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1. Introduction 
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Biological processes such as molecular recognition 

and protein folding occur in solution. 

Solute-solvent interactions are crucial in determining 

solvation free energies, and hence bimolecular 

conformations and dynamics. 

solvation 

conformational  

change 
water 

water 

solute solute 

solute 

water 

receptor ligand 

binding 
G = ?
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Basic facts 



Explicit solvent: solvent atoms treated explicitly (e.g., MD). 

 First principle 

 Accurate 

 Small systems 

 Statistics 

Implicit (or continuum) solvent: solvent atoms treated 

implicitly; and solvent effects are coarse-grained. 

 Mean-field approximation 

 Efficient 

 Large systems 

 Thermodynamics   

Explicit solvent vs. implicit solvent 

solvent 

solute 

solvent 

solute 
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Main interactions in implicit solvation  

With counterions and salt:                 

The Poisson-Boltzmann (PB) equation. 

Electrostatic interactions   

0 =

Q1
Q2

  
 

r 

  

 

F =
1

4 0

Q1Q2

r3
 

r Coulomb’s law:  

Poisson’s equation:  

Angelini et al., PNAS, 100, 8634  (2003) 
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Fundamental, many-body, long-range.  

Solvent mediated like-charge attractions. 

solvent 

solute 

=1 = 80

local dielectric screening by water 



Fermi repulsion  vdW attraction 

Solute 

Water 

Excluded volume and van der Waals dispersion 

ULJ (r) = 4 r( )
12

r( )
6[ ]

O
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The van der Waals (vdW) equation 
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The Lennard-Jones (LJ) potential  

attraction excluded volume 
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Hydrophobic interactions 
0

R Symbols: MD.  

the Tolman length 

0 = 73mJ /m
2

:
= 0 1 2 H( )

 Curvature effects at small cales 

= 0.9 mean curvature H :

Huang et al., J. Chem. Phys. B 

105, 6704 (2001). 

    Water does not like to be at an interface:  

        missing attractive interactions; rearranging. 

     A hydrophobic particle is not well solvated. 



Get data of biomolecules. 

Generate solute-solvent interface. 

Calculate surface energy. 

Calculate the electrostatic free  

    energy using PB/GB with the 

    surface as dielectric boundary.  
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Commonly used implicit-solvent models 

G =Gnp +Gp

(    : Surface area) 



Example 1. Capillary evaporation in hydrophobic 

confinement.  

Koishi et al., Phys. Rev. Lett. 93, 185791 (2004).  

D 
L 
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Setny, J. Chem. Phys. 127, 054505 (2007). 

MD: weakly solvated pocket,  

strong hydrophobic attraction. 

Example 2. A receptor-

ligand (pocket wall-

methane atom) system. 
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SASA/MSA: Onset of attraction 

is wrong by 2-4 Angstroms! 



Example 3. Evaporation in proteins.  

Liu et al., Nature, 437, 159 (2005). 

MD simulations of the melittin 

protein tetramer 

Water in hydrophobic core 

Stable nanobubble 
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More  MD simulations 

      Electrostatics 

      Curvature 

Giovambattista  et al., PNAS, 105,  

2274 (2008). 
Wang, Friesner, & Berne, J. Phys. 

Chem. B, 114, 7294 (2010).  



Example 4. Evaporation in hydrophobic channels 

Dzubiella, Allen, & Hansen, J. Chem. Phys. 120, 5001 (2004). 

Pore length ~ 1nm 

Pore radius ~ 0.5nm 

MD: a narrow hydrophobic 

pore can be empty of water:  

Nanobubble blocks ion 

permeation! 

But: pore fills when a critical 

electric field (E>Ec) is applied 

across the pore: 

Ions can permeate!  

E >Ec 
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Possible issues of fixed-surface models 

Hydrophobic cavities, curvature correction. 

Decoupling of polar and nonpolar contributions.  

R

Symbols: MD, SPC/E water, 

P=1bar, T=300K.  

the Tolman length 

0 = 73mJ /m
2

:

= 0 1 2 H( )

 Strong curvature effects at small scales 

= 0.9 mean curvature H :

Huang et al., J. Phys. Chem. B, 

105, 6704 (2001) 



2. A Variational Model of Solvation 
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  Solvation structure  

       = Solute atomic positions + Solute-solvent interface. 

  Free-energy minimization determines solute-solvent  

    interfaces.  

  Free energy couples different interactions: polar,       

    nonpolar, dispersive, etc.  

