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THE KEY IDEAS

Basic problem: find extremal eigenvalues of very large, very
sparse Hermitian matrix

Lanczos algorithm

fundamental operation is matrix-vector multiply

Despite sparsity, nonzero matrix elements can require TB of storage

Only a fraction of matrix elements are unique; most are reused.
Reuse of matrix elements understood through spectator particles.

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers
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THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix

| > Lanczos algorithm
fundamental operation is matrix-vector multiply

The basic science question is to model detailed quantum structure of
many-body systems, such the electronic structure of an atom,
or structure of an atomic nucleus.
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THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix

| > Lanczos algorithm

fundamental operation is matrix-vector multiply

To answer this, we attempt to solve Schrodinger’s equation:

2
2 - = - - —
2‘%V +U(%)+;V(n—rj) V(7,7 F...)= E¥
or

HW)= E|W)
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THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix

| > Lanczos algorithm

fundamental operation is matrix-vector multiply

This differential equation is too difficult to solve directly

Y-V +U(r)+ Y W(F 7 F..) = EW

so we use the matrix formalism
H|W) = E|¥)
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THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix

| > Lanczos algorithm

fundamental operation is matrix-vector multiply

W)= Yca)  Hy=(cH|p)

(04

EHa/SCﬁ = FEc if <05‘[3)> = 605/3
g so we use the matrix formalism
HW)= E|W)
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THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix

| > Lanczos algorithm
fundamental operation is matrix-vector multiply

Hp = <O“ﬁ‘ﬁ>

* H is generally a very large matrix — dimensions up to
101° have been tackled.

* H is generally very sparse.

* We usually only want a few low-lying states

, Lanczos algorithm!
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THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix

| > Lanczos algorithm
fundamental operation is matrix-vector multiply

Standard algorithm to obtain all eigenvalues of a real, symmetric
matrix A: Householder

Find orthogonal matrix U such that UT A U = B, a tridiagonal matrix

The Lanczos algorithm 1s similar, in that it also uses an orthogonal
matrix to take A to a tridiagonal matrix B.....

Lanczos algorithm!

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010



THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix
| > Lanczos algorithm

fundamental operation is matrix-vector multiply

A‘71 = O‘1‘71 + /3)1‘72
Av, =y, +a,v, + p,V;
Av, Py, + Vs + v,

Av, psvs+o,v, + [,V

Lanczos algorithm!
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THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix

| > Lanczos algorithm
fundamental operation is matrix-vector multiply

| — — — —
Av, = p,v, +osvs + By,

AV = psvs+o,v, + [,V

e e o= -

matrix-vector multiply
Lanczos algorithm!
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

I need to quickly cover:

* How the basis states are represented

* How the Hamiltonian operator 1s represented
* Why most matrix elements are zero

 Typical dimensions and sparsity
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

This differential equation is too difficult to solve directly

2
(E-%vz +U(r)+ Y V(F - 7j)]\1!(71,72,73...) - EY

i i<j

Can only really solve 1D differential equation

( L d2+U<r>)¢i<r>=ei¢i<r>

_2m dr

CSRC SEMINAR -- FACTORIZATION
ALGORITHMS -- SEPT 24, 2010

12



A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

Can only really solve 1D differential equation
( n o d’

— — + U(F))¢i(r) =£,0,(r) :> {¢l(7)}

Single-particle wave functions labeled by, e.g., n,j, [, m
Atomic case: 1s, 2s, 2p, 3s, 3p, 3d etc

Nuclear: 0sy/5, 0p5/9, 0py/9, 0d5/9, 1819, Odg, etc

CSRC SEMINAR -- FACTORIZATION

ALGORITHMS -- SEPT 24, 2010 13



A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

Can only really solve 1D differential equation
( n o d’

— S + U(F))¢i(r) =£,0,(r) :> {¢l(7)}

Product wavefunction (“Slater Determinant”)

V(7o) = 8, (D), (BB, (7)., ()
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

* How the basis states are represented
Product wavefunction (“Slater Determinant”)
qj(;’ia?zjé )= qb@(;’i)% (72)%(73) X ¢@(7N)

Each many-body state can be uniquely determined
by a list of “occupied” single-particle states
= “occupation representation”

Afr A4 A} A4
‘(x> =a,a,d, ...d 0)

ny
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

* How the Hamailtonian 1s represented

“occupation representation” ‘(x> ; a; a;
2 3 N

“creation operator”

A4 AN A AN A
H = E G4 A+ EVJ,da aa,a,
ijkl

motion of a single particle interaction of two particles
(“one-body operator”) (“two-body operator”)

Vi = [[ 6P, GOV (7 (P, (P’ rd’r
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

