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Introduction
Wave-swept rocky shores are one of the most physically

severe habitats on the planet. At low tide, organisms in the
intertidal zone are exposed to terrestrial rigors, including
substantial temperature fluctuations, desiccation and increased
insolation (Denny and Wethey, 2001; Tomanek and Helmuth,
2002). At high tide, breaking waves are accompanied by water
velocities that often exceed 10·m·s–1 and impose large
hydrodynamic forces (e.g. Dudgeon and Johnson, 1992;
Gaylord, 1999; Gaylord, 2000; Denny and Gaylord, 2002;
Denny, 2006). Nonetheless, communities of organisms in this
harsh environment are highly diverse and productive (Smith
and Kinsey, 1976; Connell, 1978; Leigh et al., 1987). The
unusual presence of dense and diverse assemblages of
organisms in a stressful environment, coupled with the
experimental tractability of the system (as a result of steep
environmental gradients, rapid turnover of organisms, and
abundant sessile and slow-moving organisms), has made wave-
swept shores a test bed for ecomechanics. The connections
between community ecology (e.g. Paine, 1966; Paine, 1984;
Dayton, 1971; Connell, 1978; Menge, 1995; Bertness and
Leonard, 1997; Harley and Helmuth, 2003), physiology (e.g.

Wolcott, 1973; Hofmann and Somero, 1995; Stillman and
Somero, 1996; Somero, 2002; Stillman, 2002; Tomanek, 2002)
and physical adaptations (e.g. Koehl, 1986; Carrington, 1990;
Blanchette, 1997; Martone, 2006) of intertidal and nearshore
organisms have been explored for decades.

Even though physical and physiological intertidal stresses
are repetitive in nature, associated with the flow and ebb of
tides, most experiments have focused on acute lethal stresses
and repercussions for competitive ecological interactions.
Sublethal consequences of repeated desiccation, high and low
temperatures, hydrodynamic forces and other environmental
conditions have proven difficult to address (e.g. Koehl, 1984;
Koehl, 1986; Davison and Pearson, 1996). Here we describe
methods for quantifying the potentially lethal effects of
repeated hydrodynamic forces.

Hydrodynamic consequences for macroalgae
Although intertidal seaweeds occur in myriad forms, their

morphologies share some common elements. A macroalga
attaches to the substratum via a holdfast, from which one or
several stem-like structures (often called stipes) emerge. Each

Biomechanical analyses of intertidal and shallow
subtidal seaweeds have elucidated ways in which these
organisms avoid breakage in the presence of exceptional
hydrodynamic forces imposed by pounding surf. However,
comparison of algal material properties to maximum
hydrodynamic forces predicts lower rates of breakage and
dislodgment than are actually observed. Why the disparity
between prediction and reality? Most previous research
has measured algal material properties during a single
application of force, equivalent to a single wave rushing
past an alga. In contrast, intertidal macroalgae may
experience more than 8000 waves a day. This repeated
loading can cause cracks – introduced, for example, by

herbivory or abrasion – to grow and eventually cause
breakage, yet fatigue crack growth has not previously been
taken into account. Here, we present methods from the
engineering field of fracture mechanics that can be used to
assess consequences of repeated force imposition for
seaweeds. These techniques allow quantification of crack
growth in wave-swept macroalgae, a first step towards
considering macroalgal breakage in the realistic context of
repeated force imposition. These analyses can also be
applied to many other soft materials.
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stipe supports one or more blades. Together holdfast, stipe(s),
and blade(s) constitute the thallus of the alga.

For seaweeds, hydrodynamic stresses imposed on thalli
represent a substantial facet of rocky shores’ extreme physical
environment. Subtidally, water velocities reach several m·s–1

(Denny, 1988), while magnitudes of water velocities increase
manyfold intertidally (commonly to 10–20·m·s–1) as waves
break and are funneled by substratum topography (Denny et al.,
2003; Denny, 2006).

Intertidal macroalgae, as sessile organisms, cannot actively
avoid the violent water motion of the wave-swept environment.
Instead, as water flows past an intertidal seaweed, the water
exerts force, primarily drag, on the organism (Gaylord et al.,
1994; Gaylord, 2000; Boller and Carrington, 2006a). Intertidal
macroalgae thus experience forces, predominantly in tension,
throughout their lengths with each passing wave. And
macroalgae endure substantial forces: drag forces imposed by
water moving at 10·m·s–1 are comparable to the forces that
would be exerted by winds traveling at 1050·km·h–1, nearly
Mach 1, if air were incompressible. Furthermore, intertidal
seaweeds must endure these hydrodynamic forces frequently;
approximately 8600 waves break on shore each day. 

Many biomechanical studies have investigated the
mechanical properties and morphological attributes that enable
wave-swept macroalgae to survive drag forces imposed by
breaking waves (e.g. Carrington, 1990; Holbrook et al., 1991;
Denny and Gaylord, 2002; Pratt and Johnson, 2002; Kitzes and
Denny, 2005; Martone, 2006). These studies have investigated
algal material properties primarily in tensile tests, finding
macroalgae highly extensible and generally compliant (the
opposite of stiff), with low breaking strength, compared to
other biomaterials (Hale, 2001; Denny and Gaylord, 2002). In
addition, investigations have suggested the importance of algal
flexibility, which is in part a consequence of the compliance of
algal materials. Seaweeds align, deform and bundle with flow,
thereby reconfiguring to reduce drag (Vogel, 1984; Koehl,
1986; Boller and Carrington, 2006b).

To date, studies of algal materials have evaluated their
abilities to resist large wave forces through pull-to-break tests,
in which samples are loaded in tension until they break. The
force required for breakage, normalized as stress (applied bulk
force per initial material cross-sectional area), is taken as the
ultimate strength, or breaking stress, of the material. This
strength is then compared to the stresses imposed by the largest
waves to predict an alga’s risk of breakage. These comparisons
have repeatedly predicted low probabilities of breakage (e.g.
Koehl and Alberte, 1988; Gaylord et al., 1994; Gaylord, 2000;
Johnson and Koehl, 1994; Friedland and Denny, 1995; Utter
and Denny, 1996; Denny et al., 1997; Johnson, 2001; Kitzes
and Denny, 2005), leading to the suggestion that wave-swept
algae are mechanically over-designed (Denny, 2006). 

However, these predictions are at odds with reality: many
seaweeds experience consistent, substantial seasonal breakage
and dislodgment (Seymour et al., 1989; Dudgeon and Johnson,
1992; Dudgeon et al., 1999; Johnson, 2001; Pratt and Johnson,
2002), presumably due to wave-induced forces. For example,

for two turf-like intertidal macroalgae, Dudgeon and Johnson
(Dudgeon and Johnson, 1992) observed wintertime reduction
in canopy cover reaching 13% for one species and 30% for
another. In kelp forests, Seymour et al. (Seymour et al., 1989)
documented mortality ranging from 2 to 94% over four winter
seasons. And the sometimes meter-deep piles of seaweed
washed up on beaches after storms stand testament to frequent
breakage and dislodgment.

Failure in seaweeds assumes a variety of forms. For
example, breakage of blades or load-bearing midribs may occur
primarily at distal or marginal regions. This ‘tattering’ reduces
the sizes of algal thalli (Black, 1976; Blanchette, 1997;
Dudgeon et al., 1999) and presumably lowers the risk of more
catastrophic damage. Other seaweeds, especially those with
perennial holdfasts capable of regenerating stipes, break
primarily at the holdfast-stipe junction (Carrington, 1990;
Hawes and Smith, 1995; Shaughnessy et al., 1996; Carrington
et al., 2001; Johnson, 2001). For instance, when experimentally
pulling a turf-like red macroalga, Carrington (Carrington,
1990) found that 90% of thalli broke at the stipe-holdfast
junction. Failure of this weak link ensures survival of the
holdfast and allows regeneration of stipes and blades.
Nonetheless, holdfast dislodgment, due to holdfast or
substratum failure, does occur frequently (Black, 1976; Koehl,
1986; Seymour et al., 1989; Utter and Denny, 1996; Gaylord
and Denny, 1997). For feather-boa kelp (Egregia laevigata
Setchell) washed onto beaches, Black (Black, 1976)
documented dislodgment due to holdfast or substratum failure
for 35% of individuals, and Koehl and Wainwright (Koehl and
Wainwright, 1977) determined holdfast detachment
responsible for 3–55% of dislodged and broken individuals of
a subtidal kelp, Nereocystis luetkeana (Mertens) Postels &
Ruprecht, with tangled plants more likely to fail at the holdfast. 

