
Add, Multiple, Divide...and Conquer:
Factorization Algorithms for Large-Scale Many-Body Problems

Collaborators:
W. Erich Ormand, Lawrence Livermore
Plamen G. Krastev, SDSU
Hai Ah Nam, SDSU/ Oak Ridge
Collaborators-in-training:
Joshua Staker & Micah Schuster, SDSU

THE KEY IDEAS

Basic problem: find extremal eigenvalues of very large, very
sparse Hermitian matrix

 Lanczos algorithm
 fundamental operation is matrix-vector multiply

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 2 

Despite sparsity, nonzero matrix elements can require TB of storage

Only a fraction of matrix elements are unique; most are reused.
Reuse of matrix elements understood through spectator particles.

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

THE BASIC PROBLEM

 Find extremal eigenvalues of very large, very sparse Hermitian matrix

 Lanczos algorithm

 fundamental operation is matrix-vector multiply

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 3 

The basic science question is to model detailed quantum structure of  
many‐body systems, such the electronic structure of an atom, 
or structure of an atomic nucleus. 

THE BASIC PROBLEM

 Find extremal eigenvalues of very large, very sparse Hermitian matrix

 Lanczos algorithm

 fundamental operation is matrix-vector multiply

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 4 

To answer this, we attempt to solve Schrödinger’s equation: 

€

ˆ H Ψ = E Ψ

€

−

2

2m
∇2 + U(ri)

i
∑ + V ( r i −

 r j)
i< j
∑




 




  Ψ(
 r 1,
 r 2,
 r 3…) = EΨ

or

THE BASIC PROBLEM

 Find extremal eigenvalues of very large, very sparse Hermitian matrix

 Lanczos algorithm

 fundamental operation is matrix-vector multiply

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 5 

This differential equation is too dif<icult to solve directly 

€

ˆ H Ψ = E Ψ

€

−

2

2m
∇2 + U(ri)

i
∑ + V ( r i −

 r j)
i< j
∑




 




  Ψ(
 r 1,
 r 2,
 r 3…) = EΨ

so we use the matrix formalism

THE BASIC PROBLEM

 Find extremal eigenvalues of very large, very sparse Hermitian matrix

 Lanczos algorithm

 fundamental operation is matrix-vector multiply

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 6 

€

ˆ H Ψ = E Ψ

so we use the matrix formalism

€

Ψ = cα α
α

∑

€

Hαβ = α ˆ H β

€

Hαβcβ
β

∑ = Ecα if

€

α β = δαβ

THE BASIC PROBLEM

 Find extremal eigenvalues of very large, very sparse Hermitian matrix

 Lanczos algorithm

 fundamental operation is matrix-vector multiply

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 7 

€

Hαβ = α ˆ H β
* H is generally a very large matrix – dimensions up to
1010 have been tackled.
* H is generally very sparse.
* We usually only want a few low-lying states

Lanczos algorithm!

THE BASIC PROBLEM

 Find extremal eigenvalues of very large, very sparse Hermitian matrix

 Lanczos algorithm

 fundamental operation is matrix-vector multiply

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 8 

Lanczos algorithm!

Standard algorithm to obtain all eigenvalues of a real, symmetric
matrix A: Householder

Find orthogonal matrix U such that UT A U = B, a tridiagonal matrix

The Lanczos algorithm is similar, in that it also uses an orthogonal
matrix to take A to a tridiagonal matrix B.....

THE BASIC PROBLEM

 Find extremal eigenvalues of very large, very sparse Hermitian matrix

 Lanczos algorithm

 fundamental operation is matrix-vector multiply

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 9 

Lanczos algorithm!

€

A v 1 =α1
 v 1 + β1

 v 2

€

A v 2 = β1
 v 1 +α2

 v 2 + β2
 v 3

€

A v 3 =

€

β2
 v 2 +α3

 v 3 + β3
 v 4

€

A v 4 =

€

β3
 v 3 +α4

 v 4 + β4
 v 5

THE BASIC PROBLEM

 Find extremal eigenvalues of very large, very sparse Hermitian matrix

 Lanczos algorithm

 fundamental operation is matrix-vector multiply

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 10 

Lanczos algorithm!

