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THE KEY IDEAS 

Basic problem: find extremal eigenvalues of  very large, very 
sparse Hermitian matrix    

     Lanczos algorithm 
     fundamental operation is matrix-vector multiply 
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Despite sparsity, nonzero matrix elements can require TB of  storage 

Only a fraction of  matrix elements are unique; most are reused. 
Reuse of matrix elements understood through spectator particles. 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 



THE BASIC PROBLEM 

 Find extremal eigenvalues of  very large, very sparse Hermitian matrix    

     Lanczos algorithm 

     fundamental operation is matrix-vector multiply 

CSRC SEMINAR -- FACTORIZATION 
ALGORITHMS -- SEPT 24, 2010 3 

The basic science question is to model detailed quantum structure of  
many‐body systems, such the electronic structure of an atom, 
or structure of an atomic nucleus. 



THE BASIC PROBLEM 

 Find extremal eigenvalues of  very large, very sparse Hermitian matrix    

     Lanczos algorithm 

     fundamental operation is matrix-vector multiply 
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To answer this, we attempt to solve Schrödinger’s equation: 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This differential equation is too dif<icult to solve directly 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so we use the matrix formalism 



THE BASIC PROBLEM 

 Find extremal eigenvalues of  very large, very sparse Hermitian matrix    

     Lanczos algorithm 

     fundamental operation is matrix-vector multiply 

CSRC SEMINAR -- FACTORIZATION 
ALGORITHMS -- SEPT 24, 2010 6 

€ 

ˆ H Ψ = E Ψ

so we use the matrix formalism 
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Ψ = cα α
α

∑
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Hαβ = α ˆ H β
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β

∑ = Ecα if 
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α β = δαβ



THE BASIC PROBLEM 
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€ 

Hαβ = α ˆ H β
* H is generally a very large matrix – dimensions up to 
1010 have been tackled.  
* H is generally very sparse. 
* We usually only want a few low-lying states 

Lanczos algorithm! 
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Lanczos algorithm! 

Standard algorithm to obtain all eigenvalues of a real, symmetric 
matrix A: Householder 

Find orthogonal matrix U such that UT A U = B, a tridiagonal matrix 

The Lanczos algorithm is similar, in that it also uses an orthogonal 
matrix to take A to a tridiagonal matrix B..... 



THE BASIC PROBLEM 
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Lanczos algorithm! 
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Lanczos algorithm! 
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matrix-vector multiply 



 A SPARSE MATRIX, BUT.... 

Despite sparsity, nonzero matrix elements can require TB of  storage 
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I need to quickly cover: 
• How the basis states are represented 
• How the Hamiltonian operator is represented 
• Why most matrix elements are zero 
• Typical dimensions and sparsity 
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• How the basis states are represented 

This differential equation is too dif<icult to solve directly 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• How the basis states are represented 

Can only really solve 1D differential equation 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Single-particle wave functions labeled by, e.g.,   n, j, l, m 

Atomic case: 1s, 2s, 2p, 3s, 3p, 3d etc 

Nuclear: 0s1/2, 0p3/2, 0p1/2, 0d5/2, 1s1/2, 0d3/2, etc 
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• How the basis states are represented 

Can only really solve 1D differential equation 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Product wavefunction (“Slater Determinant”) 
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• How the basis states are represented 
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Ψ( r 1,
 r 2,
 r 3…) = φn1

( r 1)φn2
( r 2)φn3

( r 3)…φnN
( r N )

Product wavefunction (“Slater Determinant”) 

Each many-body state can be uniquely determined  
by a list of “occupied” single-particle states 
= “occupation representation”  
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• How the Hamiltonian is represented 

“occupation representation”  
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+ 0
“creation operator”  
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motion of a single particle 
(“one-body  operator”) 

interaction of  two particles 
(“two-body operator”) 
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• How the Hamiltonian is represented 

“occupation representation”  
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• How the Hamiltonian is represented 

“occupation representation”  
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• How the Hamiltonian is represented 

“occupation representation”  
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α=3 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 A SPARSE MATRIX, BUT.... 

Despite sparsity, nonzero matrix elements can require TB of  storage 
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• Why most matrix elements are zero 

“occupation representation”  
  

€ 

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+
… ˆ a nN

+ 0

€ 

ˆ a 2
+ ˆ a 4

+ ˆ a 6
+ ˆ a 1 ˆ a 5 ˆ a 7 α =1 = α = 3

ni  1  2  3  4  5  6  7 

α=1  1  0  0  1  1  0  1 

α=2  1  0  1  0  0  1  1 

α=3  0  1  1  1  0  1  0 

need 3 particles to  
interact simultaneously! 



 A SPARSE MATRIX, BUT.... 

