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Problem Description

1 dimensional Layered Elastic Media Two Layered Strip subjected to Heaviside Loading
Convenient for analytical calculations.

B.C.: Discrete forcing function at one
end and held fixed at the other end

* Heaviside loading when Minimizing the
Stress Amplitude

/

Laver I Laver 2

* Harmonic loading when studying
Resonance

Goupillaud-type, i.e. equal wave

travel time for each layer

The stress wave/jump discontinuities meet and
split at the layer interfaces, in addition to the
boundary.

plt)=pH(t)

Continuity of stress and
displacement at each layer interface. .
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Goal: Obtain analytical solutions for the stress propagation with the purpose to:

* Minimize Stress Amplitude for a Heaviside Loading.

* Generate Resonance Frequency Spectrum for a Harmonic Loading. 3



Problem Description

1 dimensional Layered Elastic Media
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end and held fixed at the other end
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travel time for each layer

The stress wave/jump discontinuities meet and
split at the layer interfaces, in addition to the
boundary.

Continuity of stress and
displacement at each layer interface.

Lagrangian Diagram for a Heaviside Loading
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Goal: Obtain analytical solutions for the stress propagation with the purpose to:

* Minimize Stress Amplitude for a Heaviside Loading.

* Generate Resonance Frequency Spectrum for a Harmonic Loading.



Problem Motivation

Despite the widespread use of multilayered structures in various
technologies, exact analytical solutions to optimal design problems
governed by the wave equation are rare in the literature. Such solutions are
especially useful for testing optimization codes.

The study of natural vibrations in elastic media include the study of
resonance, as resonance can enhance the performance of many sensors
and devices, yet can devastate structures subjected to sustained
temporally-periodic loading, for instance during earthquakes.



Brief Literature Review on Optimization

[ Anfinsen (1967) ] investigates the problem of maximizing or minimizing
the amplitude of stress waves propagating through a finite bar of two layers,
subjected to a transient stress loading. He determines optimal elastic
properties of the structure by means of a finite difference method.

[Lee et al., Chiu & Erdogan], and others consider problems related to the
propagation of stress waves in layered media. However they do not address
the problem of optimization of inhomogeneous transiently loaded media:

— [ Lee et al., (1975) ] provide error estimates for the stress, when a
medium with continuous property variation is replaced by a medium
consisting of a series of discrete homogeneous layers.

— [ Chiu & Erdogan (1999) ] solve several transient wave-propagation
boundary value problems for fixed/free and free/free end conditions in
power-law one-dimensional FGM using Laplace transforms.



Brief Literature Review on Resonance

[ S. D. Poisson, 1828] On the vibrations of an elastic sphere -- the first to
determine the free radial vibrations of a homogeneous sphere.

[ H. Lamb, 1882] On the vibrations of an elastic sphere -- calculated some
of its natural frequencies.

[ A. E. H. Love, 2002] A treatise on the mathematical theory of elasticity --
provides an historical account of the early developments in this field.

Literature includes the study of resonance in anisotropic elastic bodies,
anisotropic layered crystals, elastic plates, periodic media, laminated and
sandwich plates, composite laminates, piezoelectric composites, etc.

Despite the long history of developments in the field, exact solutions for the
resonance response of multilayered elastic media have been primarily
limited to analyses involving only a few layers.



Further Simplifications of our Problem
m-Layered Media

Transformation of the spatial variable
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Discrete Forcing Function
Exact Difference Scheme for the Stress Terms

* [K. Bube and R. Burridge, 1983] The one dimensional inverse problem of reflection
seismology.
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Discrete Forcing Function
Exact Difference Scheme for the Stress Terms

Recursive Relations:

'3

siln+1)= —si(n) + —1—12fm sa(n) + 1-3-.":1 f(n+1),

4 Si{n-_fr_].):_51'(?1]'+]2__:‘i__55+1{'n-}+%52'_1{ﬂ+1), for i =2..... m—1,
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z-Transform Approach

* Apply z-Transform to solve the system of recursive relations

F

:.5'1(:):—,5‘1{:'}+£1—5ﬂ{3'}f— 2_2(F(z) — £(0)),

14y — < 1+ay
8 z8i(z) = —=5;(2) + 12__::;‘:52'+]{:} + H_Em z8;-1(2), for 1 =2,...,m—1,

28n(2) = —8:(z) +228,._1(2).