€

A v 1 =α1
 v 1 + β1

 v 2

€

A v 2 = β1
 v 1 +α2

 v 2 + β2
 v 3

€

A v 3 =

€

β2
 v 2 +α3

 v 3 + β3
 v 4

€

A v 4 =

€

β3
 v 3 +α4

 v 4 + β4
 v 5

matrix-vector multiply

 A SPARSE MATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 11 

I need to quickly cover:
• How the basis states are represented
• How the Hamiltonian operator is represented
• Why most matrix elements are zero
• Typical dimensions and sparsity

 A SPARSE MATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 12 

• How the basis states are represented

This differential equation is too dif<icult to solve directly 

€

−

2

2m
∇2 + U(ri)

i
∑ + V ( r i −

 r j)
i< j
∑




 




  Ψ(
 r 1,
 r 2,
 r 3…) = EΨ

Can only really solve 1D differential equation 

€

−

2

2m
d2

dr2
+U(r)









 φi(r) = εiφi(r)

 A SPARSE MATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 13 

• How the basis states are represented

Can only really solve 1D differential equation 

€

−

2

2m
d2

dr2
+U(r)









 φi(r) = εiφi(r)

€

φi(
 r){ }

Single-particle wave functions labeled by, e.g., n, j, l, m

Atomic case: 1s, 2s, 2p, 3s, 3p, 3d etc

Nuclear: 0s1/2, 0p3/2, 0p1/2, 0d5/2, 1s1/2, 0d3/2, etc

 A SPARSE MATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 14 

• How the basis states are represented

Can only really solve 1D differential equation 

€

−

2

2m
d2

dr2
+U(r)









 φi(r) = εiφi(r)

€

φi(
 r){ }

€

Ψ( r 1,
 r 2,
 r 3…) = φn1

( r 1)φn2
( r 2)φn3

( r 3)…φnN
( r N)

Product wavefunction (“Slater Determinant”)

 A SPARSE MATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 15 

• How the basis states are represented

€

Ψ( r 1,
 r 2,
 r 3…) = φn1

( r 1)φn2
( r 2)φn3

( r 3)…φnN
( r N)

Product wavefunction (“Slater Determinant”)

Each many-body state can be uniquely determined
by a list of “occupied” single-particle states
= “occupation representation”

€

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+
… ˆ a nN

+ 0

 A SPARSE MATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 16 

• How the Hamiltonian is represented

“occupation representation”

€

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+
… ˆ a nN

+ 0
“creation operator”

€

ˆ H = Tij ˆ a i
+ ˆ a j

ij
∑ + 1

4 Vijkl ˆ a i
+ ˆ a j

+ ˆ a l
ijkl
∑ ˆ a k

motion of a single particle
(“one-body operator”)

interaction of two particles
(“two-body operator”)

€

Vijkl = φi(
 r)∫∫ φ j (

 r ')V ( r , r ')φk (
 r)φl (

 r ')d3rd3r'

 A SPARSE MATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 17 

• How the Hamiltonian is represented

“occupation representation”

€

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+
… ˆ a nN

+ 0

€

ˆ H = Tij ˆ a i
+ ˆ a j

ij
∑ + 1

4 Vijkl ˆ a i
+ ˆ a j

+ ˆ a l
ijkl
∑ ˆ a k

ni  1  2  3  4  5  6  7 

α=1  1  0  0  1  1  0  1 

α=2  1  0  1  0  0  1  1 

α=3  0  1  1  1  0  1  0 

 A SPARSE MATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 18 

• How the Hamiltonian is represented

“occupation representation”

€

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+
… ˆ a nN

+ 0

€

ˆ a 3
+ ˆ a 6

+ ˆ a 4 ˆ a 5 α =1 = α = 2

ni  1  2  3  4  5  6  7 

α=1  1  0  0  1  1  0  1 

α=2  1  0  1  0  0  1  1 

α=3  0  1  1  1  0  1  0 

 A SPARSE MATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 19 

• How the Hamiltonian is represented

“occupation representation”

€

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+
… ˆ a nN

+ 0

€

ˆ a 2
+ ˆ a 4

+ ˆ a 1 ˆ a 7 α = 2 = α = 3

ni  1  2  3  4  5  6  7 

α=1  1  0  0  1  1  0  1 

α=2  1  0  1  0  0  1  1 

α=3  0  1  1  1  0  1  0 

 A SPARSE MATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 20 

• Why most matrix elements are zero

“occupation representation”

€

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+
… ˆ a nN

+ 0

€

ˆ a 2
+ ˆ a 4

+ ˆ a 6
+ ˆ a 1 ˆ a 5 ˆ a 7 α =1 = α = 3

ni  1  2  3  4  5  6  7 

α=1  1  0  0  1  1  0  1 

α=2  1  0  1  0  0  1  1 

α=3  0  1  1  1  0  1  0 

need 3 particles to
interact simultaneously!

 A SPARSE MATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 21 

• Typical dimensions and sparsity

Nuclide
 valence

space

valence
Z

valence
N

basis

dim

sparsity

(%)

20Ne
 “sd”
 2
 2
 640
 10

25Mg
 “sd”
 4
 5
 44,133
 0.5

49Cr
 “pf ”
 4
 5
 6M
 0.01

56Fe
 “pf ”
 6
 10
 500M
 2x10-4

This corresponds to 2 Tb of data!