In sum, although wave-swept macroalgae appear over-
designed on the basis of measured algal strengths and maximal
wave-induced stresses, breakage nonetheless occurs commonly
at various locations on macroalgal thalli.

To account for the discrepancy between predicted and
observed algal breakage rates, several external factors, aside
from maximum water speeds, have been invoked. Studies have
suggested that stipe entanglement, low-tide physiological
stress, senescence, water-propelled projectiles, and damage
from herbivory or abrasion may increase breakage beyond rates
predicted on the basis of maximum water velocities alone
(Friedland and Denny, 1995; Utter and Denny, 1996; Kitzes
and Denny, 2005; Denny, 2006). Along these lines, two studies,
for two different kelp species, linked herbivorous damage to
breakage in approximately 30–50% of solitary individuals
washed ashore (Black, 1976; Koehl and Wainwright, 1977),
and for the subtidal kelp N. luetkeana, Koehl and Wainwright
(Koehl and Wainwright, 1977) observed breakage at abraded
locations on thalli in approximately 40% of solitary individuals
cast ashore. In addition, various researchers have speculated
that repetition of wave-induced stress, not just the maximum
stresses, may contribute to algal breakage (Koehl, 1986; Hale,
2001; Kitzes and Denny, 2005). Experiencing in excess of 8000
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waves per day, each with imposition of rapid flow variation
(Gaylord, 1999), intertidal macroalgae may be weakened by the
repeated loading of stresses too low to break them in pull-to-
break tests.

In this primer, we focus on the potential role of repeated
loads in mechanical failure of wave-swept algae. Repeated
loading may act in concert with damage initiated by abrasion
and herbivory to cause breakage and dislodgment by fatigue.

The role of fatigue
Repeated stresses contribute to breakage in several ways.

Through fatigue processes, wave-induced stresses below
ultimate strength may cause formation of cracks, originating
from existing material defects. Although the potential
importance of fatigue crack initiation has been cited (Koehl,
1984; Koehl, 1986; Hale, 2001; Kitzes and Denny, 2005),
fatigue has not been evaluated in macroalgae. Once a crack has
formed in an alga through fatigue, herbivory or abrasion, it can
locally amplify stress, thereby decreasing the alga’s ultimate
strength (where strength is calculated from bulk force applied
to a specimen, disregarding local amplifications) and rendering
the alga more susceptible to breakage by the imposition of a
single large stress (e.g. Black, 1976; Johnson and Mann, 1986;
Armstrong, 1987; Biedka et al., 1987; Denny et al., 1989;
Lowell et al., 1991; DeWreede et al., 1992). Even if an alga
containing a crack does not experience stress sufficient to break
it in a single loading, repeated stresses below the alga’s
ultimate strength may cause a crack to grow to a length at
which breakage occurs (Hale, 2001). In other words, repeated
wave stresses that never reach a cracked alga’s ultimate
strength may cause fatigue crack growth to the point of
complete fracture.

Most structural failures in human construction result from
stresses well below the ultimate material strengths of building
materials. Consequently, engineering theory includes a robust
literature on crack formation through fatigue and on growth of
cracks introduced by fatigue or other means. We focus
specifically on fracture mechanics theory relevant to crack
growth. Fatigue has been evaluated, but not with fracture
mechanics methods, in biological materials ranging from bone
to elastic proteins (e.g. Caler and Carter, 1989; Currey, 1998;
Keaveny et al., 2001; Gosline et al., 2002). Failure in the
presence of cracks has been assessed using fracture mechanics
in biological materials such as bone, shell, horse hoof and
grasses (e.g. Behiri and Bonfield, 1984; Bertram and Gosline,
1986; Vincent, 1991; Kasapi and Gosline, 1996; Kuhn-
Spearing et al., 1996; Kasapi and Gosline, 1997; Currey, 1998;
Taylor and Lee, 2003). However, these biological studies
involving fracture mechanics have focused on the parameters
relevant to propagation of cracks when materials fail
catastrophically in response to single loadings. Although
gradual crack extension may eventually cause complete
fracture in conditions of repeated loading, few biological
studies have examined incremental crack growth at sub-critical
repetitively applied loads. Thus, studies to date do not address

our central question: can repeated loading of seaweeds lead to
their breakage?

Literature regarding fracture mechanics is almost
exclusively written for specialized engineering audiences, and
deciphering it, with the aim of applying it to biological
situations, remains difficult for most biologists and even for
many engineers. In response to the opacity of fracture
mechanics literature, we provide here a coherent primer as a
starting point for studies of fracture in organisms and as a
strong basis for further investigation of the literature. To this
end, we present a guide to relevant fracture mechanics
techniques. We use consistent terminology for various fracture
mechanics methods (a luxury often absent in the literature) and
introduce relevant equations with intuitive explanations instead
of extensive derivations. Interested readers are guided to cited
literature for more detailed descriptions of equations’ origins.

Although we use macroalgae as organisms of focus,
presented techniques have been applied, at least in part, to
biological materials such as bone and horse hoof (Behiri and
Bonfield, 1984; Bertram and Gosline, 1986; Kasapi and
Gosline, 1997; Currey, 1998) and are relevant to more
extensible, softer biological materials such as cnidarian
mesoglea, arterial wall, skin, tendon and muscle (Purslow,
1989). We discuss applied wave forces, but imposed stresses
from any source can cause repeated-loading damage. The
accompanying article (Mach et al., 2007) tests the feasibility of
applying these techniques to several macroalgae.

We begin with two central parameters in linear elastic
fracture mechanics (LEFM), stress intensity factor and strain
energy release rate, describing use of these parameters as
background for our presentation of techniques relevant to
flexible, extensible materials. [Readers interested in applying
LEFM techniques to botanical materials are referred to
Farquhar and Zhao (Farquhar and Zhao, 2006).] We then
discuss strain energy release rate as it has been applied to
fracture and incremental crack growth in highly extensible
elastomeric materials. Finally, we discuss another parameter,
the J-integral, that has been effective in characterizing fracture
and fatigue in materials not well described by LEFM and
fracture mechanics of elastomers.

For each fracture mechanics approach, we describe the
methods used to evaluate the lifetime of a material with a crack
of a particular size. That is, presented parameters enable
estimation not only of the force necessary to fracture a
specimen in a single loading, but also of the number of smaller
repeated loadings that would eventually lead to fracture
through incremental crack growth. We hypothesize that, by
quantifying the effects of repeated loadings in this manner, we
will be better able to predict algal breakage on wave-swept
shores. 

Cracks reduce strength
The stress intensity factor (linear elastic fracture mechanics)

If you attempt to open a bag of peanuts by pulling on the bag
in tension, you will likely have trouble tearing the plastic.
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Notch a side of the bag with scissors, and it will tear with ease.
The same phenomenon occurs with seaweeds. Notches – in the
form of cracks or discontinuities of any sort – reduce strength
(calculated from bulk applied force) because they concentrate
stress at their tips (e.g. Andrews, 1968; Shigley and Mischke,
2001). In other words, the material at a crack tip experiences
local stresses that exceed the applied stress in the bulk of the
specimen. In this fashion, failure may originate at the crack tip
even when the bulk stress applied to the rest of the material is
not sufficient to cause breakage. Once failure starts, the crack
can propagate through the material. As the crack increases in
length, it concentrates more stress at its tip, causing crack
growth to accelerate and further decreasing the specimen’s
strength (Broek, 1982).

In the following sections, we consider several types of
stress–strain behavior, depicted in Fig.·1, where strain is the ratio
of change in length to original length as stress is applied to a
material (engineering strain). Linear elastic stress–strain
behavior refers to materials with linear relations between stress
and strain that return to their original length when unloaded
(Fig.·1A). Non-linear elastic materials also recover deformations
upon unloading but display non-linear relations between stress
and strain (Fig.·1B). Finally, elastic–plastic materials, upon
loading, exhibit non-linear relations between stress and strain but
additionally, upon unloading, leave irreversible deformation,
termed plastic strain (or permanent set) (Fig.·1C). This plastic
deformation exemplifies an inelastic strain.

First, we consider linear elastic fracture mechanics (LEFM).
Although linear elastic material behavior may not characterize
most seaweeds, LEFM provides basic fracture concepts and
background information helpful in presenting other fracture
mechanics approaches described here.

