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DG Spectral Element Methods

Features:

@ Geometric flexibility - finite element method

. —aN
@ Exponential convergence of the error: E ~ eK—N
© Exponentially low dissipation errors
© Exponentially low dispersion errors

© Robust (esp. compared to strong form spectral methods)
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Conventional Wisdom

Conventional wisdom states: DG spectral elements are

@ Too hard to implement
@ Less efficient than other methods, esp. Compact FD

Partly the fault of the spectral community...

We will show that, as usual, conventional wisdom is not necessarily
correct.



“Examples” of DG Methods

[elenentation 3.4. Examples of DG methods. A simple and natural choice of numerical
and Efficiency of fluxes is

Discontinuous
Galerkin Spectral ~_ 0~ 5=
et bty i=A{upyonl’, w=00nd and 7= {0} onT.
for Compressible
Flows

This is the choice proposed by Bassi and Rebay in [10]. With this choice of @, we
have {t —up} =0 and [T —up] = —[us ], so (3.9) gives
Yavid A. Kopriva

(3.17) on = Vuup +r([un]).

The Spectral /DG

Therefore
Framework

61 [@)[elds= [ (- Tolds= [ o DrdoD
T r Q
where we used the fact that #([us]) € ¥) and the definition (3.8) of r in the last

step. Substituting in (3.11) we obtain the following primal form for the method of
Bassi-Rebay [10]:

Bu(un,v) = /n (V- Voo + r([un Dr([o])] da

- /F({thh} ol + [un]- {Vav}) ds.

As a second example, we consider the classic IP method. This was originally
proposed as a primal formulation, with

(319)
Bh(uh,u):/ﬂvhuh-vhvdz—/r(uuh]].{w}+{vhuh}-uvﬂ)ds+(ﬂ(uh,v),

where

(3.20) o (up,v) = [uﬂuhﬂ~ﬂvﬂds



DG Spectral Element Approximation
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Compressible Flow Problems

Implementation .
fEsleas Problems modeled by a system of conservation laws:
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Flows
avid A. Kopriva f: _'i+ )
LS where
o Euler Equations
P . pu .
g=1| pu |, f'=|pu@u+pl |, [f'=0
pE pul
o Navier-Stokes Equations
0
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Multi-Element Decomposition
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Multi-Element Decomposition

Can be arbitrarily complex
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Mapping to Reference Element
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Equations on Reference Element

Strong form of conservation law:

Q:i+V-f=0
where 5
Q=JQ
. ) 3 .
fr=Ja -f= > Ja.f,
n=1
0X 00X

JaZ:JVSZzajxak:@xa—fk (Z,],k‘) CyCl’iC

J=a; (a; xag) (i,7,k) cyclic




The DG Spectral Element Framework
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The Spectral /DG o Approximate

Framework

q~QePV, fxFecPMonFE

/(Qt+v'ﬁ)¢=o

E

Q@ Weak form

@ No continuity on ¢ € PV between elements



DG Formulation
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Replace boundary fluxes with Riemann solver
/Qt¢d§+/ﬁ* -ﬁ§¢d5—/ﬁ-v¢dg =0 FormlI
E OE E

Maybe integrate by parts again

Quode F—F* . fpe)¢dS — | V- Fode =0 Form I1
E/t +/( Tlg) / orm

OF E



Choices, Choices, Choices
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Sl We actually have a framework from which to derive methods:
Element Methods
for Compressible
Flows

Bef] A (eepite © Quad/Hex or Tri/Tet elements?

The Spectral /DG
Framework

Nodal or modal basis?

What polynomials?

Approximate boundaries with different orders?
Approximate solution and fluxes with different orders?
Exact integrals or quadrature?

Inexact or exact quadrature?

Form | or Form 11?7
77

©00000O0CO0OO0

Too many choices can be overwhelming.



Easy to Implement and Effective Approximation
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David A. Kopriva

Q Quadrilateral/ Hexahedral elements
= Efficient tensor product bases

Gapvavell @ Nodal basis
= Easy for nonlinear/variable coefficient/general complex
geometry problems
@ All approximations at same polynomial order
= Simplifies coding

@ Legendre basis
= Spectral accuracy

@ Gauss-Type quadrature



Choices Still to Make
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s o Gauss exact for polynomials P2V+1!
SRS o Lobatto exact for polynomials P2V 1
" P 1) i
A Nodal Spectral \

Element Method
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¥

Q Integrate by parts once or twice?



Integrate By Parts 1X or 2X?
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(Kopriva and Gassner, 2010) For quadrilateral/hexahedral tensor
product discontinuous Galerkin approximations to systems of
hyperbolic conservation laws with either Gauss or Gauss-Lobatto
quadratures the two forms are algebraically equivalent as long as
one uses global polynomial representations for the flux and solutions.

A Nodal Spectral
Element Method
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Gauss Vs Gauss Lobatto
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Figure: Maximum error as a function of work for the Gauss and Lobatto
approximations. Left: Uniform mesh. Right: Non-Uniform Mesh

Empirical evidence indicates Gauss is more robust than
Gauss-Lobatto. Analysis shows Gauss has higher dissipation in high
frequencies, lower dissipation in low frequencies than Gauss-Lobatto.



