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DG Spectral Element Methods

Features:

1 Geometric flexibility - finite element method

2 Exponential convergence of the error: E ∼ e−αN

KN

3 Exponentially low dissipation errors

4 Exponentially low dispersion errors

5 Robust (esp. compared to strong form spectral methods)
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Conventional Wisdom

Conventional wisdom states: DG spectral elements are

1 Too hard to implement

2 Less efficient than other methods, esp. Compact FD

Partly the fault of the spectral community...

We will show that, as usual, conventional wisdom is not necessarily
correct.
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“Examples” of DG Methods
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3.4. Examples of DG methods. A simple and natural choice of numerical
fluxes is

û = {uh} on Γ0, û = 0 on ∂Ω, and σ̂ = {σh} on Γ.

This is the choice proposed by Bassi and Rebay in [10]. With this choice of û, we
have {û− uh} = 0 and [[ û− uh ]] = −[[uh ]], so (3.9) gives

σh = ∇huh + r([[uh ]]).(3.17)

Therefore ∫
Γ

{σ̂} · [[ v ]] ds =
∫

Γ

{∇hu} · [[ v ]] ds−
∫

Ω

r([[uh ]])r([[ v ]]) dx,(3.18)

where we used the fact that r([[uh ]]) ∈ Σh and the definition (3.8) of r in the last
step. Substituting in (3.11) we obtain the following primal form for the method of
Bassi–Rebay [10]:

Bh(uh, v) =
∫

Ω

[∇huh ·∇hv + r([[uh ]])r([[ v ]])] dx

−
∫

Γ

({∇huh} · [[ v ]] + [[uh ]] · {∇hv}) ds.

As a second example, we consider the classic IP method. This was originally
proposed as a primal formulation, with

Bh(uh, v) =
∫

Ω

∇huh ·∇hv dx−
∫

Γ

([[uh ]] · {∇hv} + {∇huh} · [[ v ]]) ds + αj(uh, v),

(3.19)

where

αj(uh, v) =
∫

Γ

µ[[uh ]] · [[ v ]] ds(3.20)

is the IP or stabilization term with the penalty weighting function µ : Γ → R given
by ηeh

−1
e on each e ∈ Eh with ηe a positive number. It is easy to see that this method

arises as well from a proper choice of fluxes,

û = {uh} on Γ0, û = 0 on ∂Ω, and σ̂ = {∇huh}− αj([[uh ]]) on Γ,(3.21)

where αj(ϕ) is simply µϕ, i.e., ηeh
−1
e ϕ on e. Again we have σh as in (3.17), while

instead of (3.18) we get∫
Γ

{σ̂} · [[ v ]] ds =
∫

Γ

{∇huh} · [[ v ]] ds−
∫

Γ

αj([[uh ]]) · [[ v ]] ds,(3.22)

and (3.19) follows by substituting (3.22) in (3.11).
The vector flux for the IP method contains the jump term αj([[uh ]]) which is

equal to ηeh
−1
e [[uh ]] on e. An alternative jump term is obtained using the lift operator

re : [L1(e)]2 → Σh given by∫
Ω

re(ϕ) · τ dx = −
∫

e

ϕ · {τ} ds ∀τ ∈ Σh, ϕ ∈ [L1(e)]2.(3.23)
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DG Spectral Element Approximation

It’s Not That Hard!
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Compressible Flow Problems

Problems modeled by a system of conservation laws:

~qt +∇ · ~f = 0

~f = ~f i + ~fv

where

Euler Equations

~q =

 ρ
ρ~u
ρE

 , ~f i =

 ρ~u
ρ~u⊗ ~u+ pI

ρuH

 , ~fv = 0

Navier-Stokes Equations

~fv =

 0
−τ

τ · ~u+ k∇T
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Multi-Element Decomposition

Subdivide domain into multiple elements
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Multi-Element Decomposition

Can be arbitrarily complex

X

Y
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Mapping to Reference Element

Transform:
x = X (ξ)

1

1

0

e

E

-1
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Equations on Reference Element

Strong form of conservation law:

Q̃t +∇ · f̃ = 0

where
Q̃ = JQ

f̃ i = Jai · f =
3∑

n=1
Jainfn

Jai = J∇ξi = aj × ak =
∂X
∂ξj
× ∂X
∂ξk

(i, j, k) cyclic

J = ai · (aj × ak) (i, j, k) cyclic
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The DG Spectral Element Framework

Three characteristics:

