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Problem Description

• 1 dimensional Layered Elastic Media
Convenient for analytical calculations.

• B.C.: Discrete forcing function at one 
end and held fixed at the other end
• Heaviside loading when Minimizing the 

Stress Amplitude 

• Harmonic loading when studying 
Resonance

• Goupillaud-type, i.e. equal wave 
travel time for each layer
The stress wave/jump discontinuities meet and 
split at the layer interfaces, in addition to the 
boundary.

• Continuity of stress and

displacement at each layer interface.

• Goal: Obtain analytical solutions for the stress propagation with the purpose to:

• Minimize Stress Amplitude for a Heaviside Loading.

• Generate Resonance Frequency Spectrum for a Harmonic Loading.

Two Layered Strip subjected to Heaviside Loading
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Problem Motivation

• Despite the widespread use of multilayered structures in various

technologies, exact analytical solutions to optimal design problems 

governed by the wave equation are rare in the literature. Such solutions are 

especially useful for testing optimization codes.

• The study of natural vibrations in elastic media include the study of 

resonance, as resonance can enhance the performance of many sensors 

and devices, yet can devastate structures subjected to sustained

temporally-periodic loading, for instance during earthquakes.
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• [ Anfinsen (1967) ] investigates the problem of maximizing or minimizing 

the amplitude of stress waves propagating through a finite bar of two layers, 

subjected to a transient stress loading. He determines optimal elastic 

properties of the structure by means of a finite difference method.

• [Lee et al., Chiu & Erdogan], and others consider problems related to the 

propagation of stress waves in layered media. However they do not address 

the problem of optimization of inhomogeneous transiently loaded media:

– [ Lee et al., (1975) ] provide error estimates for the stress, when a 

medium with continuous property variation is replaced by a medium 

consisting of a series of discrete homogeneous layers.

– [ Chiu & Erdogan (1999) ] solve several transient wave-propagation 

boundary value problems for fixed/free and free/free end conditions in 

power-law one-dimensional FGM using Laplace transforms.

Brief Literature Review on Optimization
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Brief Literature Review on Resonance

• [ S. D. Poisson, 1828] On the vibrations of an elastic sphere -- the first to 
determine the free radial vibrations of a homogeneous sphere.

• [ H. Lamb, 1882] On the vibrations of an elastic sphere -- calculated some 
of its natural frequencies.

• [ A. E. H. Love, 2002] A treatise on the mathematical theory of elasticity --
provides an historical account of the early developments in this field.

• Literature includes the study of resonance in anisotropic elastic bodies, 
anisotropic layered crystals, elastic plates, periodic media, laminated and 
sandwich plates, composite laminates, piezoelectric composites, etc.

• Despite the long history of developments in the field, exact solutions for the 
resonance response of multilayered elastic media have been primarily 
limited to analyses involving only a few layers.



8

Further Simplifications of our Problem

m-Layered Media

• Transformation of the spatial variable

simplifies the problem to:

▪ Goupillaud-type media with equal 
layer lengths       

▪ equal travel time of     for each 
layer in either direction,

▪ wave speed of unity.    

• The density and elastic modulus change 
as a result of this transformation (marked 
with ~). 

• The impedance ratios of two consecutive 
layers and the stress values remain the 
same as a result of this transformation.

Lagrangian Diagram for a Discrete Loading 
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Discrete Forcing Function 

Exact Difference Scheme for the Stress Terms

• [K. Bube and R. Burridge, 1983] The one dimensional inverse problem of reflection   
seismology.
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Discrete Forcing Function 

Exact Difference Scheme for the Stress Terms

Recursive Relations:
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z-Transform Approach

• Apply z-Transform to solve the system of recursive relations

• Obtain a Linear System                      with a tri-diagonal system matrix:



12

About the Determinant of the System Matrix

• The determinant of the system matrix is a palindromic polynomial 
Property: For an even power palindromic polynomial the roots come in inverse pairs.
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About the Determinant of the System Matrix

• Proved that the roots of the determinant are distinct and lie on the unit circle for up to 

five layers.

• Using tri-diagonal Toeplitz matrices, we can find designs for which the roots of the 

determinant are distinct and lie on the unit circle for any number of layers.

• We consider designs for which the roots of the determinant are distinct and lie on the 

unit circle. The roots of the even power polynomial come in complex conjugate pairs,                                            

and the determinant can be factored as:
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Solving the Stress Recursive Relations

here Ai,j is a minor of Am
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Explicit Stress Formulas for a Discrete Loading

• Obtain stress solutions, after applying the inverse z-transform:

• Special Case I: Heaviside Loading 

• Special Case II: Discrete Harmonic Loading 
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• Special Case I: Heaviside Loading and Optimization
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Stress Formulas for the Two-Layer Case

Heaviside Loading
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Stress Formulas for the Three-Layer Case

Heaviside Loading
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where:

Stress Formulas for the Four-Layer Case – Maple results

Heaviside Loading
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Optimal Design Problem Formulation 

Heaviside Loading, m-layer Case

Stress Time History at the middle of a 

homogeneous elastic strip, with a stress 

amplitude of double the loading p=1.
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Stress Optimization for the Two-Layer Case

Heaviside Loading

• Bounds on the stress terms for any given     :

• Optimality condition:

• Optimal values for the angle: 

and the design parameter:
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Computationally-Derived Optimal Solutions for 

the Two-Layered Strip using DYNA3D/GLO

• Explicit Finite Element Code DYNA3D using 60 hexahedral finite elements.