Stress intensity factor is a parameter that, for linear elastic
materials, characterizes stress fields at very sharp crack tips. As
an example, for a sheet with an edge crack experiencing
bending or axially applied stress (Fig.·2A), the stress intensity
factor, KI (measured in Pa��m), can be expressed as:

where � is the bulk tensile stress applied to the sheet, computed
as if no crack were present; a is a measure of crack length; w is
the width of the specimen; and f(a/w) is a dimensionless function
of the crack geometry and sheet width. For derivation and further
description of Eqn·1, see elsewhere (Broek, 1982; Broek, 1989;
Atkins and Mai, 1985; Saxena, 1998). f(a/w), often theoretically
derived, assumes various forms (Saxena, 1998; Anderson, 2005).
Eqn·1 can be applied to a variety of specimen and crack
geometries with appropriate relations for f(a/w), as given in
Saxena (Saxena, 1998), Anderson (Anderson, 2005) and other
sources. As a straightforward example, for a center-cracked sheet
(Fig.·2B) with dimensions much larger than crack length,
f(a/w)=1 (Broek, 1982; Anderson, 2005), and:

KI = ����a·. (2)

a
 KI = �   �a f ,

w
(1)

 
⎛
⎜
⎝

⎞
⎟
⎠

The subscript ‘I’ of KI indicates that this parameter refers to
mode I loading, illustrated in Fig.·3A. Although mode I loading
is depicted for a specimen with a single edge crack (Fig.·3A),
a sample with a central crack (Fig.·2B), for example, pulled in
tension will also experience mode I, tensile-opening loading.
Although seaweeds may experience some mode II (Fig.·3B)
and mode III (Fig.·3C) loading, many of the imposed loads on
seaweeds can be approximated as mode I, tensile-opening
loading. Accordingly, we predominantly address this first
loading mode, not giving analogous equations for other loading
modes.

LEFM was originally developed for application to metals, in
which concentrated stresses near crack tips cause plastic
(permanent) deformations in tip vicinities. As long as plastic
deformations are confined to a small zone around the crack tip,
LEFM stress intensity factors, as well as strain energy release
rate expressions described in the next section, can be applied
to metals and other materials.

The critical value of stress intensity factor, KI, at which
cracks advance is termed fracture toughness, KC. This critical
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Fig.·1. Schematic showing different types of stress–strain behavior:
(A) linear elastic, (B) non-linear elastic and (C) elastic–plastic with
unloading.
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Fig.·2. (A) Edge-cracked sheet experiencing bulk tensile stress �, with
crack length a and width w. (B) Center-cracked sheet with crack length
denoted as 2a for reasons related to mathematical derivation of the
corresponding stress intensity factor.
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value of stress intensity factor does depend on loading mode;
KC here denotes fracture toughness for mode I loading. KC

can be considered a material property in that it characterizes
strength in the presence of a crack. As with properties such
as ultimate tensile strength (breaking stress), fracture
toughness typically varies with factors like temperature and
rate of load application. For a given material, KC is
approximately constant for different combinations of crack
lengths and applied stresses, as well as for different specimen
geometries, such as the examples shown in Fig.·2. KC is
determined, using a relation such as Eqn·1, by measuring
breaking stress for a material specimen of known dimensions,
geometry and crack length. Once determined for one
combination of specimen and crack geometry, KC can be
applied to assess resistance to cracking for other geometries
of the material.

With units of Pa��m, stress intensity factors may seem
abstract. A comparison between applied stress and stress
intensity factor may thus be helpful. When a specimen with
no crack is loaded, stress applied to the material can be
measured easily. If the loaded sample breaks in two, the stress
at failure is a measure of ultimate tensile strength. When the
material contains a crack, however, due to variation of
stresses within the sample, the applied stress at failure will no
longer be constant for the material. Instead, stress at failure
will vary with size and shape of the crack as well as with
geometry of the test specimen, with geometry determined by
relative specimen dimensions and crack location.
Consequently, in the case of a cracked specimen, stress
intensity factor, KI, instead of simply applied stress, can be
used to describe the physical state of the material. If the
loaded sample breaks in two, the pertinent parameter becomes
not applied stress at fracture, but stress intensity factor at
failure, which is called fracture toughness, KC. Thus, this
geometry-independent term (fracture toughness) is the
material property preferred for characterizing loading in
materials with cracks.

Once determined for one combination of specimen geometry
and crack size (and given linear elastic conditions with limited
crack-tip plasticity), fracture toughness can be used to assess
the reduction in a material’s strength for different specimen
geometries and crack sizes. For tensile-opening, mode I loading

(Fig.·3A), the strength of the material, �C, is reduced by the
presence of a crack according to:

where a is crack size and f(a/w) is selected appropriately for the
specimen and crack geometry of interest (Broek, 1989; Saxena,
1998). In other words, given fracture toughness, strength of a
specimen with known crack length can be predicted.

LEFM, which includes stress intensity factors and strain-
energy-release-rate expressions described below, performs best
for materials such as glass and ceramics, which have little or no
ability to deform plastically and which have high moduli of
elasticity (i.e. they are stiff materials) and therefore experience
relatively small bulk strains when loaded to fracture. (Modulus
of elasticity is the slope of a stress–strain curve, with units of
N·m–2.) For such materials, strength reduction can be predicted
reliably with Eqn·3. For seaweeds, however, large deformations
act to round the crack tip and reduce stress concentrations,
thereby limiting the utility of linear elastic expressions in
predicting strength reduction in the presence of cracks (Biedka
et al., 1987; Denny et al., 1989; DeWreede et al., 1992). Crack-
tip rounding ameliorates the strength reduction predicted by
Eqn·3. Nonetheless, cracks of various geometries have been
demonstrated to increase the likelihood of breakage in several
macroalgae (Denny et al., 1989; DeWreede et al., 1992). 

In summary, stress intensity factor KI characterizes the stress
field at a crack tip for linear elastic behavior, and fracture
toughness KC quantifies the critical value of this factor at which
a crack will propagate unstably to failure. Higher fracture
toughness values occur in materials more resistant to fracture
in the presence of cracks.

Crack propagation
Energy considerations (linear elastic fracture mechanics)

Crack propagation can also be examined in terms of energy
(Broek, 1982; Broek, 1989). When a material specimen is
pulled, work is done on the sample. In this case, work is force
multiplied by specimen displacement, where displacement is
specimen current length minus specimen initial length. If a
sample is pulled to an extension and held, work is no longer
done on the sample, but the sample still contains energy – as
evident, for example, in a stretched rubber band flying across
a room when released. This energy stored in the material is
strain energy, U.

Consider a laboratory sample of an elastic material held by
grips and pulled in tension to a fixed displacement. This fixed-
grip condition can be used to explain another important
concept: ‘strain energy release rate’. Work expended in
extending the sample is stored as elastic strain energy, U, and
no further work is done once the grips are stationary. Assuming
no dissipative energy loss (e.g. through heat), the density of this
stored energy, the elastic strain energy density (J·m–3), equals

KC �C = , (3)
 

 �a f 
a

w

⎛
⎜
⎝

⎞
⎟
⎠

A B C

Mode I Mode II Mode III

Fig.·3. Three loading modes of cracked specimens: (A) mode I: tensile
opening (cleavage); (B) mode II: in-plane shearing; and (C) mode III:
anti-plane shearing (tearing).
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the area under the material’s stress–strain curve at the fixed
strain imposed by the grips.

Now, imagine introducing a sharp slit (or crack) into this
extended fixed-grip specimen. When the crack extends
incrementally, creating new crack surface dA, strain energy in
material around the crack will relax, causing the elastic energy
stored in the specimen to decrease by dU. This decrease in
stored energy as new crack surface forms is known as the strain
energy release rate, G (J·m–2), given by:

Note that energy release rate is defined with respect to crack
area, not time, unlike other common rates such as velocity.
Crack surface area, A, is not to be confused with crack length,
a. Crack area A is calculated as crack length multiplied by
specimen thickness. 

Some confusion in biological literature has arisen due to
differing definitions of dA (Biedka et al., 1987; Denny et al.,
1989; Hale, 2001). Sometimes new crack surface area created
in crack extension is taken to include surface area of both faces
of the crack, while at other times it includes surface area on
only one face of the crack. Here, dA refers to newly created
surface area on one face of the crack, and we encourage use of
this convention to standardize measurements.

