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• Nonlinear Schrödinger Equation (NLSE)

• Bose-Einstein Condensates

• Nonlinear optics.
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• 3D vortex rings

• Need many 3D large

simulations

• Want to speed up

computations

• High order schemes

• Parallel

programming

• Visuals and easy

analysis



One-Dimensional NLSE

Moving dark soliton solution with
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Constant density

background

Parameters:
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Graphical Processing Units

- Massively Parallel

- Have surpassed CPU FLOPS

- Very inexpensive compared to 

CPU clusters.

Collection of Multiprocessors (MP), each 

with 8 ALUs

Each MP has small fast shared memory

GPU card has large (slow) global 

memory (RAM)

Other memory (constant, texture, etc.)
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NVIDIA C code extension (free!)

Allows low level access to GPU

Logic structure:  Grids of Blocks of Threads

CUDA vs. OpenCL

FORTRAN Support

Threads instantiated through calls to a “kernel”

Thread synchronization within blocks

Each thread typically computes one cell of array or matrix

Each thread has access to per-thread local, per-block shared, 

and global variables.
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Two-Step High Order Compact Scheme (2SHOC) Fourth order Runga Kutta (RK4):

Second order 

differencing:

Take second

derivative

of differencing

Fourth order

approximation:
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Constant density at 

boundary:

Want simple boundary condition.   Dirichlet?

Solution to ODEs, 

but need C:

details:   substitutions… one-sided differencing… recombining…

Works for any time-dependent complex PDE and in any dimension

Applying to NLSE:

(New?) Modulus-Squared 

Dirichlet boundary condition:

Separate real and 

imaginary parts:

Already

computed!



MATLAB:  allows easy 

analysis and visuals.

Can compile custom C-

code MEX files that use 

CUDA with nvmex.

for # of chunks…

end

plot…

matcode.m

for # of steps/chunk…

end

c_code.cu

CUDA 

kernels:
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Vectors transferred to GPU, then do chunk of time steps:

Transfer vector back to CPU for analysis and plotting.
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GPU

CPU

Kernel call:

Block 0 Block 1

…….

Input

Output

Shared 

memory

CPU

Compute
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Simple CUDA kernel code

Global memory accesses
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CUDA kernel using shared memory to compute

Global memory accesses Shared memory accesses (much faster)
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(Single precision)

CPU:  ~ 1 hour

GPU:  ~ 1 minute

Double precision has

noticeable performance hit

NVIDIA GeForce GTX 260

192 Cores,  896MB RAM

Price:  ≈ $200



 Using GPU for simulations is very 
useful and cost efficient

 Large speedup observed even for a  
computationally simple numerical 
scheme

 MSD boundary condition simple and 
effective

 Plans to develop 2D and 3D versions 
of the code.
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