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Graph Coloring

q = 3

Applications: channel
assignment, scheduling, etc.

Graph G = (V ,E)

At each vertex v ∈ V ,
assign color c(v) ∈ {1, . . . ,q}
Minimize
|(u, v) ∈ E : c(u) = c(v)|:
number of edges connecting two
vertices with same color
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Algorithmic Complexity

Worst-case complexity: NP-hard for q ≥ 3.

What about typical-case complexity over instances from a
random generative model?

Theoretical understanding starts with study of unstructured
cases.

Take Erdős-Rényi Gnp model: n vertices (|V | = n), edges
placed on pairs of vertices ((u, v) ∈ E) with fixed
probability p, independently of one another.
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Phase Transition

Over Gnp random graph ensemble, phase transition:
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Also easy-hard-easy pattern: hard instances concentrated near
phase boundary! [Cheeseman et al, 1991; Mitchell et al, 1992]
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Connection to Complexity

Empirically:

Property holds for a wide range of algorithms.

Connection between phase structure and typical-case
algorithmic complexity is seen in numerous other random
combinatorial problems as well: satisfiability, vertex cover,
etc.
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Detailed Phase Structure

More can be learned by considering space of all optimal
colorings of a graph.

Define two solutions to be adjacent if Hamming distance is
small: at most o(n) variables differ in value.

For small α, all solutions lie in a single “cluster”: any two
solutions are linked by a path of adjacent solutions.
(Replica symmetric phase.)

Allon G. Percus April 8, 2011 9/31
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Below a new threshold αd < αc : single solution cluster.

Above αd : cluster fragments into multiple non-adjacent clusters.
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Algorithmic Consequences

Cluster fragmentation is associated with formation of
frozen variables: local backbone of variables that take on
same value within a cluster of solutions.

This traps algorithms: lots of colorings but hard to find
them, making it a “hard colorable” subphase.

But physical picture also motivates new algorithms: survey
propagation explicitly takes account of cluster structure,
fixing only those variables that are frozen within a cluster.
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Definition

Applications: computer chip
design, resource allocation,
image processing

Graph G = (V ,E), |V | even

Partition V into two disjoint
subsets V1 and V2, |V1| = |V2|
Minimize bisection width
w = |(u, v) ∈ E : u ∈ V1, v ∈ V2|:
number of edges with an
endpoint in each subset
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Worst-Case / Average-Case Complexity

Corresponding decision problem is in P (solvable in
polynomial time): is there a perfect bisection, i.e., w = 0?

Optimization problem is NP-hard.

What about over Gnp ensemble?
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Structure of Gnp Graphs

Mean degree of graph is α = p(n − 1). The following results on
the birth of the giant component are known [Erdős-Rényi,
1959]:

For α < 1, only very small components exist: size O(log n).

For α > 1, there exists a giant component of expected size
gn, g = 1− e−αg . All other components: size O(log n).

At α = 2 log 2, g = 1/2

Expected fraction of isolated vertices is (1− p)n−1 ≈ e−α.

At α = 2 log 2, n/4 isolated vertices

Allon G. Percus April 8, 2011 15/31



Background
Graph Bisection

Definition and Previous Results
Upper Bound
Computational Consequences

Structure of Gnp Graphs

Mean degree of graph is α = p(n − 1). The following results on
the birth of the giant component are known [Erdős-Rényi,
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Consequence: Bisection Width

Known results and bounds [Luczak & McDiarmid, 2001]:

For α < 1, w = 0 w.h.p.
Enough small components to guarantee perfect bisection

For 1 < α < 2 log 2, also w = 0 w.h.p.
Even close to α = 2 log 2, where the giant component
almost occupies entire partition, enough isolated vertices to
guarantee perfect bisection

For α > 2 log 2, w = Ω(n) and obvious upper bound
w/n ≤ α/2 w.h.p.
For 2 log 2 < α < 4 log 2, w/n ≤ (α− log 2)/4 w.h.p.
[Goldberg & Lynch, 1985]

Still leaves a gap at α = 2 log 2. Can we do better?
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Consequence: Bisection Width

Experimental results [Boettcher & Percus, 1999]:
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Consequence: Solution Structure

For α < 2 log 2, all solutions lie in a single cluster [Istrate,
Kasiviswanathan & Percus, 2006]

Enough small components that any two solutions are
connected by a chain of small swaps preserving balance
constraint

For α > 2 log 2, solution space structure is determined by
how giant component gets cut

Allon G. Percus April 8, 2011 18/31
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Giant Component Structure

Giant component
consists of a mantle
of trees and a
remaining core
[Pittel, 1990]

Individual trees are
of size O(log n)

But does optimal cut
simply trim trees, or
does it slice through
core?

Mantle

CORE

Allon G. Percus April 8, 2011 19/31
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Cutting Trees

As long as core is smaller than n/2, we can at least get an
upper bound on w by restricting cuts to trees.

