
May 7th 2010

Ronald M. Caplan

 Background and Purpose

 One-Dimensional Test Example

 GPU Computing

 NVIDIA CUDA API

 High Order Numerical Scheme

 Boundary Conditions

 CUDA Code Implementation

 Speedup Results

 Conclusion
2

• Nonlinear Schrödinger Equation (NLSE)

• Bose-Einstein Condensates

• Nonlinear optics.

3

• 3D vortex rings

• Need many 3D large

simulations

• Want to speed up

computations

• High order schemes

• Parallel

programming

• Visuals and easy

analysis

One-Dimensional NLSE

Moving dark soliton solution with

4

Constant density

background

Parameters:

5

Graphical Processing Units

- Massively Parallel

- Have surpassed CPU FLOPS

- Very inexpensive compared to

CPU clusters.

Collection of Multiprocessors (MP), each

with 8 ALUs

Each MP has small fast shared memory

GPU card has large (slow) global

memory (RAM)

Other memory (constant, texture, etc.)

6

NVIDIA C code extension (free!)

Allows low level access to GPU

Logic structure: Grids of Blocks of Threads

CUDA vs. OpenCL

FORTRAN Support

Threads instantiated through calls to a “kernel”

Thread synchronization within blocks

Each thread typically computes one cell of array or matrix

Each thread has access to per-thread local, per-block shared,

and global variables.

7

Two-Step High Order Compact Scheme (2SHOC) Fourth order Runga Kutta (RK4):

Second order

differencing:

Take second

derivative

of differencing

Fourth order

approximation:

8

Constant density at

boundary:

Want simple boundary condition. Dirichlet?

Solution to ODEs,

but need C:

details: substitutions… one-sided differencing… recombining…

Works for any time-dependent complex PDE and in any dimension

Applying to NLSE:

(New?) Modulus-Squared

Dirichlet boundary condition:

Separate real and

imaginary parts:

Already

computed!

MATLAB: allows easy

analysis and visuals.

Can compile custom C-

code MEX files that use

CUDA with nvmex.

for # of chunks…

end

plot…

matcode.m

for # of steps/chunk…

end

c_code.cu

CUDA

kernels:

10

Vectors transferred to GPU, then do chunk of time steps:

Transfer vector back to CPU for analysis and plotting.

11

GPU

CPU

Kernel call:

Block 0 Block 1

…….

Input

Output

Shared

memory

CPU

Compute

12

Simple CUDA kernel code

Global memory accesses

13

CUDA kernel using shared memory to compute

Global memory accesses Shared memory accesses (much faster)

14

(Single precision)

CPU: ~ 1 hour

GPU: ~ 1 minute

Double precision has

noticeable performance hit

NVIDIA GeForce GTX 260

192 Cores, 896MB RAM

Price: ≈ $200

 Using GPU for simulations is very
useful and cost efficient

 Large speedup observed even for a
computationally simple numerical
scheme

 MSD boundary condition simple and
effective

 Plans to develop 2D and 3D versions
of the code.

15

