Accelerating computations in
very large applications using
data flow based accelerators

Michael J. Flynn
Maxeler Technologies and Stanford University

MAXIMUM PERFORMANCE COMPUTING

The (multi core) Parallel Processor
Problem

e Efficient distribution of tasks

* Inter-node communications (data assembly & dispatch)
reduces computational efficiency: speedup/nodes

e Memory limitations

e Layers of abstraction hide critical sources of and limits
to efficient parallel execution

e Result: scaled up cost, power, cooling and reliability
concerns

MAXIMUM PERFORMANCE COMPUTING

Hardware and Software Alternatives

e Hardware:
A more generalized (and reconfigurable)
heterogeneous accelerator array model

e Software:
A cylindrical rather than a layered model suits

many applications

MAXIMUM PERFORMANCE COMPUTING

Heterogeneous Accelerator Hardware
Model

e Assumes host CPU + accelerator
e Application consists of two parts
— Essential (high usage, >99%) part
— Exceptional part (<1% dynamic activity)

e Essential part is executed on accelerator; exceptional
part on host

MAXIMUM PERFORMANCE COMPUTING

FPGA accelerator hardware model:
server with acceleration cards

B/ -
u e M“ Kemels

MaxelerOS

Mﬁh\XElI!lER

MAXIMUM PERFORMANCE COMPUTING

Programs, DFGs and Hardware

e Each (kernel) program has a data flow graph (DFG)

e The ideal HW to execute the DFG is a data flow
machine that exactly matches the DFG

e A compiler /translator attempts to transform the
DFG so that it resembles the HW

MAXIMUM PERFORMANCE COMPUTING

Transforming DFGs to Match the HW

* FPGA based accelerators, while slow in cycle time,
offer much more flexibility in matching DFGs

e Goalis to create a static DFM and stream data across
(MISD style)

e Limitation 1: The DFG is limited in (static) size to O
(10%) nodes

e Limitation 2: Only the control structure is matched
not the data access patterns; so memory
choreography must be managed additionally

MAXIMUM PERFORMANCE COMPUTING

Accelerate Tasks by FPGA-based DFMs

e Create a fully synchronous data flow machine

synchronized to multiple memory channels, then
stream computations across a long array

Computation #2

Data from node
memory

»

"L

FPGA based DFM

Results to
memory

Computation #1

J;

MAXIMUM PERFORMANCE COMPUTING

Buffer

Intermediate results

FPGA Acceleration

e One tenth the frequency with 10° cells per die

e Magnitude of parallelism overcomes frequency
limitations

e Stream data across large cell array, minimizing memory
bandwidth

e Customized data structures; e.g., 17 bit floating point --
always just enough precision

e A software (re)configurable technology

MAXIMUM PERFORMANCE COMPUTING

MaxNode- with MAX3

e 1U Form Factor

e 4x MAX3 cards
with Virtex-6 FPGAs

e 2x Intel Xeon CPUs

e Up to 96GB host RAM
e Up to96GB FPGA RAM
e 3x3.5” disks

e ~/700W Power

MAXELSER

MAXIMUM PERFORMANCE COMPUTING

10

SW: A Different Programming Model

e A cylindrical rather than a layered model suits static
applications

e Create a synchronous data flow machine (DFM)
based on the application data flow graph

e Use a streaming computational model in data centric
applications

MAXIMUM PERFORMANCE COMPUTING

Cylindrical Model for Vertical Acceleration
<4+ = —>

High level choices Algorithm, parallelism
E —
Layers of Abstraction e.g., C++ Class Hierarchy
Low level choices ~J Logic gates

» First cut / accelerate a small vertical kernel / cylinder
> Later extend kernel size to achieve full application speedu
MAXELLER PP peedup