1

—

« Obtain a Linear System| A,,, 7.,

(—

) With a tri-diagonal system matrix:

[z +1 —mag 0 0 0 0 0 - 51(z) 1
Sa(=z)
-z z+1 —mas 0 e 0 0 0 o
0 -3z 2z+1 —masz 0 e 0 0 8 (2)
ATTL — - “mxl

romiz{Fi{z) — £(0)) 7
0

0 0 0 bt 0 —Nm—1% z + 1 —TNm—1%m—1 By =

|0 0 0 0 0 —Nm 2 z+1 ) ey 0
- Tmxl
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About the Determinant of the System Matrix

The determinant of the system matrix is a palindromic polynomial
Property: For an even power palindromic polynomial the roots come in inverse pairs.

i _ — 2 L i}
2™ + @m,12™ T+ Gmaz™ T e+ {:r.-m,%_p:T"'l + am,mz 7+
b S 3 =
T0m, -1 T Lot am22® + amaz + 1, for m-even,

m—1 m—1

:-’r'lrnl — 4 L m—1 Lm—2 . ey oo
{x, + I.:l[.f_, —I_EJIJ'!.,I"'"' =t e _brn_rrll—]_la = ‘I‘bn_!_r.u—l.-', = ‘I‘

m—1

+b,, m_1_127 T 1 e b bpaz® 4 bpaz + 1], for m-odd.

\

|*4~i| =gt I?

9 2x1—2
|Ag| = (2 +1)° — a2 = 2° — %*ﬁ + 1,

|As| = (z+1) - [22 =222 11,

_ A4 Ay .3 , 2(4l3—x3+8) 2 s _
|A,_1|—/, _-".._3& 1 X3 o —¥/.+l

- -4 4T’y .3 2(4I'y—x4+8) 2 ATy ., 1
;45|=||:-{r+l}[/.- —1—:2 + 4_\:‘" prs —_\-—:/_,—FII

m—1
design parameters are given by v,,—1 = [[ (1 +a;) for 2 <m <5, I's = aqaz — 1,
i—1
and I'y = ajasay + ayonay + ajay + asay + ajas — 1. Here 1 > 1 for m > 2
and T, 4 >—1 for m=45.
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About the Determinant of the System Matrix

Proved that the roots of the determinant are distinct and lie on the unit circle for up to
five layers.

Using tri-diagonal Toeplitz matrices, we can find designs for which the roots of the
determinant are distinct and lie on the unit circle for any number of layers.

We consider designs for which the roots of the determinant are distinct and lie on the
unit circle. The roots of the even power polynomial come in complex conjugate pairs,

331'4‘3&-_1 = 21+ Z;. = 2cos0;

and the determinant can be factored as:

(%] B _
[ [z* — 2zcosby + 1] for m even,
|Am| = 4 = m |
. i X A = .
(z41) [] [z° — 2z cos by + 1] for m odd.
\ k=1
The angles {46, },2, correspond to the roots z = e*2% for m even, while the angles
o =1, {10} 13 correspond to the roots z = % = —1 and 2z = e*2% respectively
for m odd.
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Solving the Stress Recursive Relations

( ‘ Au\ \

¢ od,'p, Pz | A

" " (z-1)|4, :
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here Aijis a minor of Am

Partial Fraction

Inverse z-Transform \l,

Recover si(n)
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Explicit Stress Formulas for a Discrete Loading

Obtain stress solutions, after applying the inverse z-transform:

13

si(n) = Z7HZn(i)) = f(n)+ |:I.Iji_{]|f_1 ™+ 3 a;pcos(nfy) + b; g sin {”Hk]i|

k=1

|1 5]
—f(0) - [Eﬁi_u{— 1)* + > a;gcos(nbg)+ b; i sin {THEJ'L.}]
k=1

Special Case |: Heaviside Loading

f(n) = p for n > 0
E

g:ln)= a; 0+ b; o(—1)" + > a; I COS (nfy) + b; psin(nbg) | -p
k=1

Special Case II: Discrete Harmonic Loading

f(n) =sin(nw), n > 0

15



« Special Case I: Heaviside Loading and Optimization
f(n) = pforn >0

L5
g:ln)= a; 0+ b; o(—1)" + > a; I COS (nfy) + b; psin(nbg) | -p
k=1

16



Stress Formulas for the Two-Layer Case
Heaviside Loading

si(n) =[1—cosnby |- p,
forn > 1.
so(n) =[1—cosnby — \/ﬁ sinnf | - p,

Here the design parameter yp is given by y1 = (a1 + 1)

