaining core [Pittel, 1990]
- Individual trees are of size O(log n)
- But does optimal cut simply trim trees, or does it slice through core?

Definition and Previous Results Upper Bound Computational Consequences

Cutting Trees

As long as core is smaller than n/2, we can at least get an upper bound on *w* by restricting cuts to trees.

Theorem

Let $\epsilon = \alpha - 2 \log 2$. Then there exists an $\epsilon_0 > 0$ such that for every $\epsilon < \epsilon_0$, w.h.p.

$$rac{w}{n} < rac{\epsilon}{\log 1/\epsilon}$$

for graphs with mean degree α in \mathcal{G}_{np} .

Among other things, this closes the gap at $\alpha = 2 \log 2$. Now how do we prove it?

Cut trees starting from largest one until giant component is pruned to size n/2:

Cutting Trees

Cutting Trees

Cut trees starting from largest one until giant component is pruned to size n/2:

Upper Bound Computational Consequences

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Cut trees starting from largest one until giant component is pruned to size n/2:

Cutting Trees

Cut trees starting from largest one until giant component is pruned to size n/2:

Cutting Trees

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Cutting Trees

Cut trees starting from largest one until giant component is pruned to size n/2:

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Cut trees starting from largest one until giant component is pruned to size n/2:

Cutting Trees

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

How Many Trees is Enough?

- Let δn be "excess" of giant component, $\delta = g 1/2$. Let *bn* be number of nodes in mantle.
- Then δ/b is fraction of mantle's nodes to cut.
- Now find largest t₀ such that δ/b equals fraction of nodes living on trees of size ≥ t₀.
- If *P*(*t*) is distribution of tree sizes on mantle,

$$\frac{\delta}{b} = \frac{\sum_{t=t_0}^{\infty} t P(t)}{\sum_{t=1}^{\infty} t P(t)}$$

• The number of trees of size $\geq t_0$ is then

$$w' = \sum_{t=t_0}^{\infty} P(t) \frac{bn}{\sum_{t=1}^{\infty} tP(t)}$$

Distribution of Tree Sizes

Fortunate result of probabilistic independence in \mathcal{G}_{np} [Janson et al, 2000]:

- P(t) is simply given by # of ways of constructing tree of size t from q roots (q = (g b)n, size of core) and r other nodes (r = bn, size of mantle).
- This is "just combinatorics":

$$P(t) = \binom{r}{t} t^t \frac{q}{r} \frac{(q+r-t)^{r-t+1}}{(q+r)^{r-1}}$$

• Let $\rho = b/g$. Then at large *n*,

$$P(t) \approx \frac{t^t e^{-\rho t}}{t!} \rho^{t-1} (1-\rho)$$

イロン イボン イヨン イヨン

< < >> < </p>

Upper Bound on Bisection Width

- We now have enough to calculate (or at least bound) w'. The rest of the proof is just cleaning up.
- That gives the upper bound we need on bisection width *w*.
- Theorem implies that w/n scales superlinearly in
 ϵ = α - 2 log 2 for small ϵ. This turns out to have physical
 and algorithmic consequences.
- This holds for every $\epsilon < \epsilon_0$, but ϵ_0 could be very small!

Expander Core of Giant Component

Look more closely at giant component structure. Define notion of expander graphs:

- Given graph G = (V, E), imagine cutting V into two subsets V₁ and V₂ (w.l.o.g. let |V₁| ≤ |V₂|).
- Expansion of this cut is

$$h = \frac{|(u, v) \in E : u \in V_1, v \in V_2|}{|V_1|},$$

i.e., # of cuts per vertex.

 If in a sequence of graphs of increasing size, expansion of all cuts is bounded below by a constant, these are known as expander graphs.

イロン 不得 とくほ とくほとう

Background Graph Bisection Graph Computational Consequences

Expander Core of Giant Component

 Giant component is not an expander: cutting the largest tree gives expansion h ~ 1/log n.

Background Graph Bisection Graph Risection Background Computational Consequences

Expander Core of Giant Component

 Giant component is not an expander: cutting the largest tree gives expansion h ~ 1/log n.