RECYCLED MATRIX ELEMENTS
Only a fraction of matrix elements are unique; most are reused.

Reuse of matrix elements understood through spectator particles.

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 22 

ni  1  2  3  4  5  6  7  8 

α=1  1  1  1  0  0  0  0  1 

α=2  1  1  0  1  1  0  0  0 

α=3  0  1  1  0  0  1  0  1 

α=4  0  1  0  1  1  1  0  0 

α=5  0  0  1  0  0  1  1  1 

α=6  0  0  0  1  1  1  1  0 

€

ˆ a 4
+ ˆ a 5

+ ˆ a 3 ˆ a 8 α =1 = α = 2
ˆ a 4

+ ˆ a 5
+ ˆ a 3 ˆ a 8 α = 3 = α = 4

ˆ a 4
+ ˆ a 5

+ ˆ a 3 ˆ a 8 α = 5 = α = 6
All of these have the same
matrix element: V4538

RECYCLED MATRIX ELEMENTS
Only a fraction of matrix elements are unique; most are reused.

Reuse of matrix elements understood through spectator particles.

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 23 

of nonzero matrix elements vs. # unique matrix elements

Nuclide
 valence
space

valence

Z

valence

N

nonzero

unique

28Si
 “sd”
 6
 6
 26 x 106
 3600

52Fe
 “pf ”
 6
 6
 90 x 109
 21,500

FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 24 

A quantum number is the eigenvalue of an operator

generally a operator that exactly commutes with the
Hamiltonian

e.g. angular momentum J2 and z-component Jz

€

ˆ J 2 Ψ = J(J +1) Ψ

€

ˆ J z Ψ = M Ψ

FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 25 

A quantum number is the eigenvalue of an operator

€

ˆ O Ψ = ˆ O 1 + ˆ O 2 + ˆ O 3 +…() Ψ1 ⊗ Ψ2 ⊗ Ψ3 ⊗…()

For composite systems, one can apply the operator to
each component separately:

Sometimes the total quantum number is a simple sum/product
as is the case for Jz or parity....

...but in other cases the addition is complicated (e.g. for J2)

€

ˆ J z Ψ = M Ψ = (m1 + m2 + m3 +…) Ψ

FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 26 

I consider composite many-fermion systems,
in particular those with 2 major components
 protons and neutrons
or
 spin-up and spin-down electrons

€

Ψ = Ψ1 ⊗ Ψ2
Each component itself is a Slater determinant which is
composed of many particles

€

ˆ J z Ψ = M Ψ

€

M = M1 + M2

M1 = m1
(1) + m1

(2) + m1
(2) +…

FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 27 

Because the M values are discrete integers or half-integers
(-3, -2, -1, 0, 1, 2, ... or -3/2, -1/2, +1/2, +3/2....)
we can organize the basis states in discrete sectors

Example: 2 protons, 4 neutrons, total M = 0

Mz(π) = -4 Mz(υ) = +4

Mz(π) = -3 Mz(υ) = +3

Mz(π) =-2 Mz (υ) = +2

FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 28 

In fact, we can see an example of factorization here because
all proton Slater determinants in one M-sector must combine
with all the conjugate neutron Slater determinants

Example: 2 protons, 4 neutrons, total M = 0

Mz(π) = -4: 2 SDs Mz(υ) = +4: 24 SDs 48 combined

Mz(π) = -3: 4 SDs Mz(υ) = +3: 39 SDs 156 combined

Mz(π) = -2: 9 SDs Mz(υ) = +2: 60 SDs 540 combined

FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 29 

In fact, we can see an example of factorization here because
all proton Slater determinants in one M-sector must combine
with all the conjugate neutron Slater determinants

Mz(π) = -4: 2 SDs Mz(υ) = +4: 24 SDs 48 combined

€

π1
π 2

€

ν1
ν 2
ν 3
ν 4


ν 24

× =

€

π1 ν1
π 2 ν1
π1 ν 2
π 2 ν 2


π1 ν 24
π 2 ν 24

FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 30 

Neutron SDs

P
ro

to
n

S
D

s

20Ne 640 66

24Mg 28,503 495

28Si 93,710 924

48Cr 1,963,461 4895

52Fe 109,954,620 38,760

56Ni 1,087,455,228 125,970

Example N = Z nuclei
Nuclide Basis dim # pSDs (=#nSDs)

FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 31 

Factorization allows us to keep track of all basis states
without writing out every one explicitly
-- we only need to write down the proton/neutron components