A variational implicit-solvent model (VISM)  

solvent 

solute 
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Guiding principles 

Dzubiella, Swanson, & McCammon, Phys. Rev. Lett. 96, 087802 (2006)  

Dzubiella, Swanson, & McCammon, J. Chem. Phys. 124, 084905 (2006) 



A free-energy functional 

Pvol( m ) :

(
 

r ) = 0 1 2 H(
 

r )[ ] (Scaled Particle Theory) 

(
 

r )dS :

Creation of a cavity in the solvent 

Molecular rearrangement near the interface 

  
= (

 
r ) :

Liquid-vapor pressure difference  

Surface tension 

mean curvature 

 the Tolman length, a fitting parameter 

  
Ggeom[ ] = Pvol( m ) + (

 
r )dS

:
H = H(

 
r ) :

0 :  the (planar) surface tension 

 
r i

m

Qi

w

c j , q j ,
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Hadwiger’s Theorem 

Ggeom[ ] = Pvol( m ) + 0area( ) 2 0 HdS +cK KdS( )

Let  C = the set of all convex bodies, 

       M = the set of finite union of convex bodies. 

If                     is 

rotational and translational invariant,  

additive: 

conditionally continuous:  

then 
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Application to nonpolar solvation 
    Roth, Harano, & Kinoshita, Phys. Rev. Lett. 97, 078101 (2006). 

    Harano, Roth, & Kinoshita, Chem. Phys. Lett. 432, 275 (2006)  



  van der Waals solute-solvent 
  dispersive interaction   

GvdW [ ] = w U(
 

r )dV
w

i

r( )
12

i

r( )
6 

  
 
  

Ui(r) =ULJ ,i(r) = 4 i
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r i

m

Qi

w

c j , q j ,

Gelec[ ] - Electrostatic free energy 

  

U(
 

r ) = Ui(|
 

r 
 

r i |)
i

O 

 The Poisson-Boltzmann (PB) theory 

 The Coulomb-field or Yukawa-field approximation 
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Gelec[ ] = 0

2
| |2 + f

1
w c j (e

q j 1)
j

 

 
 
 

 

 
 
 
dV

=

w in solvent region 

in solute region m m

w

The Poisson-Boltzmann (PB) theory 

0 + w
1 c j

j

q je
q j = fPBE: 

= fixed charges of molecular atoms 

electrostatic potential 

Electrostatic free energy 

f

= characteristic function of  ww



Coupling solute molecular mechanics with 

implicit solvent 

V[
 

r 1,...,
 

r N ] = Wbond

i, j

(
 

r i,
 

r j ) + Wbend

i, j ,k

(
 

r i,
 

r j ,
 

r k )

  

+ WCoulomb

i, j

(
 

r i,Qi;
 

r j ,Qj )

  
H[ ;

 
r 1,...,

 
r N ] =V[

 
r 1,...,

 
r N ]+G[ ;

 
r 1,...,

 
r N ],

minH[ ;
 

r 1,...,
 

r N ] Equilibrium conformations 
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An effective total Hamiltonian 

Molecular mechanical interactions of solute atoms 

  

+ Wtorsion (
 

r i
i, j,k,l

,
 

r j ,
 

r k,
 

r l ) + WLJ

i, j

(
 

r i,
 

r j )



3. The Level-Set Method 
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 The level-set method 

  
Vn =Vn (

 
r ,t)

 
r (t)

 Level-set representation 

  
(t) = {

 
r : (

 
r ,t) = 0}

 The level-set equation 

  
 

r 
 Interface motion 

for 

z = (
 

r ,t)

  
(

 
r (t), t) = 0   t +

 
r t = 0

 
r t = | |

 
r t( ) | |= (

 
n 

 
r t ) | |=Vn | |
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Examples of normal velocity 

u = H

in 

on 

on 

on 

 External field 

n 

n 

 Geometrically based motion 

 Motion by mean curvature  
Vn = H

Vn = sH
 Motion by the surface Laplacian of mean curvature 
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Level-set formulas of geometrical quantities 

Unit normal 

Mean curvature 

Gaussian curvature 

Surface integral 

Volume integral 

  

H =
1

2

 
n 

  

 
n = | |

  
K =

 
n adj(He( ))

 
n 
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f (

 
r )dS = f (

 
r ) ( )dV

R 3

  
f (

 
r )dV = f (

 
r )[1 H( )]dV

R 3



 Topological changes 

 Accuracy issues 

 Merging  

 Break-up 

 Disappearing 
 Nucleation? 