Upper Bound Computational Consequences

Expander Core of Giant Component

- Giant component is not an expander: cutting the largest tree gives expansion h ~ 1/log n.
- But it is a "decorated expander" with an identifiable expander core. [Benjamini et al, 2006].

Upper Bound Computational Consequences

Expander Core of Giant Component

- Giant component is not an expander: cutting the largest tree gives expansion h ~ 1/log n.
- But it is a "decorated expander" with an identifiable expander core. [Benjamini et al, 2006].

Expander Core of Giant Component

- Giant component is not an expander: cutting the largest tree gives expansion h ~ 1/log n.
- But it is a "decorated expander" with an identifiable expander core. [Benjamini et al, 2006].

ヘロト ヘヨト ヘヨト

Expander Core of Giant Component

- Giant component is not an expander: cutting the largest tree gives expansion h ~ 1/log n.
- But it is a "decorated expander" with an identifiable expander core. [Benjamini et al, 2006].
- Decorations have certain tree-like properties, and are of size *O*(log *n*).

Definition and Previous Results Upper Bound Computational Consequences

Optimal Cut Avoids Expander Core

Claim

There exists an $\alpha_d > 2 \log 2$ such that for all $\alpha < \alpha_d$, an optimal bisection cannot cut any finite fraction of the expander core.

æ

Background Graph Bisection Graph Risection Background Computational Consequences

Optimal Cut Avoids Expander Core

Claim

There exists an $\alpha_d > 2 \log 2$ such that for all $\alpha < \alpha_d$, an optimal bisection cannot cut any finite fraction of the expander core.

Idea:

- Let ε = α − 2 log 2. From superlinearity of optimal bisection width, w/εn → 0 as ε → 0.
- Number of vertices cut from giant component ~ *ϵn*, so optimal cut requires arbitrarily small expansion.
- Expander core cannot have cuts with vanishing expansion, so for ϵ below some constant, optimal cut must avoid expander core.

ъ

Apparent Consequences: Solution Structure

- For all $\alpha < \alpha_d$, optimal bisections only cut decorations.
- Since decorations are small, similar arguments apply as for α < 2 log 2: any two optimal bisections are connected by a chain of small swaps preserving balance constraint.
- All solutions then lie in a single cluster up to α_d .
- Suggests that unlike in graph coloring, α_d > α_c ! This would be first known example where single cluster persists through and beyond critical threshold.

くロト (過) (目) (日)

Apparent Consequences: Algorithmic Complexity

- For α < α_d, optimal bisection can be found by ranking expansion of decorations.
- As in tree-cutting upper bound, cut decorations in increasing order of expansion until giant component is pruned to size *n*/2.
- Decorations can be found in polynomial time [Benjamini et al, 2006].
- Difficulty is that unlike for trees, it could be best to cut a decoration in the middle.
- But decorations are small ($O(\log n)$), and deciding where to cut a given decoration is primarily a bookkeeping operation: takes $2^{O(\log n)} = n^{O(1)}$ operations.

ヘロト 人間 ト ヘヨト ヘヨト

Background Graph Bisection Graph Risection Background Computational Consequences

Apparent Consequences: Algorithmic Complexity

Conjecture

For graphs with mean degree $\alpha < \alpha_d$ in \mathcal{G}_{np} , there exists an algorithm that finds the optimal bisection, w.h.p., in polynomial time.

If this conjecture is proven, it will provide a striking example of an NP-hard problem where typical instances near the phase transitions are not hard.

Definition and Previous Results Upper Bound Computational Consequences

Final Messages

- Studying the phase structure of random combinatorial optimization problems leads to an improved understanding of typical-case algorithmic complexity.
- Analytical results on graph bisection tell us that the story is far from over: here, the hardest instances do not appear to be concentrated at the phase boundary.
- All of this analysis is for \mathcal{G}_{np} graphs. Analyzing ensembles of more realistic graphs, such as those with geometric structure, remains largely an open problem.