Gauss Vs Gauss Lobatto
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,
25

A Nodal Spectral "é‘!
Element Method

(a) Dissipation relation (b) Logarithm of dissipation error

FIG. 6.1. Imaginary part of the physical mode for the Gauss DGSEM scheme with N =1 up
to N =10. In the logarithmic plot, the error is cut off at 10710 to avoid numerical noise.

Im(2)
T

L ,
=z * =5 25
K

(a) Dissipation relation (b) Logarithm of dissipation error



Final Choice
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@ Quadrilateral/ Hexahedral elements
@ Nodal basis, Gauss points
@ All approximations at same polynomial order

Implementation

@ Legendre-Gauss basis
© Legendre Gauss quadrature
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Implementation

Solution and fluxes by polynomials in (Lagrange) nodal form

N N
Q=> > Qn,men(é)zm(n)

n=0m=0

Fo 3 3 (Bomi+ Gom) bn(€)m ().

n=0m

Integrate by parts 1x
0Q
s d
/ ot Piade T
E

With ¢; 5 = £;(£);(n).

=0

/F* i dS — /F Vi jdé =0

OF E




Apply Quadrature to Each Integral
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Time derivative integral

/ L AR ey (rdeds
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LN dt
Implementation dQ 5 bl
=530 B ey
k=0 1=0
_ in,jw(s)w(n)

dt ¢ I



Volume and Boundary Integrals

Implementation
and Efficiency of
Discontinuous
Galerkin Spectral

Element Methods
(m

for C«::Tpressible 1 N
\ / F - Vogdedy =Y Fr (&) w w)

-LN k=0
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N
+ Z Gl (&)wf)w,(])
k=0

Implementation
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Spatial Discretization
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N
David A. Kopriva sz, ~ . /;(1 - £i(—1 - R
— +{ F (1,77]‘)%—]? (_1777j> ((5)) +ZF’€,J'D1(I§)}
Wi w; k=0
N
A~k ( ) % EJ(_l) ~ N
Implementation + G (él’ ) ( ) G (5“ _1) (77) + Z Gl’kDJk = O
: wj wj k=0

Primary Work:
o Computation of fluxes f‘k,j and Gi’k from solution
o Computation of Riemann solver F*(+1,7;) and G*(&;, £1)
o Series of dot products (Gauss)
@ Series of Matrix-Vector products



DGSEM Time Derivative Algorithm
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for j =0to M do
F = cFlux(Qj)

F’' = MatrizTimesVector(D, F)
Q] =—-F'
. Qo,j = Qo,j — ik RiemannSolver(Qe“,Qo J,ﬁl‘)
Implementation

QN,J = QN,J- —b *RzemannSolueT(QNj,Q xt AR)
end

for i =0to N do
G = yFlux(Q;)
G’ MatrizTimesVector(f), G)
Ql = Qz
QI 0= Q.L 0 — bB * RiemannSolver(QS™, Qi 0, 1} By

Qi,vr = Qi,m — b x RiemannSolver(Q; m, Q¢ aT)
end




DGSpectral Element Approximation

Implementation See... It's Not That Bad!
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Viscous Fluxes

Implementation

and Efficiency of Viscous flux depends on gradients:
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Flows
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Approximate weakly:

u
Implementation E/ <<I) - VU) Pl =0 0= ;j—'

Get gradient approximation that is computed the same as before:

;= JL (D¢ (JUVE) + D, (JUV)}
2,7

)

N

- A - 4(—1 -

De (W) = [W (1,m;) ((5)) — W*(~1,7,) ((ﬁ)) + 3 Wi, DY)
w; w; k=0
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Efficiency

“Everyone knows" that spectral element methods are

@ Highly accurate but
Q@ Expensive to compute relative to finite difference schemes.




Navier Stokes/Acoustics: Discretization Schemes
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High order schemes are acknowledged as necessary.

David A. Kopriva

@ 5/7 Point stencil optimized finite difference. "DRP"
- Wide stencils, must filter, ghost points galore, O(N)

@ Optimized compact finite difference (e.g. Ashcroft & Zhang,
JCP 2003)

- Tri-diagonal solves, must filter, O(N)

@ High order discontinuous Galerkin/Spectral element
- Matrix-Vector products, O (N?)