Despite sparsity, nonzero matrix elements can require TB of  storage 
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• Typical dimensions and sparsity 

Nuclide valence
space

valence 
Z

valence 
N

basis
dim

sparsity
(%)

20Ne “sd” 2 2 640 10
25Mg “sd” 4 5 44,133 0.5
49Cr “pf ” 4 5 6M 0.01
56Fe “pf ” 6 10 500M 2x10-4

This corresponds to 2 Tb of  data!



RECYCLED MATRIX ELEMENTS 
Only a fraction of  matrix elements are unique; most are reused. 

Reuse of matrix elements understood through spectator particles. 

CSRC SEMINAR -- FACTORIZATION 
ALGORITHMS -- SEPT 24, 2010 22 

ni  1  2  3  4  5  6  7  8 

α=1  1  1  1  0  0  0  0  1 

α=2  1  1  0  1  1  0  0  0 

α=3  0  1  1  0  0  1  0  1 

α=4  0  1  0  1  1  1  0  0 

α=5  0  0  1  0  0  1  1  1 

α=6  0  0  0  1  1  1  1  0 

€ 

ˆ a 4
+ ˆ a 5

+ ˆ a 3 ˆ a 8 α =1 = α = 2
ˆ a 4

+ ˆ a 5
+ ˆ a 3 ˆ a 8 α = 3 = α = 4

ˆ a 4
+ ˆ a 5

+ ˆ a 3 ˆ a 8 α = 5 = α = 6
All of these have the same  
matrix element: V4538 



RECYCLED MATRIX ELEMENTS 
Only a fraction of  matrix elements are unique; most are reused. 

Reuse of matrix elements understood through spectator particles. 
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# of nonzero matrix elements vs. # unique matrix elements 

Nuclide valence 
space

valence
Z

valence
N 

# 
nonzero

# 
unique

28Si “sd” 6 6 26 x 106 3600
52Fe “pf ” 6 6 90 x 109 21,500



FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 
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A quantum number is the eigenvalue of an operator 

generally a operator that exactly commutes with the  
Hamiltonian 

e.g. angular momentum J2 and z-component Jz 

€ 

ˆ J 2 Ψ = J(J +1) Ψ

€ 

ˆ J z Ψ = M Ψ
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A quantum number is the eigenvalue of an operator 

  

€ 

ˆ O Ψ = ˆ O 1 + ˆ O 2 + ˆ O 3 +…( ) Ψ1 ⊗ Ψ2 ⊗ Ψ3 ⊗…( )

For composite systems, one can apply the operator to  
each component separately: 

Sometimes the total quantum number is a simple sum/product 
as is the case for Jz or parity.... 

...but in other cases the addition is complicated (e.g. for J2) 
  

€ 

ˆ J z Ψ = M Ψ = (m1 + m2 + m3 +…) Ψ



FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 
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I consider composite many-fermion systems,  
in particular those with 2 major components 
      protons and neutrons  
or 
      spin-up and spin-down electrons  

€ 

Ψ = Ψ1 ⊗ Ψ2
Each component itself is a Slater determinant which is  
composed of many particles 

€ 

ˆ J z Ψ = M Ψ

  

€ 

M = M1 + M2

M1 = m1
(1) + m1

(2) + m1
(2) +…



FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 
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Because the M values are discrete integers or half-integers 
(-3, -2, -1, 0, 1, 2, ... or -3/2, -1/2, +1/2, +3/2....) 
we can organize the basis states in discrete sectors 

Example: 2 protons, 4 neutrons, total M = 0 

Mz(π) = -4 Mz(υ) = +4 

Mz(π) = -3 Mz(υ) = +3 

Mz(π) =-2 Mz (υ) = +2 



FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 
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In fact, we can see an example of factorization here because 
all proton Slater determinants in one M-sector must combine 
with all the conjugate neutron Slater determinants 

Example: 2 protons, 4 neutrons, total M = 0 

Mz(π) = -4: 2 SDs Mz(υ) = +4: 24 SDs 48 combined 

Mz(π) = -3: 4 SDs Mz(υ) = +3: 39 SDs 156 combined 

Mz(π) = -2: 9 SDs Mz(υ) = +2: 60 SDs 540 combined 



FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 
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In fact, we can see an example of factorization here because 
all proton Slater determinants in one M-sector must combine 
with all the conjugate neutron Slater determinants 

Mz(π) = -4: 2 SDs Mz(υ) = +4: 24 SDs 48 combined 
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ν 24

× = 
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π1 ν1
π 2 ν1
π1 ν 2
π 2 ν 2


π1 ν 24
π 2 ν 24



FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 
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Neutron SDs 

P
ro

to
n 

S
D

s 

20Ne 640 66 

24Mg        28,503               495 

28Si          93,710               924 

48Cr      1,963,461           4895 

52Fe    109,954,620       38,760 

56Ni   1,087,455,228   125,970 

Example N = Z nuclei 
Nuclide   Basis dim       # pSDs (=#nSDs) 



FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 
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Factorization allows us to keep track of all basis states 
without writing out every one explicitly 
-- we only need to write down the proton/neutron components 