12

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Acceleration via Streaming and
On-Demand Dataflow Machines

e Create “static” form of source code
e Create dataflow graph of static source code

e Compile dataflow graph into synchronized
dataflow machine; suitable for data streaming

e |terate on DF machine to optimize use of I/O pins
and silicon (usage of elements)

e Simulate; then place and route

MAXIMUM PERFORMANCE COMPUTING

Speedup with the Cylindrical Model

 Transform application to execute multiple
simultaneous DFMs using DRAM “pipes”

e Stream computations through each pipe using
memory choreography

e DFM size limited by FPGA area and DRAM (and FPGA
pin) bandwidth

— Application specific data precision
 multiplies FPGA area
 multiplies DRAM bandwidth

MAXIMUM PERFORMANCE COMPUTING

Data flow graph fragment

[data (28)

MAX E L E R d__out
' ' 1D: 3
MAXIMUM PERFORMANCE COMPUTING

15

Same fragment after (>

compilation 1o
now buffer synchronized '

MAXELSER

MAXIMUM PERFORMANCE COMPUTING

Data flow graph as

generated by compiler
4866 nodes; about 250x100

MAXELER

Technologies
MAXIMUM PERFORMANCE COMPUTING

. ,
"
: b "
'
.l‘
(5% =
m 1
- u "
. PP -
TS
- T
s N, s
L — —
.3 . E. 3 ¥ e . d8t i srarzrars L)
— = e e
e s S WL T— T < F
d B
.
.
L]
.
.
i
.
%
.l 1
i
L
an
-’ |]
" e m1 L T
- L] " @
5 I i oa
1) AT L il ter L& i 1w R] TSR
§ g ——. - -
s o T T o :
" — —— == e ==
— e ——— r—————— "
. - =
rrorEEEe
[[(]
TR
. . - 2 .
e e
3 T
— e &
‘ ¥
T L) : —
“'T-.. — T -
- T om -
r]
s e i — L W
E =3 - - —— I
— — f —_—
- - =" yr— -
" T o
F

Too Much Effort?

“The parallel approach to computing does require
that some original thinking be done about numerical

analysis and data management in order to secure
efficient use.

In an environment which has represented the
absence of the need to think as the highest virtue
this is a decided disadvantage.”

-Daniel Slotnick, 1967

MAXIMUM PERFORMANCE COMPUTING

Automating the Process: 1

 Tools we now have:
— Profiler identifies “essential” kernel
— Compiler creates DFG
— Compiler creates DFM from DFG

— OS, drivers and source data “streams” enable
memory choreography

MAXIMUM PERFORMANCE COMPUTING

Automating the Process: 2

 Tools and methodology under development

— Tools to assist the rewrite source code into “static” form
with data streams

— Compiler optimized for pipeline BW, not for minimum
critical path length

— |dentifying algorithmic tradeoffs

— Managing the DFG: reshaping to use computational
volume, optimizing for pin BW

— Optimizing data structures

MAXIMUM PERFORMANCE COMPUTING

Some application areas with published
results

* Finite Difference Modelling
 Reverse Time Migration

* Common Refection Surface stacking
e Sparse Matrix Solving

* Credit Derivatives Pricing (Monte Carlo
simulation)

MAXIMUM PERFORMANCE COMPUTING

Example: Seismic Data Processing

e For Oil & Gas exploration:
distribute grid of sensors over large area

e Sonic impulse the area and record reflections:
frequency, amplitude, delay at each sensor

e Sea based surveys use 30,000 sensors to record data
(120 db range) each sampled at more than 2kbps
with new sonic impulse every 10 seconds

4

Order of terabytes of data each day
MAXELER

Seismic Data Processing:
A Lot of Data to be Processed

e Data can be interpreted with frequency and
amplitude indicates structure, delay indicates depth
(z axis)

* Process data to determine location of structures of
interest

e Many different ways to process

MAXELSER

fffffffffffffffffffffffffffffffff

That’s Only Part of the Story; Much
More Computational Capacity is
Required

e Better physics
 More robust mathematical models
e More data and higher resolution