Theorem
Let ε = α− 2 log 2. Then there exists an ε0 > 0 such that for
every ε < ε0, w.h.p.

w
n
<

ε

log 1/ε

for graphs with mean degree α in Gnp.

Among other things, this closes the gap at α = 2 log 2.
Now how do we prove it?

Allon G. Percus April 8, 2011 20/31
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Cutting Trees

Cut trees starting from largest one until giant component is
pruned to size n/2:

Mantle

CORE
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How Many Trees is Enough?

Let δn be “excess” of giant component, δ = g − 1/2.
Let bn be number of nodes in mantle.
Then δ/b is fraction of mantle’s nodes to cut.
Now find largest t0 such that δ/b equals fraction of nodes
living on trees of size ≥ t0.
If P(t) is distribution of tree sizes on mantle,

δ

b
=

∑∞
t=t0 tP(t)∑∞
t=1 tP(t)

The number of trees of size ≥ t0 is then

w ′ =
∞∑

t=t0

P(t)
bn∑∞

t=1 tP(t)

Allon G. Percus April 8, 2011 22/31



Background
Graph Bisection

Definition and Previous Results
Upper Bound
Computational Consequences

Distribution of Tree Sizes

Fortunate result of probabilistic independence in Gnp [Janson et
al, 2000]:

P(t) is simply given by # of ways of constructing tree of
size t from q roots (q = (g − b)n, size of core) and r other
nodes (r = bn, size of mantle).
This is “just combinatorics”:

P(t) =

(
r
t

)
t t q

r
(q + r − t)r−t+1

(q + r)r−1

Let ρ = b/g. Then at large n,

P(t) ≈ t te−ρt

t!
ρt−1(1− ρ)
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Upper Bound on Bisection Width

We now have enough to calculate (or at least bound) w ′.
The rest of the proof is just cleaning up.

That gives the upper bound we need on bisection width w .

Theorem implies that w/n scales superlinearly in
ε = α− 2 log 2 for small ε. This turns out to have physical
and algorithmic consequences.

This holds for every ε < ε0, but ε0 could be very small!
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Expander Core of Giant Component

Look more closely at giant component structure. Define notion
of expander graphs:

Given graph G = (V ,E), imagine cutting V into two
subsets V1 and V2 (w.l.o.g. let |V1| ≤ |V2|).
Expansion of this cut is

h =
|(u, v) ∈ E : u ∈ V1, v ∈ V2|

|V1|
,

i.e., # of cuts per vertex.
If in a sequence of graphs of increasing size, expansion of
all cuts is bounded below by a constant, these are known
as expander graphs.
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Expander Core of Giant Component

Giant component is not an
expander: cutting the
largest tree gives
expansion h ∼ 1/ log n.

But it is a “decorated
expander” with an
identifiable expander core.
[Benjamini et al, 2006].

Decorations have certain
tree-like properties, and
are of size O(log n).

Mantle

CORE
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Optimal Cut Avoids Expander Core

Claim
There exists an αd > 2 log 2 such that for all α < αd , an optimal
bisection cannot cut any finite fraction of the expander core.

Idea:

Let ε = α− 2 log 2. From superlinearity of optimal bisection
width, w/εn→ 0 as ε→ 0.
Number of vertices cut from giant component ∼ εn, so
optimal cut requires arbitrarily small expansion.
Expander core cannot have cuts with vanishing expansion,
so for ε below some constant, optimal cut must avoid
expander core.
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Apparent Consequences: Solution Structure

For all α < αd , optimal bisections only cut decorations.

Since decorations are small, similar arguments apply as for
α < 2 log 2: any two optimal bisections are connected by a
chain of small swaps preserving balance constraint.

All solutions then lie in a single cluster up to αd .

Suggests that unlike in graph coloring, αd > αc ! This
would be first known example where single cluster persists
through and beyond critical threshold.
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Apparent Consequences: Algorithmic Complexity

For α < αd , optimal bisection can be found by ranking
expansion of decorations.
As in tree-cutting upper bound, cut decorations in
increasing order of expansion until giant component is
pruned to size n/2.
Decorations can be found in polynomial time [Benjamini et
al, 2006].
Difficulty is that unlike for trees, it could be best to cut a
decoration in the middle.
But decorations are small (O(log n)), and deciding where
to cut a given decoration is primarily a bookkeeping
operation: takes 2O(log n) = nO(1) operations.
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Apparent Consequences: Algorithmic Complexity

Conjecture
For graphs with mean degree α < αd in Gnp, there exists an
algorithm that finds the optimal bisection, w.h.p., in polynomial
time.

If this conjecture is proven, it will provide a striking example of
an NP-hard problem where typical instances near the phase
transitions are not hard.
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Final Messages

Studying the phase structure of random combinatorial
optimization problems leads to an improved understanding
of typical-case algorithmic complexity.

Analytical results on graph bisection tell us that the story is
far from over: here, the hardest instances do not appear to
be concentrated at the phase boundary.

All of this analysis is for Gnp graphs. Analyzing ensembles
of more realistic graphs, such as those with geometric
structure, remains largely an open problem.
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