For x; > 2 and 0 < 6; < 3, we have that

< . 1 Z X1
= or, equivalently, cosf; = A — —.
1 — COSGl X1 vp + 1

X1

17



Stress Formulas for the Three-Layer Case
Heaviside Loading

siln)=|1—=22. (—1)P . @tls ananf.]| .p
1(n) I xa—1 ( ) xo—1 vill g
sao(n)=|1—cosnb; + sinnfq| - p. for i = 1.
2(n) _ 1 =T 1} ] =
= o f 1 n X2—2 = ] 2 S .
sa(n)=|1— =17 — A27= sosnf ——=__sinné| - n.
| 53l ) “ et L) - e £| -

Here the design parameter vs is given by vo = (a3 + 1)(as +1) > 1,

for yo > 2 and 0 < 6 < %, we have that

2 . X2 — 2
Wi = — or, equivalently, cosf; = - :
1 — costq X2

18



Stress Formulas for the Four-Layer Case — Maple results
Heaviside Loading

[ s1(n) — ayg +apcosnfy + by sinnfy + apg cosnfy + by o sinnby
salm) (o + a1 cosnfy + baysinnfy + a0 cosnfla + b sinnfs
\
sa(n) — asgg + azqcosnfy + by sinnfly + ag o cosnfly + by o sinnfs
| sul(n) — ago + agqcosnfy + by sinny + ago cosnfly + by psinnby.
where: .y Naoz | IENzon | IENLo [
Cos 5 T T —
) o :l:1.,.-""-'1mgfrsg-l--'h?sgﬂgr}zt‘rz Aoy as nafnp?on? 4 2 aaman Hpe?p 2oy 2
a 1 pninamast2nzas 4) T
1,0 2 (—14cos# j{—1+cosfa)? ) 05 0 Nacsg | a2 o | UL/ W
a 1 mpl2 nampas 2nzazt2eosdy ) b (0 COs B2 2 1 1
1.1 2 C9593+E‘m95':'059-3 cos )~ +cos 1.1 ! Aoz +dnztoapa —dmpnormes tpatptee?+ 2nsp oo m a2 T 2o 2
. 1 (- mEnaog naces+2 cos fa+21mp by . 0 + 1
11,2 2 [—eosf8y+cosfg ) —1+cosfg) 1.2 !
1 ___mpm{ 24nsas)
2,0 2 {—1+4cosf; )| 1+cosba)? ) )
a 1 nmipna(l-—naost+cosf; ) be 1 mpnail measteosé)
2,1 2 —cosflatcosdy cosfo—cosf foosf; ! 2,1 2 (—eostyteoosfg sl
oo — L (—nzaztcosfa+1inipns bo 1 (- masteosfot+1limpn
2 2 (—cos#;tcosfe)(—14cosbg)? 2,2 2 s2({—cosf;toosfa) T
1 __ mpm{2+nsas)
3,0 2 (~1tcosd){—ltcoosbo)? )
a 1 nipna(l-—naostcosd; ) b 1 m_pr}gl:l naaa +cos f; )
3.1 2 —cosfstcosdy cosfla—cosf; S 4cosf; 4.1 2 (—costlytrosfg)st
an — L (maaztcosfatlinipns B . 1 (- mazteosfot1limpn
3,2 2 (—cosf;tcosfle )~ 1+cosfg)? 3.2 2 s2{—cosf;+toosfa)
1l HLpane
4,0 2 (—14cosf; )~ 1+ecosbo)? . )
@ 1 mprapal— 142 cos 8; ) b, 1 (142cosf i prEns
4.1 2 _c059_3+c0585c'0593 cosfy - +oosf; ! 4.1 2 CDbi:gr-l_cé:Hng sl !
1 { —1+2 cosfa jn1pnana 1 ipana(2eosfs +
Q4,2 T T cosB fcosfa)| 1 tcosfs) ! b‘l-z 2 52 (—cosfytcosda)” 19




Optimal Design Problem Formulation
Heaviside Loading, m-layer Case

inf sup [p,s1(%,0, %), S2(0, D, Trn)s - -« ¢ S (72, P, Tim )]
Tm 1<n<+4oo .
where 17, = (a1,a9,...,Qm_1)
26 —
—+— DAC
- ™
1.5 + + +
3 I I I
E - -
a.j
0.8 ‘u T1II'.I 1lE- 20
Stress Time History at the middle of a
homogeneous elastic strip, with a stress
amplitude of double the loading p=1.
p<inf sup I[p.,si(n,p,Tm),s2(n,Ps7Im),- .-, Sral M) Bl | = 2p.