• GLO – Global/Local Optimizer 

Optimal solutions obtained using a coupled global (discrete) and local 
(gradient, “variable metric”) method.

• Search limited to a region involving the first eight optimal design points. 

• Comparison of analytical and DYNA3D/GLO derived           values.
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Maximum Stress versus design parameter/impedance ratio α1.

Layer 1:  0 < x < ½ Layer 2:    ½ < x < 1 
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• Time Delay Benefit to reach Max Stress as j increases in value (j=3 first row vs. j=9 second row)

k

Periodic Optimal Solutions for the Two-Layer Case
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Stress Optimization for the Three-Layer Case

Heaviside Loading
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• Optimal values for the angle:
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χ

and the design parameter
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Stress Optimization for the Four-Layer Case

Heuristic Approach
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Stress Optimization for the Four-Layer Case

Heuristic Approach 

• Motivated from the homogeneous case, we apply the additional condition                    

to the system:

and obtain that: and

• Compare this with the optimal results for the 2-layer case                                  :
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Optimal Design for the Four-Layer Case 

• Proposed optimal values for the angle 

and design parameter: 

• Similar optimal results can be obtained for the five layer case.
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Periodic Optimal Stress Solutions

for the Four-Layer Case 

• Optimal design stress time history:
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Distribution of the Optimal Angle Values

2-Layer case 3-Layer case 4-Layer case

)cos()cos( 12 θθ −=



31

Applications: Optimal Material Configurations and Design Improvement
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Applications of our Optimality Results 

to Non-Goupillaud type Layered Media

• The optimality conditions for the non-Goupillaud type two-layered medium with wave travel time 

ratio 1:2 (or 2:1), can be derived from the Goupillaud-type three-layer medium with wave travel 

time ratio 1:1:1 and  α2=1 (or α1=1).
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� Special Case I: Heaviside Loading and Optimization

• Special Case II: Discrete Harmonic Loading and 

Resonance
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Numerical Experiments validating Universal Resonance Frequency 

for Multilayered Designs with an Odd Number of Layers.

(a) Seven-layered strip (b) Eleven-layered strip 

Stress time history at the middle of the second layer of a Goupillaud-type unit strip

subjected to loading 

Values of impedance ratios between two consecutive layers, up to eleven layers:

3, 2, 1.5, 2.2, 0.3, 1.7, 1.4, 3.1, 0.8, 4

)sin()( πnnf =
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Numerical Experiments validating the Resonance Frequencies

(a) Middle of the second layer                           (b) Middle of the third layer

Stress time history for a three-layered Goupillaud-type unit strip

Values of impedance ratios between two consecutive layers up to three layers: 
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Numerical Experiments validating the Resonance Frequencies 

(a) Four-layered strip (b) Five-layered strip 

Stress time history at the middle of the second layer of a Goupillaud-type unit strip 

subjected to loading (a)                                        (b) 

Values of impedance ratios between two consecutive layers, up to five layers:

0.6, 1.5, 2, 1.2
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Numerical Experiments validating the Non-Resonance Frequencies

Stress time history for a two-layered Goupillaud-type unit strip
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• Optimal Designs that minimize Stress Amplitude under Heaviside Loading, 

are not immune to the Resonance Phenomena!

Resonance Frequencies and Optimal Designs
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Other Applications of our Resonance Frequency Results

• Design modification that gives a desired frequency spectrum

Adding a new layer in front of an existing two-layered Goupillaud-type

strip, allows us to modify the resonance frequency spectrum for a three-layered strip.

• Natural frequencies of a free-fixed non-Goupillaud-type layered strip with integer layer 

length ratios

For instance, the frequency results for a free-fixed four-layered Goupillaud-type strip 

with equal layer lengths, can be extended to a free-fixed three-layered non-

Goupillaud-type strip with wave travel time ratio
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Summary

• Derived explicit stress solutions from a global system of recursive relationships using z-transform 
methods. The determinant of the system matrix was found to be a palindromic polynomial with 
real coefficients.

• Optimal Designs

– Found (theoretically) infinitely many optimal designs.

– Found designs which offer a time delay benefit to reach the max stress compared to the homogeneous.

– Made a non-optimal design optimal i.e. made the aluminum-steel two-layered strip an optimal three-layered    
strip, by adding one more layer of glass fiber reinforced material.

– The optimization software DYNA3D/GLO corroborated the analytical optimality results by finding the first 
eight optimal design points to a reasonable degree of accuracy. 

• Resonance

– Represented the resonance frequency spectrum and discussed its properties

• Verified the theoretical predictions with numerical experiments and discussed several 
applications.

Future Work

• Analytically study the stress wave propagation and vibrations in piezoelectric layered media 
subjected to a Heaviside voltage.

• Investigate whether all the zeros of the determinant of the system matrix lie on the unit circle for 
m>5 and do the stress optimization for such designs.
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