1 Approximate

q ≈ Q ∈ PN , f ≈ F ∈ PMon E

2 Weak form ∫
E

(
Q̃t +∇ · F̃

)
φ = 0

3 No continuity on φ ∈ PN between elements
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DG Formulation

Integrate by parts∫
E

Q̃tφdξ +
∫
∂E

F̃ · n̂ξφdS −
∫
E

F̃ · ∇φdξ = 0

Replace boundary fluxes with Riemann solver∫
E

Q̃tφdξ +
∫
∂E

F̃ ∗ · n̂ξφdS −
∫
E

F̃ · ∇φdξ = 0 Form I

Maybe integrate by parts again∫
E

Q̃tφdξ +
∫
∂E

(
F̃ − F̃ ∗ · n̂ξ

)
φdS −

∫
E

∇ · F̃ φdξ = 0 Form II
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Choices, Choices, Choices

We actually have a framework from which to derive methods:

1 Quad/Hex or Tri/Tet elements?

2 Nodal or modal basis?

3 What polynomials?

4 Approximate boundaries with different orders?

5 Approximate solution and fluxes with different orders?

6 Exact integrals or quadrature?

7 Inexact or exact quadrature?

8 Form I or Form II?

9 ???

Too many choices can be overwhelming.
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Easy to Implement and Effective Approximation

“Classical” spectral element approximation:

1 Quadrilateral/ Hexahedral elements
⇒ Efficient tensor product bases

2 Nodal basis
⇒ Easy for nonlinear/variable coefficient/general complex
geometry problems

3 All approximations at same polynomial order
⇒ Simplifies coding

4 Legendre basis
⇒ Spectral accuracy

5 Gauss-Type quadrature
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Choices Still to Make

1 Gauss or Gauss-Lobatto Quadrature?

Gauss exact for polynomials P2N+1

Lobatto exact for polynomials P2N−1

Qi,j

2 Integrate by parts once or twice?
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Integrate By Parts 1X or 2X?

Theorem

(Kopriva and Gassner, 2010) For quadrilateral/hexahedral tensor
product discontinuous Galerkin approximations to systems of
hyperbolic conservation laws with either Gauss or Gauss-Lobatto
quadratures the two forms are algebraically equivalent as long as
one uses global polynomial representations for the flux and solutions.
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Gauss Vs Gauss Lobatto

Gauss I
Lobatto I
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Figure: Maximum error as a function of work for the Gauss and Lobatto
approximations. Left: Uniform mesh. Right: Non-Uniform Mesh

Empirical evidence indicates Gauss is more robust than
Gauss-Lobatto. Analysis shows Gauss has higher dissipation in high
frequencies, lower dissipation in low frequencies than Gauss-Lobatto.
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Gauss Vs Gauss Lobatto

18 Gregor Gassner and David A. Kopriva
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Fig. 6.1. Imaginary part of the physical mode for the Gauss DGSEM scheme with N = 1 up
to N = 10. In the logarithmic plot, the error is cut off at 10−10 to avoid numerical noise.
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Fig. 6.2. Imaginary part of the physical mode for the Gauss-Lobatto DGSEM scheme with
N = 1 up to N = 10. In the logarithmic plot, the error is cut off at 10−10 to avoid numerical noise.

We note that we did not include the compact Finite Difference scheme for com-
parison, as this standard central differencing approach yields a dissipation error equal
to zero. The additional stability and dissipation needed for the approximation of
nonlinear equations within those schemes is provided by filtering techniques that are
not well suited for comparison since the effect depends on the implementation, the
time integration method and the time step.

Comparing the dissipation relations of the Gauss and the Gauss-Lobatto DGSEM
reveal that again the Gauss scheme is the more accurate one. For a detailed quantifi-
cation, we look again at the points per wavelength for a given dissipation error

δ := |Im(Ω(K))|. (6.3)

The results are listed in Table 6.1 and 6.2. We can see that the advantage of the Gauss
scheme decreases with increasing polynomial degree N , which is similar when compar-
ing the dispersion accuracy of both schemes. Evaluating the resolution requirements
of the Gauss scheme we get the well known result that the dispersion error is domi-
nated by the dissipation errors and that the accuracy requirements for the dissipation
are more severe, Hu et al. [12]. However in the case of the Gauss-Lobatto scheme we
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Final Choice

1 Quadrilateral/ Hexahedral elements

2 Nodal basis, Gauss points

3 All approximations at same polynomial order

4 Legendre-Gauss basis

5 Legendre Gauss quadrature
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Implementation

Solution and fluxes by polynomials in (Lagrange) nodal form

Q =
N∑
n=0

N∑
m=0

Qn,m`n(ξ)`m(η)

F =
N∑
n=0

N∑
m=0

(Fn,mx̂+ Gn,m) `n(ξ)`m(η).