Tm 1<n<-+oc

s — 1 2 ) — 2™ ||
alue = By Boom) — v

B inf . sup 1D, 51(1D, Tm); $2(1; P; )<« o5 Sy (78,0, T ) -
Tmy Xm—122™M" 1<n<+4+co 20




Stress Optimization for the Two-Layer Case
Heaviside Loading

inf sup{S, (n),5,(n), py<2p
X 22 n

Bounds on the stress terms for any given o :

n n

0< max Sl(n,a)SZp, @ max Sz(n,a)ZZp
Optimality condition: in maX{Sl(n),Sz (1), p = 2p
X122 n

Optimal values for the angle:

A1.opt = 7 j =234 .. .

and the design parameter:

2 2 ,
X1,0pt — — ~ |
2 1 —cos{fi. opt) 1 — C‘.{flb'jl.

LR T

21



Computationally-Derived Optimal Solutions for
the Two-Layered Strip using DYNA3D/GLO

Explicit Finite Element Code DYNAS3D using 60 hexahedral finite elements.
GLO - Global/Local Optimizer

Optimal solutions obtained using a coupled global (discrete) and local
(gradient, “variable metric’) method.

Search limited to a region involving the first eight optimal design points.

Comparison of analytical and DYNA3D/GLO derived leoptvalues.

| 2 3 4 3 6 7 8 9
P 2 4 6.828 | 10.472 | 14.983 | 20.196 | 26.270 | 33.163
1, opt
zl,opt 2 4 6.829 | 10.470 | 14.924 | 20.182 | 25.247 | 32.120
DYNA/GLO

22
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Optimal Design Verification for the Two-Layer Case

Maximum Stress versus design parameter/impedance ratio au.

Layer 1: 0 <x<7% Layer 2: /42<x<1
100[1 5 sl
. ® : ° 4 : Y
. * 1'0 o 20 o el * %0 )
. o ) ® ° [ 2.4
1.995] . o .
° ° ° [} L Y
1.99 ° 2.3} s
. o o I S ~,
1.985¢ t 5.0 ™
° d r .‘.“
.9
198 ° o ° g 2.1 % .’Nﬂ
1.975} -:‘V\f\
S . L X s’f_
1.97 20 40 60 80 100




Periodic Optimal Solutions for the Two-Layer Case

» Time Delay Benefit to reach Max Stress as j increases in value (j=3 first row vs. j=9 second row)

a0 ; a0 .
— [ HABD —s O HABD
—— analytial — analylkal
20F
|
2 g
] o
-
b E
E E
z -4
1 Kx]
=3 0=
_1-0 L L L _1|:| L L L
e T ¥7) 100 150 a0 L. B 0o 150 =il
la) Mormrialized Tims (b Marmalized Time
Fig. 4. Optimal sivess istory when = | and ¢ = % {a) byer 17 £ = 025, (b layer 2 § =075
an T a0 i
—a O NAZD w— OYHNA2D
—— dAnakykal — Analykcal
20
§ #
2
m b
-3 -
d 1.0 E
: £
(X))
=31 153 =3 183
A0 L L L -0 L L —L
T ] 100 150 =0 ., 0f 50 00 50 200
(&) Hormalized Time (b Momailzed Time

Fig. 5. Optmmal stress ostory when © = | and @ = 32 16% () luyer 1

§ =025, (b} bhye 2: =075
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Stress Optimization for the Three-Layer Case
Heaviside Loading

«  Optimal values for the angle:

) N
_ -9 =
quopf —_— 7. '.] — NS If .....

and the design parameter y, = (1+a,)(1+ «,)

> 2 .-
2. T A— - = — ety o e wie
\( er 1 ('(L)H(_Hl‘optj ]_ == PU"‘*% J

4 10.472 | 20.196 | 33.163

X
2, opt




Stress Optimization for the Four-Layer Case

Heuristic Approach

Optimality Condition too complicated to follow:

min max {Sl(n),Sz(n),S3(n),S4 (n),p}<2p

X328 n

X =+a)(+a,)(1+a,).