For a central crack in a sheet (Fig.·2B) with length and width
much greater than crack size, evaluating Eqn·4 for mode I
loading gives strain energy release rate as:

where � is the bulk stress applied to the specimen, a is half the
length of the central crack, E is the elastic modulus of the
material, and subscript ‘I’ again indicates mode I, tensile-
opening loading (Broek, 1982; Perez, 2004; Anderson, 2005).

Fracture testing usually involves pulling a cracked specimen
while recording force-versus-displacement data. In such cases,
strain energy release rate can be evaluated at displacements
selected by the analyst, applying an experimental procedure
similar to that introduced in Appendix A.

A crack will extend in a material when strain energy released
in crack growth (expressed as a rate, dU/dA) exceeds energy
required for the increase in crack surface area, dV/dA. The
energy, V, absorbed during crack extension includes energy to
create new surface as well as any energy dissipated through
plastic deformation at the crack tip. The per-area rate at which
energy is required for creation of crack surface, dV/dA, is often
termed crack resistance, R. 

Crack extension occurs when strain energy release rate, G,
reaches a critical value GC equal to R. This crack advance may
be stable or unstable. For example, when the driving force, G,
for crack extension increases with crack growth, but crack
resistance R remains constant, unstable growth occurs, which
means that, once it begins to elongate, a crack will grow to
specimen fracture. However, when R increases more than G
with crack extension, stable crack growth occurs, in which

dU
 G = – .

dA
(4)

 

��2a
 GI = ,

E
(5)

 

crack extension occurs but does not lead to specimen fracture.
In this scenario, a crack can advance a certain distance (while
R<G) and then stop (when R>G), until higher loads are applied.
Stable crack advance occurs mainly in materials that produce
large plastic deformations with crack extension, such as thin
plastic grocery bags, for which crack edges ruffle significantly
during tearing, indicating plastic deformations. In most cases,
GC, the critical strain energy release rate, corresponds to onset
of unstable growth and fracture. Although we have described
G here in terms of stationary grips to explicate the concept, GC

in practice is usually determined by pulling specimens with
initial cracks until unstable crack extension occurs.

We thus arrive at two different criteria for rapid crack
propagation. First, the stress intensity factor, KI, must equal
fracture toughness, KC. Second, the energy release rate, GI,
must have reached its critical value, GC. For linear elastic
materials, these criteria are equivalent. From Eqn·2 and Eqn·5,
we can deduce that:

KI = ��GI�E (6)
and at fracture,

KC = ��GC�E ·. (7)

These relations remain valid for different crack and specimen
geometries. Thus, for linear elastic materials, the reduction of
material strength in the presence of a crack can be assessed
through either of these criteria. Knowing KC yields GC, and vice
versa. KC and GC are properties of a given material, so for a
crack of length a, the stress � required for fracture in the
presence of this crack can be derived either by the stress-
intensity-factor approach (Eqn·1 or Eqn·2) or by the strain
energy release rate approach (Eqn·4 or Eqn·5).

Fatigue crack growth
Techniques from linear elastic fracture mechanics

We now discuss a crucial point. As we have just noted, for
a material with a crack, applied stress must reach a critical
value corresponding to KC or GC for crack extension to occur.
In a given specimen, longer cracks require lower applied
stresses to propagate (Eqn·3). However, for repeatedly applied
stresses resulting in sub-critical values of KI and GI, crack
growth can still occur, in a very slow, incremental manner. In
conditions of repeated loading, incremental fatigue crack
growth at sub-critical KI and GI can result in gradual growth of
a crack to a length at which it does rapidly propagate, fracturing
the material.

In other words, for a macroalga with a crack, wave forces
causing stresses less than the material’s ultimate strength in the
absence of cracks, and less than the applied stress required for
complete fracture, may still cause crack growth (that is, small
increases in crack length) with each force imposition. At a
certain point, the alga’s crack may grow to a length at which
applied wave forces reach GC and KC, leading to the fracture
described in the previous sections. As a result, examining algal
fracture in a manner that considers only maximum wave forces
may neglect breakage that will occur due to incremental crack
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growth during smaller, repeated loadings. The curious,
important phenomenon of ‘sub-critical’ crack growth can be
characterized (although not mechanistically explained) using
the following LEFM procedure, which allows prediction of a
material’s lifetime in conditions of repeated loading. The
physical mechanisms for incremental crack growth have been
documented for some engineering materials but not for
macroalgae. For metals, for example, when a crack opens in
response to sub-critical bulk stresses, localized plastic straining
at the crack tip causes the tip to blunt on a microscopic scale,
which elongates the crack a small amount. Upon removal of
the bulk stress, the crack tip re-sharpens with increased length,
iteratively elongating with repeated loading (Pook, 1983).

Predictions of specimen lifetimes proceed in two steps. First,
baseline data are generated to describe the pattern of crack
growth in a material. This baseline curve (Fig.·4) is then
combined with real-world loading histories to predict time to
failure. 

Baseline curve

To create a baseline curve of crack growth, tests are
conducted on samples of a given material with different initial
crack sizes or different imposed stresses. For example, samples
can be loaded with stress varying sinusoidally from zero to a
maximum value, with concurrent observation of increases in
crack length, a, as a function of cycle number, N. Note that a
cycle of imposed stress corresponds to the period spanning
from maximum imposed stress, to minimum imposed stress,
and back to maximum imposed stress. Repeated cyclic loading
is often imposed on a specimen, with periodic measurement of
crack length, until the sample fractures. The magnitude of
stress range imposed (maximum stress minus minimum stress)
generally exerts the greatest influence on crack growth rates,
as compared to loading characteristics such as cycling
frequency.

From a curve fitted to a-versus-N data, crack growth rates
(mm·cycle–1), da/dN, are calculated from the curve’s slope at
different values of crack length, a. For each value of crack
length, a range of stress intensity factor, �KI, is computed from
the range of applied stress, �� (maximum stress minus
minimum stress in a cycle), using a relation such as Eqn·1. If
the minimum stress is zero, then �KI equals the maximum value
of KI applied in a cycle.

Crack growth rate values, da/dN, are then plotted against
values of stress intensity range, �KI, on logarithmic axes,
where �KI (for cyclic loading from zero to maximum stress)
equals the value of the stress intensity factor, KI, at the
maximum imposed stress (Fig.·4). Each material has a
characteristic log–log plot of da/dN versus �KI, which often
has the shape depicted in Fig.·4. Growth rate generally
increases with increasing crack length and with increasing
applied stress. At low �KI, crack growth is extremely slow, and
there is sometimes a threshold value of �KI below which no
crack growth occurs (Broek, 1982), shown as �KTH in Fig.·4.
Similar baseline curves can be generated for other loading
modes (Fig.·3) as well. 

Lifetime

Once baseline data are generated, lifetime of a cracked
material in repeated loading conditions can be determined.
Determination of lifetime requires a loading history, a plot of
stress applied to a material over time. The loading history is
analyzed to predict when fracture will occur, that is, when KC

or GC will be reached. There are multiple approaches to this
calculation. In one common LEFM approach, crack growth is
assumed to occur only during rising, tensile ranges of loading
(Nelson, 1977). In other words, crack growth is assumed to
occur only while applied stress stretches a specimen beyond its
initial length, not while specimen extension decreases in
tension and not while a specimen is loaded in compression. In
the loading history, each time that applied tensile stress
increases from one value to another and then drops, that
increase (or range) of stress is considered equivalent to a
loading cycle used in generation of the baseline da/dN-versus-
�KI curve (Fig.·4).

For each successive rising tensile range in a loading history
or in a representative sequence of loading, crack growth for that
cycle is added to current crack length. The increment of crack
growth for the cycle, da/dN, corresponds, on the baseline data
plot (i.e. Fig.·4), to the stress intensity range �KI of the tensile
loading. As subsequent stress impositions are analyzed, crack
length increases, and when the stress intensity range reaches
fracture toughness, fracture is predicted to occur. In other
words, the critical crack length corresponding to GC or KC for
the applied stress has been reached, and material rupture is
predicted, as long as resistance to fracture, R, does not increase
significantly with crack extension, as described in the previous
section. In this fashion, the number of loadings to failure, or
lifetime, of the cracked material is estimated.