“occupation representation” ‘(x> =aaa ..a O>
n, n, 'n ny
no |1 2 3 4 5 6 7
a=1 |1 0 0 1 1 0 1
a=2 |1 0 1 0 0 1 1
a=3 |0 1 1 1 0 1 0
H=YTaa,++YV,aaaa
ij ijkl
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

* How the Hamailtonian 1s represented

“occupation representation” ‘(x> =aaa ..a

n ny,%n, ny
no |1 2 4 |5 6 |7
c a=1 (1 |0 |0 | 1. |0 1
a=2 (1 o [1*¥ |o o ™M |1
a=3 |0 1 1 1 |0

a,a. a,

aslo=1)=|a=2)
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

* How the Hamailtonian 1s represented

“occupation representation” ‘(x> —a ata ...a O>
ny Ny nj nn

n, 1 2 3 4 5 6 7

a=1 |1 0 0 1 1 0 1

a=2 |1 0 1 0 0 1

a=3 |0 1 1 1 0 1 0

/\+/\+A A

a2a4a1a7‘a = 2> = ‘a = 3>
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

“occupation representation” ‘(x> =aaa ..a O>
ny Ny, nj ny

no 1t |2 |3 |4 |5 |e |7

a=1 |1, |0 |0 |1 J1  |o |1

a=2 (1 NJo |1 Jo /flo |1 /|1

=3 [0 T1 1 |17 Jo |17 o

NEAF AL A A _ _ _ need 3 particles to
d,d,deddsd; ‘ o 1> ‘ a 3> interact simultaneously!
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

 Typical dimensions and sparsity

Nuclide | valence valence valence bas1s sparsity
space )

20Ne “sd” 2

Mg “sd” 4 5 44,133 0.5
PCr “pt” 4 5 oM 0.01
ke “pt” 6 10 500M 2x10*

/

This corresponds to 2 Tb of data!
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RECYCLED MATRIX ELEMENTS

Only a fraction of matrix elements are unique; most are reused.
Reuse of matrix elements understood through spectator particles.

nn |1 [2 |3 |4 |5 |6 |7 |8
C o=111 1 1\\.*0 0 O/_O/ 1
a=2|1 |1 |0 |1 |1€]0 |0 |O
closjo |1 1 jo Jo |1 jo
a=410 |1 |0 1 |14 0 |0
a=6(0 [0 |0 M1 |14 10
a,a;asaglo=1)=|o=2)
a,aia,aglo=3)=|a=4) All of these have the same
a5 a0 a = 5) =|a = 6) matrix element: V .
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RECYCLED MATRIX ELEMENTS

Only a fraction of matrix elements are unique; most are reused.
Reuse of matrix elements understood through spectator particles.

# of nonzero matrix elements vs. # unique matrix elements

Nuclide | valence Valence Valence
space nonzero | unique

28Si “sd” 6 26 x 10° 3600
Fe “pt” 6 6 90 x 10 21,500
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FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

A quantum number is the eigenvalue of an operator

generally a operator that exactly commutes with the
Hamiltonian

e.g. angular momentum J? and z-component J,

P|®)=J(J + W) T |W)= M|P)
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FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

A quantum number is the eigenvalue of an operator

For composite systems, one can apply the operator to
each component separately:

OW)=(0,+0,+0,+..)(%)®|¥,)®|¥,)®...)

Sometimes the total quantum number is a simple sum/product
as is the case for J, or parity....

jz“P>= W) =(m, +m, +m; +...)

...but in other cases the addition is complicated (e.g. for J?)
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FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

I consider composite many-fermion systems,
in particular those with 2 major components
protons and neutrons
or
spin-up and spin-down electrons

‘\P>=‘lpl>®‘tpz>

Each component itself is a Slater determinant which is
composed of many particles

J|w)=MW) M=M+M,
(2)

M, =m® + m® + m®

+m,
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FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

Because the M values are discrete integers or half-integers
(-3,-2,-1,0,1,2,...0or-3/2,-1/2,+1/2, +3/2....)
we can organize the basis states in discrete sectors

Example: 2 protons, 4 neutrons, total M = 0

M,(v) = +4
M,(v) = +3
M, (v) = +2
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FACTORIZATION

Reuse can be exploited using exact factorization

enforced through additive/multiplicative quantum numbers

In fact, we can see an example of factorization here because
all proton Slater determinants in one M-sector must combine

with all the conjugate neutron Slater determinants

Example: 2 protons, 4 neutrons, total M = 0

M,(v) = +4: 24 SDs

M,(v) = +3: 39 SDs

M,(v) = +2: 60 SDs
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FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

In fact, we can see an example of factorization here because
all proton Slater determinants in one M-sector must combine
with all the conjugate neutron Slater determinants

[Vi@=4808 0 | M) =+4:245Ds | 40 combine

V1> ”1>‘V1>
) v )
) X B= a)
:v4> ”2>‘V2>
‘V24> ‘J'L'1>‘V24>

CSRC SEMINAR -- FACTORIZATION ‘ 7T >‘ v >
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FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