Matching the powers of z for the two different representations of |Am| in the z-space:

|Aq| = (2 + 1)|Aq1.2,3y| — moamaz|Ag 2y
A iﬁ + 2(4's — x3 +8) o 4@y

s
=

X3 X3 X3

2 — &) (z — &) (2 + €¥2) (2 — &™)
2

(
— (22 — 2z co86; +1)(2? —22cosby + 1)

cosfy + cosfy = ‘f—f

z+1.

— 2(cosfy + cos Sg)z" + 2(1 4+ 2 cos#y cos [?-3}22 — 2(cos by +cosba)z + 1

cos ) - cosfly = Lﬂ.ﬁ Here xa = (1+4+ a1)(1 4+ a2)(l +a3) and I's = (@13 — 1)

26



Stress Optimization for the Four-Layer Case
Heuristic Approach

Motivated from the homogeneous case, we apply the additional condition

to the system:
% : __ 23
COSs 91 + COs HE = T

ENTY, . e
cos fy - cos fy = Z3—x3+3 1-3”1'

and obtain that: cos(6,) =—cos(6,) and

Compare this with the optimal results for the 2-layer case («

= —— k=234..ctcC.
zZ,Opt 72', 9~s Ty
1—cos—

k

1":; = ¥1kgq — 1=0

23

X =+a)(+a,)(+a;)=

1-cos(26,)

=a,a, =a, =1):

2 1 3

> cos(26,) = cos(%)

27




Optimal Design for the Four-Layer Case

* Proposed optimal values for the angle

where 1 =2.3.4,...,

1‘r-'}l opt — i
- 2-}-.

and design parameter:

2% - .-
X3,opt = T—cos(Z)’ 1= 7 L O B

TT
F;}‘pr . l:l.
7 2 3 4 5 6 7 8 9 10
01 ,0pt m/4 | w/6 m/8 /10 /12 m/14 m/16 m/18 /20
X3.opt 8 16 | 27.314 | 41.888 | 59.713 | 80.783 | 105.096 | 132.654 | 163.454

Similar optimal results can be obtained for the five layer case.

28




Periodic Optimal Stress Solutions
for the Four-Layer Case

Optimal design stress time history:

I:II =3 =3 fm A 1 —cosimill I:IEI w3 fmd i = S I—-Com
ir ir
o ol BT o el -1
e R s 3 1 e w | XY 2
L B -F s | 35 3
- Ly - R
w
B s
&
T
:
-0 -5
_1 1 1 i 1 1 _1 i 1 1 i 1
] 2 41 = 4 p| 1] o 2] 41 =0 Bl 100

Warmakzed Time= Normailzed Time=



Distribution of the Optimal Angle Values

2-Layer case 3-Layer case 4-Layer case
Oropt = —. j=2.3.4..... Oropt = —, j=3,5,7,...,| |01.0pt = —j where j =2,3,4,...,
J J &

cos(6,) =—cos(6,)
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Applications: Optimal Material Configurations and Design Improvement

Material Selection Chart

* The two-layer case, X, = l+a

1'000 - Ttanium Stainless mics
i g Alloy Steels
Homogeneous design: % 100l =
¥ =2=>a=1 £ °
1, opt 2
Tungsten Alloy and Lead: 2 | Ceramics | and alloys
g2
V4 = 0.828 = a = 5.828 g
1, Opt Palymers
ﬁ 0.1
Tungsten and Copper Alloy: ti N -
X = 33.163 = o = 32.163 0.1 :
100 300 1,000 3,000 10,000 30,000

1, opt «— Light DENSITY (kg/m) Heaty —>

* The Three-Layer Case, Z, = (I+ 0!1 )+ 042). * The Four-Layer Case, Xy = (1+ ? (1 + “, (1 + a3)

Homogeneous design: ' :
.Homogeneous design:

a =1,y =4d=a =1 1
> a =l,a =—=1, =8=a =1
1 2, opt. 2 1 3 a 13, opt. 2
Aluminum-Steel=>Glass Fiber Reinforced | Non-Homogeneous Optimal Design:
a =.33,y =10472 => a = 6.87 1
’ a =25,a =— =04, =8=a =0.63
1 2, opt. 2 1 3 « 13, opt. 2 331



Applications of our Optimality Results
to Non-Goupillaud type Layered Media

« The optimality conditions for the non-Goupillaud type two-layered medium with wave travel time

ratio 1:2 (or 2:1), can be derived from the Goupillaud-type three-layer medium with wave travel

time ratio 1:1:1 and a2=1 (or a:=1).
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v’ Special Case |: Heaviside Loading and Optimization

f(n) = p for n > 0
2]

si(n) = | a; 0+ b;,0(—1)" + )  a;pcos(nbi)+ b; psin(ndy) | -p
=]

« Special Case Il: Discrete Harmonic Loading and
Resonance

f(n) = sin(nw), n > 0

33



Numerical Experiments validating Universal Resonance Frequency

Strass Values in the Second Layer

for Multilayered Designs with an Odd Number of Layers.