MAXELSER

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

24

Oil and Gas Computational Kernels

MAXELER

MAXIMUM PERFORMANCE COMPUTING

Wave propagation

Diffusion

Fluid Flow

Convolution

| Sparse Matrix

v

25

Sparse Matrix Solvin

O. Lin

e Sparse matrices are used in a
variety of important applications

 Matrix solving. Given matrix A,

vector b, find vector x in:

* Direct or iterative solver

AXx=Db

e Structured vs. unstructured

matrices

MAXELSER

fffffffffffffffffffffffffffffffff

Jorn et al, 2010

Schiumberger

Limited Multicore Scalability of SLB Sparse Matrix

Applications
Eclipse Benchmark Visage — Geomechanics
(2 node Westmere 3.06 GHz) (2 node Nehalem 2.93 GHz)

E300 2 Mcell Benchmark FEM Benchmark
3 * 5
@ 3 o
a o 4
b4 a
@ 2 w 3
.E Q 2
&1 2
g 32

0 & 0
o0 2 4 6 8 10 12 0 5
cores # cores

MAXIMUM PERFORMANCE COMPUTING

Sparse Matrix on FPGA

ki

'rln'-l" 2s
P

= Loty

60
-+ GREEOA
/\ J =!'I=I:!i.=" = 1new01
L 50 //IO
W g 40
My =
__!! 3
'-!!!!h“ g 30
624 s
n .h (G:)_ 20 -
‘*!i.!hi @ SPEEDUP is 20x-40x per 1U at 200MHz
l'!'n, 10
""'!!l..i
-!!!'.'l 0 ‘ ‘ : ‘ : ‘ ; ‘ ‘
A4 0 1 2 3 4 5 6 7 8 9 10
624 >

= Maxeler Domain Specific Address and Data Encoding
MAXELER

MAXIMUM PERFORMANCE COMPUTING I I

3D Finite Difference I\/Iodelingo08

T. Nemeth et al

e Geophysical Model
— 3D acoustic wave equation

82p n 1 =

g p— . —

572 KV (pr) + 5(t)
— Variable velocity and density

— |sotropic medium

e Numerical Model
— Finite differences (12t order convolution)
— 4t order in time
— Point source, absorbing boundary conditions

MAX E L E R Chevron
~—

fffffffffffffffffffffffffffffffff

Modelling Results

e Up to 240x speedup
for 1 MAX?2 card FD Modeling Performance

)
Q
Qo

compared to single
CPU core

e Speedup increases
with cube size

N
un
O

N
Q
Qo

Y
un
o

e 1 billion point
modelling domain
using single FPGA
card

=
o O
o O

Speedup compared to single core
o

0 200 400 600 800 1000
Domain size (n3)

MAXELSER

MAXIMUM PERFORMANCE COMPUTING

30

Computations per Output Point

on Intel Xeon (Convolution)

L1 Cache
Cycles FLOPs Other Ops Miss Rate CPI
2"d order — X pass 11% 40.2 72.3 0.2% 0.6
2"d order - Y pass 15% 40.2 72.3 3.8% 0.8
2" order — Z pass 21% 40.2 72.4 7.3% 1.1
Vector add 1% 1.0 9.0 1.3% 0.9
4th order — X pass 10% 40.2 64.7 0.2% 0.6
4th order - Y pass 15% 40.2 64.7 4.0% 0.9
4th order — Z pass 21% 39.6 65.3 7.8% 1.2
Update pressure 1% 1.9 9.9 1.0% 0.7
Boundary sponge 5% 0.8 4.0 5.6% 5.8

MAXELSER

MAXIMUM PERFORMANCE COMPUTING

31

Computations

e On average about a data cache miss per 10 floating
point operations

e Xeon achieves about 1.0 CPI

e So, Xeon has a 20x frequency starting advantage over
an FPGA based computation

e BUT FPGA uses lots of parallelism to significant
advantage

MAXIMUM PERFORMANCE COMPUTING

Streaming Solution (FPGA)

e Convolve 4 input points (strips) simultaneously (per
FPGA); buffer intermediate results;
forward 4 outputs to next pipeline stage: SIMD

e Continue (streaming) pipelining until the silicon runs
out (468 stages): MISD

e Size the Floating Point
so that there is just enough range & precision

e One PCle board provides 8 x 468 FLOPS every 4 ns;
almost 1 teraflop

O. Pell, T. Nemeth, J. Stefani and R. Ergas. Design Space Analysis for the Acoustic Wave Equation Implementation
on FPGA Circuits. European Association of Geoscientists and Engineers (EAGE) Conference, Rome, June 2008.