The same trick can be applied to matrix-vector multiply 

€ 

ˆ H = ˆ H pp + ˆ H nn + ˆ H pn
Move 2 protons; 
neutrons are  
spectators 

Move 2 neutrons; 
protons are  
spectators 

Move 1 proton + 
1 neutron; 
rest are  
spectators 



FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 
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€ 

ˆ H pp
Move 2 protons; 
neutrons are  
spectators 

Example: 2 protons, 4 neutrons, total M = 0 

Mz(π) = -4: 2 SDs Mz(υ) = +4: 24 SDs 48 combined 

There are potentially 48 × 48 matrix elements 
But for Hpp at most 4  × 24 are nonzero 
and we only have to look up 4 matrix elements 

Advantage: we can store 98 matrix elements as 4 matrix elements 
and avoid 2000+ zero matrix elements. 



FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 
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Mz(π) = -4: 2 SDs Mz(υ) = +4: 24 SDs 48 combined 

Advantage: we can store 98 matrix elements as 4 matrix elements 
and avoid 2000+ zero matrix elements. 
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π1
π 2
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ν1
ν 2
ν 3
ν 4


ν 24€ 

Hpp =
H11 H12

H21 H22

 

 
 

 

 
 



FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 
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Mz(π) = -4: 2 SDs Mz(υ) = +4: 24 SDs 48 combined 

Advantage: we can store 98 matrix elements as 4 matrix elements 
and avoid 2000+ zero matrix elements. 

€ 

π1
π 2

  

€ 

ν1
ν 2
ν 3
ν 4


ν 24€ 

Hpp =
H11 H12

H21 H22

 

 
 

 

 
 

  

€ 

Hpp π1 ν1 = H11 π1 ν1 + H12 π 2 ν1

Hpp π 2 ν1 = H12 π1 ν1 + H22 π 2 ν1

Hpp π1 ν 2 = H11 π1 ν 2 + H12 π 2 ν 2

Hpp π 2 ν 2 = H12 π1 ν 2 + H22 π 2 ν 2


Hpp π1 ν 24 = H11 π1 ν 24 + H12 π 2 ν 24

Hpp π 2 ν 24 = H12 π1 ν 24 + H22 π 2 ν 24



FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 
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Nuclide  Space  Basis dim  matrix store  factoriza5on 

56Fe  pf  501 M  290 Gb  0.72 Gb 

7Li  Nmax=12  252 M  3600 Gb  96 Gb 

7Li  Nmax=14  1200 M  23 Tb  624 Gb 

12C  Nmax=6  32M  196 Gb  3.3 Gb 

12C  Nmax=8  590M  5000 Gb  65 Gb 

12C  Nmax=10  7800M  111 Tb  1.4 Tb 

16O  Nmax=6  26 M  142 Gb  3.0 Gb 

16O  Nmax=8  990 M  9700 Gb  130 Gb 

Comparison of nonzero matrix storage with factorization 



PARALLEL IMPLEMENTATION 

Factorization makes it easier to compute workload 
and distribute across multiple nodes 
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length of   
sides = 
information 
to be stored 

Area = total # of operations 

length of sides = 
information to be stored 

We can compute the !
number of operations!
without actually !
counting them!!

Then we can !
easily divide !
the work across !
compute nodes!



PARALLEL IMPLEMENTATION 

Factorization makes it easier to compute workload 
and distribute across multiple nodes 
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THE BIGSTICK CODE 

Many-fermion code: 2nd generation after REDSTICK code 
(started in Baton Rouge, La.) 
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Arbitrary single-particle radial waveforms 
Allows local or nonlocal two-body interaction 
Applies to both nuclear and atomic cases 

Runs on both desktop and parallel machines 
--can run at least dimension 100M+ on desktop 
(20 Lanczos iterations in 300 CPU minutes) 

20-30k lines of codes 
Fortran 90 + MPI + OpenMP 
Partially funded by SciDAC 
Plans to run on 50,000-100,000 compute nodes 
Plans to publish code late 2011 



SCIENCE APPLICATIONS 
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Comparison of “exact” results versus approximations 
-- e.g. mean-field, density-functional, time-dependent mean-field, 
projection of mean-field onto exact symmetries, etc. 

How “unique” in the nucleon-nucleon interaction? 
--i.e., the input Vijkl look like random numbers; what happens 
if we actually use random numbers? 
-- can we use ambiguity in the interaction to our advantage? 

Looking for and using broken symmetries 
--isospin breaking and the unitarity of the CKM matrix 



CONCLUSIONS 
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Basic problem: find extremal eigenvalues of  very large, very 
sparse Hermitian matrix    

     Lanczos algorithm 
     fundamental operation is matrix-vector multiply 

Despite sparsity, nonzero matrix elements can require TB of  storage 

Only a fraction of  matrix elements are unique; most are reused. 
Reuse of matrix elements understood through spectator particles. 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 