In sum, to apply this procedure to a seaweed, one
experimentally generates a baseline curve describing crack
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Fig.·4. A log–log plot illustrating patterns of crack growth for
conditions of repeated loading. Crack growth rate (mm cycle–1),
da/dN, indicates the increase in crack length for each cycle, N, of
sinusoidally varying applied stress. Stress intensity range (Pa��m),
�KI, indicates the variation in stress intensity factor during each cycle
of loading. �KTH indicates threshold stress intensity factor range, and
KC denotes fracture toughness.
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growth in response to repeated loading in a macroalga
containing cracks, i.e. a log–logda/dN-versus-�KI curve
(Fig.·4). Each species, and perhaps each population, requires a
separate baseline curve characterizing its crack growth
behavior. Then a history of imposed wave forces is converted
to imposed wave stresses through consideration of a
macroalga’s cross-sectional area. For each rising tensile
imposition of stress in this wave stress history, the calculated
range of applied stress, ��, combined with crack length, a, can
be used to determine �KI for the loading (e.g. Eqn·1). Then,
for each rising stress imposition, the corresponding crack
growth is determined from �KI for the stress imposition and
from the corresponding da/dN in the baseline data curve. When
crack length is sufficient for �KI to equal KC, breakage of the
alga is predicted. 

The power of this procedure is that breakage of seaweeds
can be examined in a manner that considers each force
imposition (each wave) that seaweeds experience. It thus
estimates the lifetime of a cracked alga as number of waves
required for a crack to grow to failure.

In general, crack growth in engineering materials involves
substantial variability (Broek, 1982), and differences between
predicted and actual growth result from variability in material
cracking and fracture behavior, as well as from idealizations
and simplifications in prediction methods. Similar variability
likely occurs for macroalgae.

LEFM may not effectively characterize algal fracture.
Because LEFM performs best for materials displaying brittle
fracture (which seaweeds often do not, compared to
engineering materials), alternative methods should be explored,
and two such approaches are described below. Even if other
methods are found superior for application to seaweeds, LEFM
might be well applied to some plant materials such as leaves
and wood (Farquhar and Zhao, 2006) or to shells to predict
cycles to failure during predator loadings (e.g. Boulding and
LaBarbera, 1986; LaBarbera and Merz, 1992) or wave force
impositions.

Crack growth in macroalgae
Fracture mechanics of elastomeric materials

Macroalgae generally exhibit high extensibility and non-
linear stress–strain curves (e.g. Fig.·5), factors that potentially
limit the utility of LEFM techniques in analyzing and
predicting fracture in seaweeds. However, these characteristics
of seaweeds (along with their incompressibility) are similar to
the properties of rubber and other elastomers, and a common
modified approach to fracture mechanics designed for
elastomers is likely applicable to seaweeds.

Based on energy considerations, Rivlin and Thomas (Rivlin
and Thomas, 1953) pioneered the fracture mechanics of rubber-
like materials. They demonstrated that Eqn·4 for strain energy
release rate can be applied to such materials. Their approach
does not assume linear stress–strain behavior, but does presume
elasticity. This presumption is often approximately true in
regions far from crack tips (i.e. not at stress concentrations) in

rubber or macroalgal specimens. Furthermore, their methods
can be applied when bulk strains are large, even 100% or more,
which involves a doubling of specimen length during loading
(Lindley, 1972). To be consistent with their nomenclature, and
that of subsequent researchers in fracture mechanics of
elastomers, when discussing this approach we denote strain
energy release rate as T instead of G.

Strain energy release rate, T, may be found experimentally,
as for linear elastic materials, by loading specimens with initial
cracks until cracks extend unstably (Appendix A). Critical
values of TC defined by these loadings are analogous to GC for
linear elastic materials. Experimental results demonstrate that
TC is approximately constant for different specimen and crack
geometries and therefore can be considered a material property
characterizing resistance to fracture (Rivlin and Thomas, 1953;
Thomas, 1994). Thomas (Thomas, 1955; Thomas, 1994) also
showed that T can be related to W, the strain energy density
around the surface of a crack tip of diameter d:

where � is the angle shown in Fig.·6 and W(�) indicates that W
is a function of �. Thomas determined this relation by
considering a specimen’s change in energy with an increment
of crack extension, which is dominated by elastic strain energy
relaxed in a small zone ahead of the crack tip (Thomas, 1994).
Derivation of Eqn·8 assumes elastic, including non-linear
elastic, behavior and strains less that 200% (Thomas, 1955).
This equation indicates that blunting of a crack tip, which
increases crack-tip diameter d, can thus be expected to increase
values of TC. 

Fortunately, relatively simple analytical expressions for T
have been derived for a number of important specimen types.
These expressions also assume elastic stress–strain behavior
and permit substantial bulk strains. We briefly describe
relevant equations without detailing corresponding derivations.
We refer the reader to cited sources for derivations. 

0

W(�)cos� d� ,T = d (8)
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Single-edge-crack specimens

For rubber specimens each with a single edge crack (e.g.
Fig.·2A), pulled in tension, energy release rate is given by:

TI = 2kWoa·, (9)

where Wo is strain energy density (that is, energy per unit
volume) present in the bulk of the specimen and k is a
parameter related to specimen extension, with extension
expressed as an extension ratio � (Rivlin and Thomas, 1953;
Lake, 1983). Extension ratio is simply a ratio of a specimen’s
current length to its initial length. That is, an extension ratio of
2 corresponds to strain of 1, or a doubling in length. Eqn·9
assumes an incompressible elastic material and crack sizes
small compared to specimen width. Greensmith (Greensmith,
1963) found experimentally that k is approximately � at �=1,
then drops to approximately 1.6 at �=3. Numerical analysis
confirmed these results (Lindley, 1972). Variation of k with �
can be adequately approximated by the simple relation:

(Atkins and Mai, 1985; Lake, 1995; Seldén, 1995).
To determine critical energy release rate, TC, a single-edge-

crack specimen with crack length a is stretched until it breaks,
and force and extension at fracture are measured. Wo in Eqn·9
can be found from the stress–strain curve of a specimen without
a crack; Wo is the area under that stress–strain curve up to the
bulk stress at which fracture occurred in the cracked specimen.

Trouser-tear specimens

Another common method for determining TC of rubber-like
materials involves trouser-tear specimens (Fig.·7). A trouser-
tear specimen consists of a rectangular sheet cut along its long
axis to form a pants-shaped test piece. The ‘legs’ are pulled in
opposite directions to create tearing action (Fig.·3C).
Greensmith and Thomas (Greensmith and Thomas, 1955) note
the convenience of this test piece, for which TC and rate of tear
propagation are independent of crack length.

Ahagon et al. (Ahagon et al., 1975) indicate that crack
growth in rubber trouser-tear specimens may actually occur on
inclined planes such that tensile stresses applied to the legs act
in a normal direction to the planes of cracking, which results
in mode I cracking (Fig.·3A). On the other hand, Mai and
Cotterell (Mai and Cotterell, 1984) and Joe and Kim (Joe and

�
 k = .

�
(10)

 

Kim, 1990) note that trouser-tear testing of rubber may involve
a mixture of mode I and mode III cracking. For thin sheets of
biological materials, the mode or modes of cracking in trouser-
tear testing are unclear at this time. 

For trouser-tear tests, critical energy release rate can be
found from:

where � is extension ratio in the legs during tearing, F is force
applied to the legs during tearing, b is initial thickness of the
test piece, Wo is strain energy density in the legs during tearing,
and C is initial cross-sectional area of both legs combined, the
cross-sectional area of the ‘body’ of the test piece (Rivlin and
Thomas, 1953; Greensmith and Thomas, 1955; Lake, 1983).
Often, extension of legs and strain energy stored in legs are
assumed negligible relative to energy associated with crack
extension (Rivlin and Thomas, 1953; Greensmith and Thomas,
1955; Seldén, 1995), in which case:

Thus, for trouser-tear specimens, critical values of TC can be
found by monitoring force required to propagate a crack.
Another approach for finding TC with this specimen type
involves finding the net energy, �, expended in loading,
tearing, and unloading of a specimen, obtained from the area
under a force–displacement plot (e.g. Fig.·8). Then, critical
energy release rate is given (Purslow, 1983) by:

where �ab is the crack extension surface area, taken as distance
traveled by a crack between its initial and final lengths, �a,
multiplied by thickness of a specimen, b. Fluctuations in force
with crack extension of the kind illustrated in Fig.·8 are typical
of variations observed for macroalgae as well as other pliant
biological tissues (Purslow, 1989).

Biedka et al. (Biedka et al., 1987) and Denny et al. (Denny
et al., 1989) determined critical strain energy release rates for
seaweeds from trouser-tear tests using formulations similar to

�
 TC = .