Integrate by parts 1x∫
E

∂Q
∂t

φi,jdξ +
∫
∂E

F∗ · n̂φi,jdS −
∫
E

F · ∇φi,jdξ = 0

With φi,j = `i(ξ)`j(η).
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Apply Quadrature to Each Integral

Time derivative integral∫ 1

−1,N

dQ(ξ, η)
dt

`i(ξ)`j(η)dξdη

=
N∑
k=0

N∑
l=0

dQ(ξk, ηl)
dt

`i(ξk)`j(ηl)w
(ξ)
k w

(η)
l

=
dQi,j

dt
w

(ξ)
i w

(η)
j
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Volume and Boundary Integrals

∫ 1

−1,N

F · ∇φijdξdη =
N∑
k=0

Fk,j`′i(ξk)w(ξ)
k w

(η)
j

+
N∑
k=0

Gi,k`
′
j(ξk)w(ξ)

i w
(η)
k

∫
Γ,N

φi,jF∗ · n̂dΓ = F∗(xi,−1) · (−η̂) `j(−1)w(ξ)
i

+ F∗(1, ηj) · ξ̂`i(1)w(η)
j

+ F∗(ξi, 1) · η̂`j(1)w(ξ)
i

+ F∗(−1, ηj) ·
(
−ξ̂
)
`i(−1)w(η)

j
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Spatial Discretization

On each element we integrate

dQi,j

dt
+

{[
F̃∗(1, ηj)

`i(1)

w
(ξ)
i

− F̃∗(−1, ηj)
`i(−1)

w
(ξ)
i

]
+

N∑
k=0

F̃k,jD̂
(ξ)
ik

}

+

{[
G̃∗(ξi, 1)

`j(1)

w
(η)
j

− G̃∗(ξi,−1)
`j(−1)

w
(η)
j

]
+

N∑
k=0

G̃i,kD̂
(η)
jk

}
= 0

Primary Work:

Computation of fluxes F̃k,j and G̃i,k from solution

Computation of Riemann solver F̃∗(±1, ηj) and G̃∗(ξi,±1)
Series of dot products (Gauss)

Series of Matrix-Vector products
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DGSEM Time Derivative Algorithm

Gauss-Lobatto Version:

for j = 0 to M do
F = xFlux(Qj)

F′ = MatrixTimesV ector(D̂,F)

Q̇j = −F′

Q̇0,j = Q̇0,j − bLj ∗ RiemannSolver(Qextj , Q0,j , n̂
L
j )

Q̇N,j = Q̇N,j − bRj ∗ RiemannSolver(QN,j , Qextj , n̂Rj )

end
for i = 0 to N do

G = yF lux(Qi)

G′ = MatrixTimesV ector(D̂,G)

Q̇i = Q̇i −G′

Q̇i,0 = Q̇i,0 − bBi ∗ RiemannSolver(Qexti , Qi,0, n̂
B
i )

Q̇i,M = Q̇i,M − bTi ∗ RiemannSolver(Qi,M , Qexti , n̂Ti )
end
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DGSpectral Element Approximation

See... It’s Not That Bad!
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Viscous Fluxes

Viscous flux depends on gradients:

F v = F v (~u,∇~u,∇T )

Approximate weakly:

∫
E

(
~Φ−∇~U

)
ϕdV = 0 U =

 u
v
T


Get gradient approximation that is computed the same as before:

Φi,j =
1
Ji,j
{Dξ (JU∇ξ) +Dη (JU∇η)}

Dξ (W ) =

[
W̃ ∗(1, ηj)

`i(1)

w
(ξ)
i

− W̃ ∗(−1, ηj)
`i(−1)

w
(ξ)
i

]
+

N∑
k=0

W̃k,jD̂
(ξ)
ik
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Yes, But...

“Everyone knows” that spectral element methods are

1 Highly accurate but

2 Expensive to compute relative to finite difference schemes.
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Navier Stokes/Acoustics: Discretization Schemes

High order schemes are acknowledged as necessary.

1 5/7 Point stencil optimized finite difference. “DRP”
- Wide stencils, must filter, ghost points galore, O(N)

2 Optimized compact finite difference (e.g. Ashcroft & Zhang,
JCP 2003)
- Tri-diagonal solves, must filter, O(N)

3 High order discontinuous Galerkin/Spectral element
- Matrix-Vector products, O

(
N2
)
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Matrix-Vector Product

Conventional wisdom: Full D̂ makes SEM less efficient than FD.