 Interface approximation 

 Conservation of mass 

 Rigorous analysis 
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Application to variational solvation 

G[ ](
 

r ) = P + 2 0[H(
 

r ) K(
 

r )] wU(
 

r ) + Gelec[ ]

Relaxation 

dS = 2H HdS = KdV =1

Vn = H[ ;,
 

r 1,...,
 

r N ] = G[ ]

  

d
 

r i
dt

=  
r i
H[ ;

 
r 1,...,

 
r N ] =  

r i
V[

 
r 1,...,

 
r N ]  

r i
G[ ]
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Effective electrostatic surface force 

Gelec[ ](
 

r ) =
1

2

1

m

1

s

 

 
 

 

 
 | (

 
r ) (

 
r ) |2 1 c j (e

q j (
 

r )

j

1)

Charge neutrality, convexity, and Jensen’s inequality  

Gelec[ ] >0 Force attractive to solutes! 

Lemma   

( ,zu )vdV = (um uw )v(z)

See: B. Chu, Molecular Forces, Wiley, 1967. 
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Discretization of the level-set equation 

  
Vn = P 2 0[H(

 
r ) K(

 
r )]+ wU(

 
r )

k+1(x) k (x) = tVn
k (x) | k (x) |

Forward Euler for time 

Decomposition t = A + B

  
B = [P wU(

 
r )] | |

  
A = 2 0[H(

 
r ) K(

 
r )] | |Central differencing for  

Upwinding for 



31 

Convergence test on a single charged particle 

G(R) = 4 (R2 2 R) +16 w

12

9R9
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3R3
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Algorithm 

Step 1. Input parameters and initialize level-set function 

Step 2. Calculate the normal and curvatures 

Step 3. Calculate and extend the normal velocity 

Step 4. Solve the level-set equation 

Step 5. Reinitialize the level-set function 

Step 6. Solve ODEs for the motion of solute particles 

Step 7. Set                       and go to Step 2 
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New level-set techniques 

Pre-computation of the potential  

Numerical regularization  

Fast numerical integration 

Local level-set method  
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Efficiency 

4,000 solute atoms, 50x50x50 grid size, a good initial  

             guess 5 minutes   

4,000 solute atoms, high resolution, a bad initial guess 

             and high resolution 

Dynamics: a different situation 



4. Numerical Results 
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Pressure difference 

Planar surface tension 

              (       )  

The Tolman length 

              (    )  

Water density 

               (      )  

LJ parameters  

Point charges 

kBT

A 3

P
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Parameters 

A typical plot of free energy vs. 

optimization steps.  

(bar) 

0

w

(A)
(kBT)

Qi (e)



    PMF:  the level-set method (circles)  and MD simulations 
(solid line).  
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Paschek, J. Chem. Phys. 120, 6674 (2004).  

    Example 1. Two xenon atoms 



Level-set (circles) vs. MD (line) calculations.  
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MD: Koishi et al. Phys. Rev. Lett., 93, 185701 (2004); J. Chem. 

Phys., 123, 204707 (2005) 

    Example 2. Two paraffin plates 



    Example 3. Two helical alkanes ( ~30 atoms) 

Mean curvature 
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Mean curvature 

Solvation free energy from MD          

Best fit Tolman length 

Side note: enthalpy-entropy compensation in solvation:  

Solvation free energy is a difference of big numbers:  

Solvation entropy  

Solvation enthalpy  

A big problem for 

solvation free-energy 

calculations! 

Example 4.  Solvation of C60 fullerene (nonpolar) 
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=1.2



Example 5. A Hydrophobic receptor-ligand system 

40 

Each wall consists of 4,242 

atoms.  

System setup for the level-

set VISM calculation.  
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42 
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Free energy vs. the distance between ligand and  

wall: a bimodal behavior.  



Left: initial positions. Right: final positions.  

Example 6. A model system of 4 atoms 
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Example 7. A benzene molecule 
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Example 8. An ethane molecule 
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Example 9. A two-particle system: the surface 

motion influences the particle motion 



5. Conclusions 
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Modeling improvement 

Coupling with molecular mechanics 

Coulomb-field and Yukawa-field approximations 

Electrosttic surface forces 

A level-set method for variational solvation 

Capturing hydrophobic cavities 

New level-set techniques 
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 Accomplishments   



Coupling the PB and level-set calculations 

Monte Carlo level-set VISM 

Solvent dynamics: Rayleigh-Plesset equation 

Multiscale modeling and simulation 

Application to molecular recognition and drug 

design 

Derivation of the free-energy functional 

Constrained motion by mean curvature 
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 Current and future work   



Thank You ! 
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