The same trick can be applied to matrix-vector multiply

€

ˆ H = ˆ H pp + ˆ H nn + ˆ H pn
Move 2 protons;
neutrons are
spectators

Move 2 neutrons;
protons are
spectators

Move 1 proton +
1 neutron;
rest are
spectators

FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 32 

€

ˆ H pp
Move 2 protons;
neutrons are
spectators

Example: 2 protons, 4 neutrons, total M = 0

Mz(π) = -4: 2 SDs Mz(υ) = +4: 24 SDs 48 combined

There are potentially 48 × 48 matrix elements
But for Hpp at most 4 × 24 are nonzero
and we only have to look up 4 matrix elements

Advantage: we can store 98 matrix elements as 4 matrix elements
and avoid 2000+ zero matrix elements.

FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 33 

Mz(π) = -4: 2 SDs Mz(υ) = +4: 24 SDs 48 combined

Advantage: we can store 98 matrix elements as 4 matrix elements
and avoid 2000+ zero matrix elements.

€

π1
π 2

€

ν1
ν 2
ν 3
ν 4


ν 24€

Hpp =
H11 H12

H21 H22











FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 34 

Mz(π) = -4: 2 SDs Mz(υ) = +4: 24 SDs 48 combined

Advantage: we can store 98 matrix elements as 4 matrix elements
and avoid 2000+ zero matrix elements.

€

π1
π 2

€

ν1
ν 2
ν 3
ν 4


ν 24€

Hpp =
H11 H12

H21 H22











€

Hpp π1 ν1 = H11 π1 ν1 + H12 π 2 ν1

Hpp π 2 ν1 = H12 π1 ν1 + H22 π 2 ν1

Hpp π1 ν 2 = H11 π1 ν 2 + H12 π 2 ν 2

Hpp π 2 ν 2 = H12 π1 ν 2 + H22 π 2 ν 2


Hpp π1 ν 24 = H11 π1 ν 24 + H12 π 2 ν 24

Hpp π 2 ν 24 = H12 π1 ν 24 + H22 π 2 ν 24

FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 35 

Nuclide  Space  Basis dim  matrix store  factoriza5on 

56Fe  pf  501 M  290 Gb  0.72 Gb 

7Li  Nmax=12  252 M  3600 Gb  96 Gb 

7Li  Nmax=14  1200 M  23 Tb  624 Gb 

12C  Nmax=6  32M  196 Gb  3.3 Gb 

12C  Nmax=8  590M  5000 Gb  65 Gb 

12C  Nmax=10  7800M  111 Tb  1.4 Tb 

16O  Nmax=6  26 M  142 Gb  3.0 Gb 

16O  Nmax=8  990 M  9700 Gb  130 Gb 

Comparison of nonzero matrix storage with factorization

PARALLEL IMPLEMENTATION

Factorization makes it easier to compute workload
and distribute across multiple nodes

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 36 

length of
sides =
information
to be stored

Area = total # of operations

length of sides =
information to be stored

We can compute the !
number of operations!
without actually !
counting them!!

Then we can !
easily divide !
the work across !
compute nodes!

PARALLEL IMPLEMENTATION

Factorization makes it easier to compute workload
and distribute across multiple nodes

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 37 

THE BIGSTICK CODE

Many-fermion code: 2nd generation after REDSTICK code
(started in Baton Rouge, La.)

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 38 

Arbitrary single-particle radial waveforms
Allows local or nonlocal two-body interaction
Applies to both nuclear and atomic cases

Runs on both desktop and parallel machines
--can run at least dimension 100M+ on desktop
(20 Lanczos iterations in 300 CPU minutes)

20-30k lines of codes
Fortran 90 + MPI + OpenMP
Partially funded by SciDAC
Plans to run on 50,000-100,000 compute nodes
Plans to publish code late 2011

SCIENCE APPLICATIONS

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 39 

Comparison of “exact” results versus approximations
-- e.g. mean-field, density-functional, time-dependent mean-field,
projection of mean-field onto exact symmetries, etc.

How “unique” in the nucleon-nucleon interaction?
--i.e., the input Vijkl look like random numbers; what happens
if we actually use random numbers?
-- can we use ambiguity in the interaction to our advantage?

Looking for and using broken symmetries
--isospin breaking and the unitarity of the CKM matrix

CONCLUSIONS

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010 40 

Basic problem: find extremal eigenvalues of very large, very
sparse Hermitian matrix

 Lanczos algorithm
 fundamental operation is matrix-vector multiply

Despite sparsity, nonzero matrix elements can require TB of storage

Only a fraction of matrix elements are unique; most are reused.
Reuse of matrix elements understood through spectator particles.

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