But matrix-vector products are fast:

0
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Comparison to Compact Finite Differences

Error to compute derivative of sine waves
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Cost Comparison: DGSEM vs Compact FD

Spectral elements are not necessarily more costly than optimized
finite differences:

DGSEM
Compact FD (W/ Filter)
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Cost Comparison: DGSEM vs Compact FD

Hard Numbers: CPU cost per point for 3D Navier Stokes.

Euler N=6 NS N = 6 NS FD 6

0.26 0.7-0.9 2.5

Table: Cost Per Grid Point (µsec/DOF/EQN/Stage)

—Finite difference methods are not necessarily cheaper per grid
point, either!
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Case Study I

Spectral element solution of flow over 3 Element airfoil
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Steady solution

The Good News: 8th order polynomial solution Mach contours...
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Look: No vortex streets!
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Steady solution

Fluent Solution (Vorticity)...

Look: vortex streets!
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Explicit Convergence to Steady State

The Bad News: 8th order polynomial solution for 3 element
airfoil...Yikes
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But Aren’t FD Methods Better?

Not necessarily... Joukowski Airfoil 2D, Explicit time integration

Compact FD (37,000 DOF)
DGSEM (5th Order, 34,500 DOF)
DGSEM (6th Order, 47,000 DOF )
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Time Integration

Recent Implementations:

1 Backward Euler (For Steady State): Qn + ∆tR
(
Qn+1, tn+1

)
2 Explicit 1st Stage Singly Diagonal Implicit Runge Kutta

(ESDIRK)

Q(1) = Qn

Q(i) = Qn + ∆t
i−1∑
j=1

cijR
(
Q(j), tj

)
+ γ∆tR

(
Q(i), ti

)
Qn+1 = Qn + ∆t

s∑
i=1

biR
(
Q(i), ti

)
3 Backward Differentiation (BDF)

Qn+1 =
s∑
j=0

αjQn−j + γ∆tR
(
Qn+1, tn+1

)
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Performance of Time Integration Methods

Linear model hyperbolic system

Qt +AQx +BQy = 0

with sinusoidal propagating wave solution.

ERK3
ESDIRK-3
BDF3
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Efficiency of Time Integrators

For time accuracy, error looks different in terms of work:

ERK3
ESDIRK
BDF3
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— Affects the choice for time dependent problems...
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Implicit Solution of 3 Element Airfoil

Implicit (Backward Euler)
Explicit 3rd Order RK
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Case Study II

NASA/CP-2000-209790
Time Dependent - Time accuracy required

c
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Solution Approach

Problem solved in two stages:

1 Solution of steady-state

2 Addition of vorticity wave solved to time periodic state

X

Y

-20 -10 0 10 20
-20

-15

-10

-5

0

5

10

15

20

X

Y
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2



Implementation
and Efficiency of

Discontinuous
Galerkin Spectral
Element Methods
for Compressible

Flows

David A. Kopriva

The Spectral/DG
Framework

A Nodal Spectral
Element Method

Implementation

Efficiency

A Case Study

Model Problem

Steady State
Solution

Time Accurate
Integration

Adding
Parallelism to
the Mix

Summary and
Conclusions

Steady State Cost

Implicit
Explicit

7th Order, 240 Elements
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Convergence to Time Periodic State

Implicit 64 Steps/Period
Explicit, 11K Steps/Period
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Solution: Directivity

At least 64 steps per period needed for accurate solution:

Implicit, 32 Steps
Implicit, 64 Steps

Implicit, 128 Steps
Explicit, 11K Steps
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Efficiency of Implict Vs. Explicit Time Integration

For desired accuracy, speedup of only 2-3 times over explicit:

2.8x @ 64 Steps/Period
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Adding Parallelism

Computation of time derivatives is highly parallelizable.

Case Study III:
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Speedup: Euler
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Parallel Convergence

Implicit, 4 Proc
Explicit, 8 Proc
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Adding Parallelism

Computation of time derivatives is highly parallelizable.

Case Study IV:
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Speedup: Navier Stokes
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Conclusions

DGSEM’s Don’t have to be difficult to implement!

Matrix-Vector Multiplies + Dot products. (No Tri-diagonal
solves)
Boundary conditions easy - Riemann solver. 125th order as easy
as Roe’s scheme. (No ghost points)

For Efficient Steady-State Computations...

Significant speedups of implicit over explicit, at least in 2D
Preconditioning is critical
Storage of preconditioner limits order to about N = 4 in 3D

For Efficient Time Dependent (Wave Propagation)
Computations...

Advantage of implicit over explicit reduced. (2x-3x)
Parallelism of explicit approximation may negate advantages
gained by implicit
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But at least we beat Compact FD!
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