�ab
(13)
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Fig.·6. Schematic of a rounded crack tip with diameter d and angle �.
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Fig.·7. A trouser test piece after a crack has extended from an initial
incision. The path of future crack growth is shown as a broken line.
Force F is applied to both legs. Each leg has width c, and legs and
body have thickness b. Cross-sectional area of the test piece, C, equals
b
2c.
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Eqn·12 and Eqn·13 except that they referenced fracture energy
to two times the fracture surface area. They termed the
measured property ‘work of fracture’, even though they
measured critical energy release rate. Multiplying their works
of fracture by two (and again by two for Denny et al.’s values
to account for a spurious factor introduced in their calculations)
yields critical strain energy release rates for seaweeds
comparable to calculations from Eqn·12 and Eqn·13.

Center-crack specimens

For another specimen geometry, a center-cracked specimen
(Fig.·2B), strain energy release rate for tensile-opening loading
(Fig.·3A) is given by:

(Seldén, 1995; Yeoh, 2002). This relation resembles the
formulation for single-edge-notch specimens (Eqn·9 and
Eqn·10), with crack length a as defined in Fig.·2B. The
parameter k (here k=�/��� ) varies, strictly speaking, for center-
crack (Eqn·14) and edge-crack (Eqn·9 and Eqn·10) specimens
because deformation of an edge crack is less constrained, as
discussed, for example, by Sanford (Sanford, 2003). However,

�Wo(2a)
 TI = .

�
(14)

 

the difference in k for these two specimen types is small
compared to other sources of variability and is often ignored.

In the linear elastic case, Eqn·14 is equivalent to the LEFM
expression for G (Eqn·5). Under elastic conditions, strain energy
density, Wo, is area under a stress–strain curve. Under linear
elastic conditions, this area under the curve, and thus strain energy
density, equals �2/2E. In addition, for linear elastic conditions,
specimen extensions are usually small compared to elastomer
extensions, so that ��1. Substitution of these values yields

Therefore, in the linear elastic case for a center-cracked
specimen, T reduces to G in Eqn·5, demonstrating consistency
of the approaches. Equivalency of T, which assumes elastic
stress–strain behavior and permits substantial bulk strains, and
G, which assumes linear elastic behavior, holds true for other
crack and specimen geometries.

Effects of viscoelasticity

Many elastomers, as well as macroalgae, display some
degree of viscoelastic behavior, a combination of elastic and
time-dependent viscous stress–strain behavior. As such, they
violate the assumption of elasticity inherent in the analyses so
far.

Viscoelastic behavior is characterized, for example, by
stresses relaxing if material is moderately stretched and held
fixed or by inelastic (creep) strains developing if material
experiences constant load over time. Under constant-
amplitude, cyclic loading, viscoelastic behavior appears in
loops formed by stress–strain curves for repeated loading and
unloading cycles (e.g. Fig.·9, as compared to elastic behavior
shown in Fig.·1A,B). Viscoelastic loading–unloading loops
displayed by seaweeds (Fig.·9A) resemble loops exhibited by
rubbers (Fig.·9B). Often, for elastomers and macroalgae, loop
width decreases with repeated cycles and tends towards much
smaller values for lower specimen extension (e.g. Fig.·9). In
addition, a residual inelastic (plastic) strain may remain after
the first cycle, but additional increments of residual strains
often become negligible (Fig.·9). Similar stress–strain behavior
has been observed in other plant tissue (Spatz et al., 1999) and
in muscle of soft-bodied arthropods (Dorfmann et al., 2007).
This viscoelastic behavior will be most pronounced in crack-
tip regions where stresses and strains are much higher than in
the bulk of the specimen.

In spite of such complexities in material behavior, range of
energy release rate, �T, has been used successfully to correlate
crack growth rate under zero-to-tension repeated loading in
rubber (Lake, 1995; Seldén, 1995; Mars and Fatemi, 2003;
Schubel et al., 2004; Busfield et al., 2005), much as �K has
been used successfully in linear elastic analyses. Since the
value of T at the maximum point of a load cycle is �T when
the minimum point is zero (no extension), T will be used here
without �.

� (2a)
 TI = = GI .=

1

�2

2E ��2a
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Fig.·8. Force applied to a trouser-tear test piece is plotted against
distance of test piece’s extension. Arrow 1 indicates the specimen’s
initial extension, arrow 2 indicates tearing of the test piece at average
force F, and arrow 3 indicates final retraction of the specimen as applied
force is removed. The stippled area in (A) depicts energy released in
crack extension. In (B), hatched area 1, under the initial extension curve
(arrow 1), indicates strain energy in legs before crack growth. Cross-
hatched area 3, under the retraction curve (arrow 3), indicates strain
energy stored in legs at the end of the test. Because legs are longer at
the end of the test due to crack extension, final stored strain energy (area
3) is greater than initial stored strain energy (area 1). 
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Characterizing crack growth rate

As with LEFM analyses, crack growth per cycle of loading,
da/dN, may be evaluated in a nonlinearly elastic material over
a range of strain energy release rates, T (Atkins and Mai, 1985;
Lake, 1995; Seldén, 1995). Then, the relationship between
da/dN and T is determined. The cyclic crack growth per cycle
is represented as some simple function of T, a relationship often
maintained over a wide range of crack growth rates:

When f(T) is known, incorporating effects of specimen shape
and applied forces, this equation can be used to predict crack
growth rate behavior for a given material, analogous to data

da
= f(T) .

dN
(15)

 

presented in Fig.·4. For specimens each with a single-edge crack
(Fig.·2A), cycled in tension, energy release rate is described by
Eqn·9. For this equation, for a cyclically loaded sample, Wo is
taken as the strain energy density at maximum extension, �max.
Wo is often measured directly from stress–strain plots for un-
notched samples, assuming that regions far from a crack behave
as if no crack were present (Atkins and Mai, 1985). Likewise, k
is calculated for �max. Calculated T is plotted versus da/dN, as
done for �KI data (Fig.·4).

For crack extension in regions of intermediate-to-high strain
energy release rates, crack growth rate per cycle commonly
follows an empirically determined power-law form (Lake,
1995; Seldén, 1995):

Experimentally observed for a variety of rubbers, this
relationship may aptly describe algal crack growth as well
because of the resemblance between seaweed and rubber
material behavior. B and � are constants fitted to T-versus-da/dN
data. Once determined from tests using one set of crack sizes, T
values, and particular specimen and crack geometry, these
constants can be used in Eqn·16, for the same material, but for
other crack sizes, T values and geometries.

Predicting lifetime

Eqn·16 can be integrated to determine the number of loading
cycles, N, required for a crack to grow from length a1 to length
a2. Consider the case of a single-edge-cracked specimen
(Fig.·2A) that experiences cyclic loading with constant
maximum extension. From Eqn·9, T in Eqn·16 is set equal to
2kWoa. Eqn·16 then becomes

For these loading conditions, 2kWo assumes a constant
maximum value because k and Wo are proportional to
extension. One can then integrate

yielding (Lake, 1995; Seldén, 1995):

From this equation, the number of loading cycles required for an
increment of crack growth can be determined. � often has a value
of 2 to 6 (Lake, 1995). If, in addition, a2�a1, the second term in
parentheses in Eqn·17, (1/a2

�–1), is negligibly small and can be
dropped:

 N = .
1
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�–1

1
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Fig.·9. (A) Stress–strain curves of a red macroalga, Mazzaella flaccida
(Setchell & Gardner) Fredericq, for two cycles of stretching (Hale, 2001)
showing a sizeable loading–unloading loop on the first cycle, followed
by a much smaller loop on the second cycle. A small amount of residual
strain remains after the first cycle. (B) Stress–strain curves, adapted from
Dorfmann and Ogden (Dorfmann and Ogden, 2004), of a rubber
compound for several cycles of stretching, showing similar stress–strain
behavior, plus some reduction in maximum stress levels with cycling
(stress softening). Curves are shown for maximum strains of 0.5, 1.0 and
1.5. Plot, copyright 2003, is reprinted with permission from Elsevier.
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In this way, the lifetime, in number of loading cycles, can be
determined for a specimen with a small introduced crack.