Proton SDs

o o
\ g

) =|a, )x|a, )

Neutron SDs

Nuclide Basis dim

Example N = Z nuclei
# pSDs (=#nSDs)

*Ne 640 66

2Mg 28,503 495
283 93,710 924
#Cr 1,963,461 4895

2Fe 109,954,620 38,760
%Ni 1,087,455,228 125,970
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FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

Factorization allows us to keep track of all basis states
without writing out every one explicitly
-- we only need to write down the proton/neutron components

The same trick can be applied to matrix-vector multiply
VN A\ A\ A\
A = Hopy+ Hanyt H

Move 2 protons;
neutrons are

Move 2 neutrons; Move 1 proton +

spectators protons are 1 neutron;
spectators rest are
spectators
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FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

Va\

Move 2 protons;

neutrons are Example: 2 protons, 4 neutrons, total M = 0
spectators

[VE@= 28050 [ W)= +4:245Ds | 46 combines

There are potentially 48 x 48 matrix elements
But for H, ) at most 4 x 24 are nonzero
and we only have to look up 4 matrix elements

Advantage: we can store 98 matrix elements as 4 matrix elements
and avoid 2000+ zero matrix elements.
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FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

[VIEmE4808 | M) =+4:245Ds | 40 combined

v,)
V,)
‘”1> =(H11 le) v3>
‘J‘E2> " H, H, V>

4
‘V24>

Advantage: we can store 98 matrix elements as 4 matrix elements
and avoid 2000+ zero matrix elements.
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FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

M,(v) = +4: 24 SDs

48 combined

V1> H, |m)|vi) = Hy |7 )|v,) + Hpp| ) v,)
V2> H, |m,)|vi) = Hy |, )|vi) + Hy| )| v,)
‘.7'171> H, H, V3> H, |7 )|v,) = H,|m)|v,) + Hy|7,)|v,)
‘”2> i, =(H21 sz) v4> H, |70,)|v,) = Hy|m)|V,) + Ho|77,)| V)
H,,|m)|Vay) = Hy|m )V ) + Hy |70, )|v,,)
Vo)

Advantage: we can store 98 matrix elements as 4 matrix elements
and avoid 2000+ zero matrix elements.
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FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

Comparison of nonzero matrix storage with factorization

56Fe 501 M 290 Gb 0.72 Gb
Li N,,=12 252 M 3600 Gb 96 Gb
Li N_,=14 1200 M 23 Tb 624 Gb
2 N_ =6 32M 196 Gb 3.3 Gb
2 N__=8 590M 5000 Gb 65 Gb
12c N,__=10 7800M 111 Tb 1.4 Tb
160 N, =6 26 M 142 Gb 3.0 Gb
160 N, =8 990 M 9700 Gb 130 Gb

max
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PARALLEL IMPLEMENTATION

Factorization makes it easier to compute workload
and distribute across multiple nodes

length of sides =
information to be stored

4 N
Arga = total # of operationfs We can compute the
length of number of operations
sides = without actually
information Counhng them!

to be stored

Then we can
easily divide
the work across
compu’re nodes
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PARALLEL IMPLEMENTATION

Factorization makes it easier to compute workload

and distribute across multiple nodes

Fe52 on NERSC Franklin

dim = 109M

20 T T | T T T

idea
actual g

speedup
S
[

0 2000 4000 6000
# nodes
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THE BIGSTICK CODE

Many-fermion code: 2"4 generation after REDSTICK code
(started in Baton Rouge, La.)

Arbitrary single-particle radial waveforms
Allows local or nonlocal two-body interaction
Applies to both nuclear and atomic cases

Runs on both desktop and parallel machines
--can run at least dimension 100M+ on desktop
(20 Lanczos iterations in 300 CPU minutes)

20-30k lines of codes

Fortran 90 + MPI + OpenMP

Partially funded by SciDAC

Plans to run on 50,000-100,000 compute nodes
Plans to publish code late 2011
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SCIENCE APPLICATIONS

Comparison of “exact” results versus approximations
-- e.g. mean-field, density-functional, time-dependent mean-field,
projection of mean-field onto exact symmetries, etc.

How “unique” in the nucleon-nucleon interaction?
--L.e., the input V;,, look like random numbers; what happens
if we actually use random numbers?

-- can we use ambiguity in the interaction to our advantage?

Looking for and using broken symmetries
--1sospin breaking and the unitarity of the CKM matrix
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CONCLUSIONS

Basic problem: find extremal eigenvalues of very large, very
sparse Hermitian matrix

Lanczos algorithm

fundamental operation is matrix-vector multiply

Despite sparsity, nonzero matrix elements can require TB of storage

Only a fraction of matrix elements are unique; most are reused.
Reuse of matrix elements understood through spectator particles.

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers
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