MAXIMUM PERFORMANCE COMPUTING

Achieving Speedup > 100X

e Stream the computation in 468 stage pipeline
* Execute 8 points simultaneously

e Eliminate cache misses, eliminate overhead operations
(load, store, branch..)

 So:
8x (points processed) x 468 stages x 2 (overhead ops)/
20 = 374 (max speedup possible)

e Operate at one-twentieth the frequency; reduce power
and space

MAXIMUM PERFORMANCE COMPUTING

Achieved speedups (published results)

(credit derivative
pricing)

(Paris, May 10)

Problem Sponsor Reference Speedup | Speedup per
per core server

Conjugate ENI-AGIP EDGE 2010 218X -
Gradient (seismic
Convolution Chevron SEG 2008 250x

Schlumberger | Hot Chips 2010 73 X

IEEE Micro 3/2011

Sparse Matrix Schlumberger | Hot Chips 2010 40 X
Monte Carlo JP Morgan Derivative & Risk 79 X
simulation Mgmt Conf.

MAXELSER

MAXIMUM PERFORMANCE COMPUTING

So How Can Emulation (FPGA) Be

Better Than The x86 Processor(s)?

 Multi core approach lacks robustness in streaming
hardware (spanning area, time, power)

 Multi core lacks robust parallel software methodology
and tools

e FPGAs form an unlikely basis for acceleration

e Success comes about from their flexibility in matching the
DFG with a synchronous DFM and streaming data through
and shear size > 1 million cells

e Effort and support tools provide significant application
speedup
MAXEILSER

Conclusions 1

e Many applications are starved for computation

 The success of FPGA acceleration points to the
weakness of evolutionary approaches to parallel

processing: hardware (multi core) and software (C++,
etc.), at least for some applications

e The automation of acceleration is still early on; still
required: tools, methodology for writing apps., analysis
methodology and (maybe) a new hardware basis

MAXIMUM PERFORMANCE COMPUTING

Conclusions 2

* In acceleration (and parallel processing): to find
success, start with the problem not the solution

e Effort (sweat and tools) provides speedup, not silver
bullets

MAXIMUM PERFORMANCE COMPUTING

	��Accelerating computations in very large applications using data flow based accelerators �
	The (multi core) Parallel Processor Problem
	Hardware and Software Alternatives
	Heterogeneous Accelerator Hardware Model
	Slide Number 5
	Programs, DFGs and Hardware
	Transforming DFGs to Match the HW
	Accelerate Tasks by FPGA-based DFMs
	FPGA Acceleration
	MaxNode- with MAX3
	SW: A Different Programming Model
	Cylindrical Model for Vertical Acceleration
	Acceleration via Streaming and �On-Demand Dataflow Machines
	Speedup with the Cylindrical Model
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Too Much Effort?
	Automating the Process: 1
	Automating the Process: 2
	Some application areas with published results
	Example: Seismic Data Processing
	Seismic Data Processing:�A Lot of Data to be Processed
	That’s Only Part of the Story; Much More Computational Capacity is Required
	Oil and Gas Computational Kernels�
	Sparse Matrix Solving
	Limited Multicore Scalability of SLB Sparse Matrix Applications
	Sparse Matrix on FPGA
	3D Finite Difference Modeling
	Modelling Results
	Computations per Output Point �on Intel Xeon (Convolution)
	Computations
	Streaming Solution (FPGA)
	Achieving Speedup > 100X
	Achieved speedups (published results)
	So How Can Emulation (FPGA) Be �Better Than The x86 Processor(s)?
	Conclusions 1
	Conclusions 2