This equation allows for powerful predictions [see
accompanying article (Mach et al., 2007)]. Once baseline crack-
growth behavior of an alga has been evaluated with Eqn·16,
Eqn·18 can be used to estimate the number of waves of a certain
magnitude required to break an edge-cracked alga through
incremental crack growth. That is, for a flat-bladed alga with an
edge crack, Eqn·9 can be used with stress–strain curves to
determine the wave force required to fracture the alga in a single
wave, once critical values of T have been measured. Eqn·18, in
contrast, enables prediction of the wave force required to break
an edge-cracked alga in, for example, 100, 1000 or 10·000
waves, thereby estimating lifetime of the notched alga in
different wave conditions. Wave force can then be correlated
with offshore wave height, given various assumptions about
wave breaking (Gaylord, 1999; Denny et al., 2003; Helmuth and
Denny, 2003; Denny, 2006), allowing predictions of the
frequency with which notched algae experience waves sufficient
to break them in these 100, 1000 or 10·000 wave loadings.

J-integral and elastic–plastic fracture
An important advance in the field of fracture mechanics was

development of the J-integral (Rice, 1968a; Rice, 1968b), a line
integral that evaluates the stress–strain field along a contour
surrounding a crack tip (Fig.·10A). The J-integral is given in
Appendix·B. J and associated techniques have been applied
successfully to assess fracture in the presence of cracks and to
evaluate incremental crack growth even in specimens that
experience substantial plastic deformation at crack tips or
dissipative viscoelastic processes. This more flexible approach
may have advantages for application to seaweeds as well as
other biological materials (e.g. Bertram and Gosline, 1986).

J can be thought of as an energy-related parameter, the
integral of two terms that contain strain energy density (or a
product with units of strain energy density, J·m–3). Rice (Rice,
1968a; Rice, 1968b) derived J for non-linear elastic
stress–strain behavior, and the integral is independent of the
contour selected. The J-integral also characterizes intensity of
strains in the crack-tip region, analogous in that respect to the
stress intensity factor for linear elastic behavior. Computational
and experimental methods for evaluating the integral are given
in texts such as Kanninen and Popelar (Kanninen and Popelar,
1985), Saxena (Saxena, 1998) and Anderson (Anderson, 2005).

J has been found useful in analyzing resistance to crack
extension in materials with extensive plastic deformation
emanating from crack tips. The critical value of J at which
onset of crack extension occurs, JC, can be considered a
material property. Like fracture toughness KC, JC is in principle
independent of specimen and crack geometry as well as crack
size. Over the years, J has been applied successfully as a
fracture parameter for metals and plastics (Kim et al., 1989;
Bose and Landes, 2003; Wainstein et al., 2004).

J can be interpreted graphically (Fig.·11). Suppose test
specimens with two different crack lengths, a and (a+da), are

pulled to a fixed displacement. The area between the curves for
two different crack lengths (Fig.·11) represents the change in
stored energy, dU, that occurs for crack extension da. dU is
(Jtda), where t is specimen thickness and dA=tda (Broek,
1982). For this fixed displacement example,

The J-integral, despite its apparent complexity (Appendix·B), is
equivalent to G and T, given certain assumed material behaviors.
For example, if the path (contour) for the J-integral is taken
around the boundaries of an edge-cracked specimen (Fig.·10B),
evaluation of J for rubber-like materials produces results
equivalent to Eqn·9 (Oh, 1976). In this scenario, JI=TI=2kWoa.
Furthermore, calculating a J-integral for a rounded crack tip
(Fig.·6) with the contour taken around the surface of the crack
tip yields an expression equivalent to Eqn·8 for T. Also, if linear
elastic behavior is considered, JI can be shown to equal (KI)2/E,
which by Eqn·6 is GI (Rice, 1968a; Rice, 1968b).

Note that energy release rate usually involves energy released
from a specimen to ‘feed’ a growing crack in elastic material. If
large amounts of plastic deformation occur when a cracked
specimen is loaded, much energy absorbed by the specimen is not
recovered upon unloading or crack advance (Anderson, 2005). In
such a situation, Eqn·19 relates J to the difference in energy
absorbed by identical specimens with two different crack sizes.

Although derived for non-linear elastic behavior (Fig.·1B), J
can be applied to the loading portion of an elastic–plastic
stress–strain curve (e.g. Fig.·1C). The J-integral is not defined
for unloading. Nevertheless, �J has been successfully
correlated with crack growth rate, da/dN, for repeated cycles
of loading and unloading (Dowling and Begley, 1976) even
when gross amounts of plasticity accompany crack growth.
With such correlations, J can be used, as described for G and
T, to predict lifetime of materials with cracks, including
seaweeds.

Furthermore, for some elastomeric materials and certain
specimen designs, energy dissipates during specimen
deformation and does not contribute to cracking processes.

dU
 J = – .

dA
(19)
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A B

Fig.·10. (A) Diagram showing an integration path (contour) taken in
a counterclockwise direction around a crack tip. (B) An edge-cracked
specimen stretched and held with fixed displacement, showing a
contour taken around the boundaries of the specimen.
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This dissipated energy should be separated from energy that
contributes to cracking in determining fracture resistance. J
may provide a means of partitioning energy in the crack-tip
region from energy dissipated in the bulk of a specimen (Lee
and Donovan, 1985).

Because it accommodates non-linear stress–strain curves and
extensive plastic deformation at crack tips during loading, J
may be another fracture parameter that could be fruitfully
applied to macroalgal fracture processes.

Conclusions
Macroalgae frequently incur cracks due to herbivory,

abrasion and fatigue. The fracture mechanics methods outlined
here allow assessment of material strength reduction in the
presence of cracks and of the effects of stresses below a
material’s ultimate strength. In repeated loadings imposed by
breaking waves, cracks in macroalgal materials likely grow
even when individual forces are not sufficient to cause
complete fracture. These methods suggest a first avenue for
investigating seaweed breakage in the realistic context of
repeated wave force imposition.

Furthermore, the methods presented from LEFM, fracture
mechanics of elastomers and elastic–plastic fracture mechanics
enable prediction of the lifetime for breakage of other biological
materials with cracks or flaws in the presence of isolated large
loads or of repeated loadings. Although incremental crack
growth at sub-critical loads has been largely ignored for many
biological materials, such fatigue crack growth may contribute
importantly to ecologically, evolutionarily and physiologically
relevant breakage in organisms ranging from seaweeds to
terrestrial plants to animals.

Appendix A
Critical strain energy release rate, TC, may be found

experimentally through the following procedure. Specimens
with introduced cracks of different lengths a (m) are pulled
until unstable tearing occurs. For the various tested
specimens, load (N), applied to a specimen until it tears

completely, is plotted against specimen displacement 
 (m),
the difference between specimen length at a given time and
initial specimen length (Fig.·A1A).

Displacement

Lo
ad

a

a+da

Displacement
held fixed

Fig.·11. Schematic showing change in load–displacement curves of
specimens with two different crack lengths (a and a+da) but the same
specimen displacement.
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Fig.·A1. Plots used in experimental determination of critical strain
energy release rate. (A) Load–displacement plots for specimens with
various initial crack lengths. Solid circles indicate points at which
unstable tearing occurred. Lower curves are for specimens with longer
initial cracks. 
* represents a displacement chosen for generation of
plot (B). Area 4, A4 (hatched), indicates strain energy present in
specimen 4 when it is pulled to displacement 
*; specimen 4’s
load–displacement curve must be extrapolated. 
breaking,1 indicates the
displacement at which specimen 1 tore unstably, which is used for
plot (C). (B) A plot, derived from (A), of strain energy versus initial
crack length at a selected value of specimen displacement, 
*. For
example, strain energy A4 is plotted against the length of specimen
4’s initial crack, as depicted by the open circle 4. (C) A plot, derived
from (A), of displacement at tearing versus initial crack length. For
example, 
breaking,1 is plotted against specimen 1’s initial crack length,
as indicated by grey circle 1. From this plot, initial crack length, a*,
corresponding to 
*, is determined. At this value of a*, the tangent to
plot (B) is found, which gives (dU/da).
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For a selected value of specimen displacement, 
*, a plot of
stored strain energy U (J) versus initial crack length is
constructed (Fig.·A1B). Given elastic material behavior, stored
strain energy is the area under the load–displacement curve, in
this case between zero displacement and 
* (Fig.·A1A). If
unstable tearing occurs before a specimen reaches the selected
displacement, the specimen’s load–deformation curve in
Fig.·A1A is extrapolated to estimate stored energy.