(a) (b)
B T T 10 T
¥ 5in) . % 51-1"] L 5 T
P o sgn) R 4 % | O Synl "
0 = = 4 @ ol
S
-4k w
4 ; i | +
o ¥
-6 : - : . : : : + -10 : - . , . .
0 1 2 3 4 5 i T 3 i} 1 2 3 4 5 i
Time Time
(a) Seven-layered strip (b) Eleven-layered strip

Stress time history at the middle of the second layer of a Goupillaud-type unit strip
subjected to loading f(n) = sin(nr)
Values of impedance ratios between two consecutive layers, up to eleven layers:
3,2,15,22,03,1.7,14,3.1,0.8, 4 34



Numerical Experiments validating the Resonance Frequencies

Stress Values in the Second Layer
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(b) Middle of the third layer

Stress time history for a three-layered Goupillaud-type unit strip

subjected to loading f(n) = sin(nw) withw =60, =%
Values of impedance ratios between two consecutive layers up to three layers:
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Stress Values in the Second Layer

Numerical Experiments validating the Resonance Frequencies
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(a) Four-layered strip (b) Five-layered strip

Stress time history at the middle of the second layer of a Goupillaud-type unit strip
subjected to loading (@) 0 = #; ~ 2.4644 rad (b) w = #, = 0.453 rad
Values of impedance ratios between two consecutive layers, up to five layers:
0.6,1.5,2,1.2
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Numerical Experiments validating the Non-Resonance Frequencies

Stress Values inthe Second Layer
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Stress time history for a two-layered Goupillaud-type unit strip
Impedance ratio ey = 1/3, angle 6, = 27/3,
subjected to loading f(n) = sin(nw) with

(a) w=m/4. (b) @ =0.9-6, =0.67.
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Resonance Frequencies and Optimal Designs

* Optimal Designs that minimize Stress Amplitude under Heaviside Loading,
are not immune to the Resonance Phenomenal

Stress time history for a two-layered Goupillaud-type strip with impedance ratio a; = 3, 6; = %,

located at & = 3/4 subjected to loading (a) f(n) = sin(n@) with@ =6 = 3. (b) f
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T = 1, at the middle of the second layer

n)=1forn=0.
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Other Applications of our Resonance Frequency Results

Design modification that gives a desired frequency spectrum
Adding a new layer in front of an existing two-layered Goupillaud-type
strip, allows us to modify the resonance frequency spectrum for a three-layered strip.

Natural frequencies of a free-fixed non-Goupillaud-type layered strip with integer layer
length ratios

For instance, the frequency results for a free-fixed four-layered Goupillaud-type strip
with equal layer lengths, can be extended to a free-fixed three-layered non-
Goupillaud-type strip with wave travel time ratio 1:2:1 by choosing as = 1.
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Summary

»  Derived explicit stress solutions from a global system of recursive relationships using z-transform
methods. The determinant of the system matrix was found to be a palindromic polynomial with
real coefficients.

*  Optimal Designs
— Found (theoretically) infinitely many optimal designs.
— Found designs which offer a time delay benefit to reach the max stress compared to the homogeneous.

— Made a non-optimal design optimal i.e. made the aluminum-steel two-layered strip an optimal three-layered
strip, by adding one more layer of glass fiber reinforced material.

— The optimization software DYNA3D/GLO corroborated the analytical optimality results by finding the first
eight optimal design points to a reasonable degree of accuracy.

« Resonance
— Represented the resonance frequency spectrum and discussed its properties

« Verified the theoretical predictions with numerical experiments and discussed several
applications.

Future Work

* Analytically study the stress wave propagation and vibrations in piezoelectric layered media
subjected to a Heaviside voltage.

* Investigate whether all the zeros of the determinant of the system matrix lie on the unit circle for
m>5 and do the stress optimization for such designs.
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