Efficiency



Matrix-Vector Product

I Ementen Conventional wisdom: Full D makes SEM less efficient than FD.
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o Gl But matrix-vector products are fast:

Flows

3510° | T T

~~e-- MxVDerivative o
310° | | —= - EOMatrixDerivative 4t B
—— FastChebyshevDerivative g

25107 | g 4+ B

Efficiency "_ar

2107

Time (sec)

1510°
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Comparison to Compact Finite Diff
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Error to compute derivative of sine waves
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0 Error at 10 Points per Wavelength 0 Error at 8 Points per Wavelength 0 Error at 6 Points per Wavelength
T T T
—e—Spectral Element R —e—Spectral Element r —e—Spectral Element
o [%, | =>=Opiimized Ccmpaml ; —o—Optimized Compact 0;? S Opimized Compact

4L

NN

Efficiency

Logm(Error)

Log_(Error)
&
T
Log 0(Error)
S

10
[SEN
T
N:)‘
W}"
a}c.
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B OwO




Cost Comparison: DGSEM vs Compact FD

pplementaticn Spectral elements are not necessarily more costly than optimized
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Discentinuous finite differences:
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avid A. Kopriva 15 o DGSEM
]
14 —e~ Compact FD (W/ Filter) A

Cost To Compute Spatial Derivatives
10 16 T T T

Efficiency

CPU Time (sec)
A
b
N\

6
v
5 /

Points Per Wavelength



Cost Comparison: DGSEM vs Compact FD
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EuIerN:6|NSN:6|NSFD6

0.26 0.7-0.9 | 25
Table: Cost Per Grid Point (usec/ DOF/EQN/Stage)

Efficiency

—Finite difference methods are not necessarily cheaper per grid
point, either!
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Case Study |

Spectral element solution of flow over 3 Element airfoil
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Steady solution

The Good News: 8 order polynomial solution Mach contours...

Look: No vortex streets!



Steady solution

Implementation
and Efficiency of
Discontinuous
Galerkin Spectral

SRR Fluent Solution (Vorticity). ..

for Compressible
Flows

David A. Kopriva

The Spectral/DG
Framework

A Nodal Spectral
Element Method

Implementation
Efficiency

A Case Study
Model Problem
Steady State
Solution

Accurate

SIUGIIETRy NG Look: vortex streets!

Conclusions




Explicit Convergence to Steady State

pplementaticn The Bad News: 8" order polynomial solution for 3 element
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Efficiency
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But Aren't FD Methods Better?
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2Convergence for Two Spatial Approximations
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0 -o- Compact FD (37,000 DOF) il
—— DGSEM (5" Order, 34,500 DOF)
—— DGSEM (6™ Order, 47,000 DOF )

T
.\
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\
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Efficiency
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Time Integration

Implementation

SRRl Recent Implementations:

Discontinuous

Galerkin Spectra
Element Metnos @ Backward Euler (For Steady State): Q" + AtR (Q" ™, t,41)

for Compressible

e @ Explicit 1°* Stage Singly Diagonal Implicit Runge Kutta
avid A, Kopriva (ESDIRK)

i—1
QY = Q" + At Z ci; R (QW),t;) + vAtR (QW, 1)
Efficiency

Q" =Q" +At z bR (QW, 1)

i=1

@ Backward Differentiation (BDF)

Q! = Za Q"7 + AR (Q" t41)

7=0



Performance of Time Integration Methods

Implementation Linear model hyperbolic system
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I with sinusoidal propagating wave solution.

Maximum Error Vs. Time Step

—o— ERK3
—e— ESDIRK-3
-2F-| —~— BDF3

Efficiency g /
I
3
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Log,, (At)



Efficiency of Time Integrators
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for Compressible Error as a Function of CPU Time
Flows -
David A. Kopriva E —o— ERK3
Af —e— ESDIRK
= : & | BOF3
o -2t
TR
3 .af
Efficiency EO ;
S 4\ DN
a : o
_52
€05 0 15 20 25

Log,, CPU time

— Affects the choice for time dependent problems...



Implicit Solution of 3 Element Airfoil
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Case Study Il

b e NASA/CP-2000-209790
Time Dependent - Time accuracy required
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Model Problem




Solution Approach
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@ Solution of steady-state
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@ Addition of vorticity wave solved to time periodic state

20F 2F
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s 05F
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Model Problem 0
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5 15F
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Steady State
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Convergence to Time Periodic State
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Solution: Directivity

Directivity
107 40 T T T
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Efficiency of Implict Vs. Explicit Time Integration
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Adding Parallelism

Computation of time derivatives is highly parallelizable.
for Compressible
Flows

Case Study IlI:
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Parallel Convergence
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Adding Parallelism
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Speedup: Navier Stokes
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Conclusions

Implementation

and Efficiency of ) , e .
D o DGSEM's Don't have to be difficult to implement!
Galerkin Spectral

Element Methods o Matrix-Vector Multiplies + Dot products. (No Tri-diagonal

for Compressible

Flows solves)
David A. Kopriva e Boundary conditions easy - Riemann solver. 12
as Roe's scheme. (No ghost points)

5" order as easy

o For Efficient Steady-State Computations...
o Significant speedups of implicit over explicit, at least in 2D

o Preconditioning is critical
o Storage of preconditioner limits order to about N =4 in 3D

o For Efficient Time Dependent (Wave Propagation)
Computations...
S o Advantage of implicit over explicit reduced. (2x-3x)
o Parallelism of explicit approximation may negate advantages
gained by implicit



But at least we beat Compact FD!
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