Then, a third plot (Fig.·A1C) of specimen displacement at
tearing versus initial crack length is generated from the
load–displacement plots in Fig.·A1A. From this plot, for the
displacement selected for Fig.·A1B, 
*, one determines initial
crack length, a*, for which tearing would have occurred at the
given displacement from a line fitted to the data points. At this
value of a*, the tangent to the U-versus-a curve (Fig.·A1B) is
determined. This tangent (or slope) yields dU/da, which can be
converted to critical strain energy release rate, TC, or –dU/dA,
by multiplying the tangent by –1/specimen thickness. Any
selected value of specimen displacement for construction of the
second plot (Fig.·A1B) should yield approximately the same
value of TC.

Appendix B
The J-integral (Rice, 1968a; Rice, 1968b) is given by the line

integral:

where 	 is a path-independent, counterclockwise contour
surrounding a crack tip, W is strain energy density, and P is a
stress vector acting on an element of path length ds (Fig.·A2A).
P is defined according to the outward-direction, unit-vector
normal to 	, n (Fig.·A2A; see Eqn·A2 and Eqn·A3 below). In
Fig.·A2A, u denotes a vector quantifying displacement of the
material at the same location (ds), while (�u/�x) is a
displacement gradient (see Eqn·A4 and Eqn·A5 below).
Although the stress (traction) vector is usually notated with ‘T’,
here we use ‘P’ to avoid confusion with strain energy release
rate T.

To explain these terms and illustrate evaluation of the
integral, two-dimensional stress will be considered. Two-
dimensional stress occurs, for example, in a stretched thin sheet
of material. It is described by three stress components, �x, �y,
and �xy, acting on a small element of material (Fig.·A2B). The
�x and �y components elongate (or compress) material, while
the �xy component shears material. Also for illustration, a
rectangular contour 	 around a crack tip will be considered,
depicted in Fig.·A2C.

The traction vector P can be expressed as Pxi+Pyj, where i
and j are unit vectors in the x and y directions, respectively. Px

and Py can be found from:

Px = nx�x + ny�xy·, (A2)

Py = nx�xy + ny�y·, (A3)

 J =  Wdy – P ·  ds , (A1)
 

⎛
⎜
⎝

⎞
⎟
⎠	

⌠
⎮
⌡

�u

�x

where nx and ny are components of the outward unit vector n
normal to a segment. For instance, along the segment 1–2 in
Fig.·A2C, (nx, ny)=(0, –1), so that Px=–�xy and Py=–�y. Along
2–3, (nx, ny)=(1, 0), so that Px=�x and Py=�xy. Along 3–4,
(nx, ny)=(0, 1) so that Px=�xy and Py=�y. Along 4–5 and 6–1,
(nx, ny)=(–1, 0), yielding Px=–�x and Py=–�xy.

Deformation of an object is commonly represented by a
displacement vector that describes the change in coordinates of
a point in the object, from (x1, y1) to (x2, y2). The vector is given
by:

u = ui + vj·, (A4)

where u=x2–x1 and v=y2–y1 (Boresi, 2000). The vector can vary
in magnitude and direction from one location to another in an
object. Differentiation of Eqn·A4 leads to:

Forming the scalar product P�(�u/�x) along segment 1–2
yields 

 – �xy 
 – �y

�u

�x
 ;
�v

�x

 = . (A5)
 

�u

�x
 i +

�u

�x
 j

�v

�x
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Fig.·A2. (A) Counterclockwise contour 	 around a crack tip showing
an element of path length ds, with unit vector n normal to the path and
with stress and displacement vectors, P and u, respectively, also shown.
Crack length is a. (B) An element of material experiencing two-
dimensional stress. Not all three stress components need be active;
often only one or two components are active. (C) Rectangular path 	
surrounding a crack tip, used to illustrate evaluation of a J-integral.
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along segment 3–4, the product is the same, except multiplied
by –1 throughout. Along segment 2–3, the product is

along segments 4–5 and 6–1, the product is the same, except
again multiplied by –1 throughout.

Each segment will contribute to the J-integral as indicated
in Table·A1. Note that along this rectilinear path ds becomes
either dx or dy, depending on the segment.

The strain energy density term along a segment can be
evaluated for two-dimensional stress from

W = �(�xd�x + �yd�y + �xyd�xy)·, (A6)

where �x, �y, and �xy are normal (�) and shear (�) strain
components present along a segment. Integration is carried out
from the initial state (no strains) to the final state (maximum
strains reached).

Several approaches exist for evaluating the terms in the J-
integral when significant plastic straining is present. For
example, the displacement terms �u/�x and �v/�x, as well as
�u/�y and �v/�y, can be found by optical methods such as Moire
interferometry (Dadkhah and Kobayashi, 1990), digital image
correlation (Sutton et al., 1991), and electronic speckle pattern
interferometry (Moore and Tyrer, 1994). Corresponding strains
can then be computed from �x=�u/�x, �y=�v/�y and
�xy=G[(�u/�y)+(�v/�x)]. From a material’s stress–strain curve,
stress components �x, �y and �xy can be computed from these
strain components using relations between stresses and strains
available from the theory of plasticity (Sutton et al., 1996;
Chakrabarty, 2006). If a contour is taken far enough from a
crack-tip region to make plastic straining negligible, simpler
linear elastic stress–strain relations can then be used (Kawahara
and Brandon, 1983). Determination of the variation of
displacements, strains and stresses along the segments of the
contour provides input to the evaluation of the terms in the line
integrals in Table·A1. The variation of a given term (e.g. W)
along a segment can be fitted by a mathematical function of x
or y to facilitate integration (Read, 1983).

The J-integral may also be determined using commercially
available finite element programs that compute the terms
involved in the integral from loads applied to a given specimen
geometry, without the need for experimental data other than a
stress–strain curve.

�x  + �xy
�u

�x
 ;
�v

�x

List of symbols and abbreviations

Equation in which each symbol is first used is given (if symbol

is used in an equation).

A crack surface area, Eqn·4

a measure of crack length, Eqn·1

a1 initial crack length, Eqn·17

a2 final crack length, Eqn·17

B fitted constant, Eqn·16

b thickness, Eqn·11

C cross-sectional area of trouser-tear test piece,

Eqn·11

c leg width of trouser-tear test piece

d crack-tip diameter, Eqn·8

ds contour element path length, Eqn·A1

da/dN crack growth rate, Eqn·15

E modulus of elasticity, Eqn·5

f(a/w) dimensionless function of the crack geometry and

sheet width , Eqn·1

F force, Eqn·11

G strain energy release rate, Eqn·4

GC critical strain energy release rate, Eqn·7

GI strain energy release rate (mode I loading), Eqn·5

J J-integral, Eqn·19

JC critical value of J

JI J for mode I loading

KC critical stress intensity factor, fracture toughness,

Eqn·3

KI stress intensity factor (mode I loading), Eqn·1

k specimen extension parameter, Eqn·9

LEFM linear elastic fracture mechanics

N cycle number, Eqn·17

n normal vector

P traction vector, Eqn·A1

R crack resistance

t thickness

T strain energy release rate, Eqn·8

TC critical strain energy release rate, Eqn·11

TI strain energy release rate (mode I loading), Eqn·9

U strain energy, Eqn·4

u displacement vector, Eqn·A1

V energy absorbed during crack extension

W strain energy density in crack-tip region, Eqn·8

Wo strain energy density in bulk of specimen, Eqn·9

w width, Eqn·1

� fitted constant, Eqn·16

	 contour surrounding crack tip, Eqn·A1

�J range of J-integral

�KI range of stress intensity factor (mode I loading)

Table A1. Contributions to J-integral for rectangular path

Segments Contribution along each segment

1–2 and 3–4 (dy=0) 

2–3, 4–5 and 6–1 (dx=0)

⎛
⎜
⎝

⎞
⎟
⎠

dx
v

x
+ 

yxy

u

x

⌠
⎮
⌡

⎡
⎢
⎣

⎤
⎥
⎦

⎛
⎜
⎝

⎞
⎟
⎠

dyW –
v

x
+ 

xyx

u

x

⌠
⎮
⌡
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�KTH threshold range of stress intensity factor

�T range of strain energy release rate

�� range of applied stress


 displacement

�max maximum extension ratio

� normal strain component, Eqn·A6

�xy shear stress component, Eqn·A2

� shear strain component, Eqn·A6

� applied stress, Eqn·1

�C strength of specimen with crack, Eqn·3

� crack-tip angle, Eqn·8

� extension ratio, Eqn·10

� energy released in crack extension (trouser-tear

test), Eqn·13
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